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Efficient Optimization of Performance
Measures by Classifier Adaptation
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Abstract—In practical applications, machine learning algorithms are often needed to learn classifiers that optimize domain
specific performance measures. Previously, the research has focused on learning the needed classifier in isolation, yet learning
nonlinear classifier for nonlinear and nonsmooth performance measures is still hard. In this paper, rather than learning the
needed classifier by optimizing specific performance measure directly, we circumvent this problem by proposing a novel two-
step approach called as CAPO, namely to first train nonlinear auxiliary classifiers with existing learning methods, and then to
adapt auxiliary classifiers for specific performance measures. In the first step, auxiliary classifiers can be obtained efficiently by
taking off-the-shelf learning algorithms. For the second step, we show that the classifier adaptation problem can be reduced to
a quadratic program problem, which is similar to linear SVMperfand can be efficiently solved. By exploiting nonlinear auxiliary
classifiers, CAPO can generate nonlinear classifier which optimizes a large variety of performance measures including all the
performance measure based on the contingency table and AUC, whilst keeping high computational efficiency. Empirical studies
show that CAPO is effective and of high computational efficiency, and even it is more efficient than linear SVMperf.

Index Terms—Optimize performance measures, classifier adaptation, ensemble learning, curriculum learning
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1 INTRODUCTION

IN real-world applications, different user require-
ments often employ different domain specific per-

formance measures to evaluate the success of learn-
ing algorithms. For example, F1-score and Precision-
Recall Breakeven Point (PRBEP) are usually employed
in text classification; Precision and Recall are often
used in information retrieval; Area Under the ROC
Curve (AUC) and Mean Average Precision (MAP)
are important to ranking. Ideally, to achieve good
prediction performance, learning algorithms should
train classifiers by optimizing the concerned perfor-
mance measures. However, this is usually not easy
due to the nonlinear and nonsmooth nature of many
performance measures like F1-score and PRBEP.

During the past decade, many algorithms have been
developed to optimize frequently used performance
measures, and they have shown better performance
than conventional methods [18], [6], [19], [15], [5],
[4]. By now, the research has focused on training
the needed classifier in isolation. But, in general, it
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is still challenging to design general-purpose learn-
ing algorithms to train nonlinear classifiers optimiz-
ing nonlinear and nonsmooth performance measures,
though it is very needed in practice. For example,
SVMperf proposed by Joachims [15] can efficiently
optimize a large variety of performance measures in
the linear case, but its nonlinear kernelized extension
suffers from computational problems [31], [17].

In this paper, rather than directly designing sophis-
ticated algorithms to optimize specific performance
measures, we take a different strategy and present a
novel two-step approach called CAPO to cope with
this problem. Specifically, we first train auxiliary clas-
sifiers by exploiting existing off-the-shelf learning al-
gorithms, and then adapt the obtained auxiliary classi-
fiers to optimize the concerned performance measure.
Note that in the literature, there have been proposed
many algorithms that can train the auxiliary classifiers
quite efficiently, even on large-scale data, thus the first
step can be easily performed. For the second step,
to make use of the auxiliary classifiers, we consider
the classifier adaptation problem under the function-
level adaptation framework [29], and formulate it as a
quadratic program problem which is similar to linear
SVMperf [15] and can also be efficiently solved. Hence,
in total, CAPO can work efficiently.

A prominent advantage of CAPO is that it is a
flexible framework, which can handle different types
of auxiliary classifiers and a large variety of perfor-
mance measures including all the performance mea-
sure based on the contingency table and AUC. By
exploiting nonlinear auxiliary classifiers, CAPO can
train nonlinear classifiers optimizing the concerned
performance measure with low computational cost.
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This is very helpful, because nonlinear classifiers are
preferred in many real-world applications but training
such a nonlinear classifier is often of high compu-
tational cost (e.g. nonlinear kernelized SVMperf). In
empirical studies, we perform experiments on data
sets from different domains. It is found that CAPO
is more effective and more efficient than state-of-the-
art methods, also it scales well with respect to training
data size and is robust with the parameters. It is worth
mentioning that the classifier adaptation procedure
of CAPO is even more efficient than linear SVMperf,
though it employs the same cutting-plane algorithm
to solve the classifier adaptation problem.

The rest of this paper is organized as follows.
Section 2 briefly describes some background, includ-
ing the problem studied here and SVMperf. Section 3
presents our proposed CAPO approach. Section 4
gives some discussions on related work. Section 5
reports on our empirical studies, followed by the
conclusion in Section 6.

2 OPTIMIZING PERFORMANCE MEASURES

In this section, we first present the problem of op-
timizing performance measures, and then introduce
SVMperf [15] and its kernelized extension.

2.1 Preliminaries and Background
In machine learning tasks, given a set of n training
examples D = {(x1, y1), . . . , (xn, yn)}, where xi ∈ X
and yi ∈ {−1,+1} are input pattern and its class label
respectively, our goal is to learn a classifier f(x) that
minimizes the expected risk on new data sample S =
{(x′1, y′1), . . . , (x′m, y

′
m)}, i.e.,

R∆(f) = ES [∆((y′1, . . . , y
′
m), (f(x′1), . . . , f(x′m)))] ,

where ∆((y′1, . . . , y
′
m), (f(x′1), . . . , f(x′m))) is the loss

function which quantifies the loss of f on S. Sub-
sequently, we use the notation ∆(f ;S) to denote
∆((y′1, . . . , y

′
m), (f(x′1), . . . , f(x′m))) for convenience.

Since it is intractable to compute the expectation ES [·],
discriminative learning methods usually approximate
the expected risk R∆(f) using the empirical risk

R̂∆
D(f) = ∆(f ;D) ,

which measures f(x)’s loss on the training data D,
and then train classifiers by minimizing empirical risk
or regularized risk. In practice, domain specific per-
formance measures are usually employed to evaluate
the success of learnt classifiers. Thus, good perfor-
mance can be expected if the classifiers are trained
by directly optimizing the concerned performance
measures. Here, we are interested in regarding the loss
function ∆ as practical performance measures (e.g.,
F1-score and PRBEP), instead of some kinds of surro-
gate functions (e.g., hinge loss and exponential loss).
In this situation, the loss function ∆ can be nonlinear

and nonsmooth function of training examples in D,
thus it is computationally challenging to optimize the
empirical risk ∆ in practice.

In the literature, some methods have been devel-
oped to optimize frequently-used performance mea-
sures, such as AUC [12], [14], F1-score [24], NDCG
and MAP [32], [28], [27]. Among existing methods
that try to optimize performance measures directly,
the SVMperf proposed by Joachims [15] is a represen-
tative example. One of its attractive advantages is that
by employing the multivariate prediction framework,
it can directly handle a large variety of performance
measures, including AUC and all measures that can
be computed from the contingency table, while most
of other methods are specially designed for one spe-
cific performance measure. Subsequently, we describe
it and also show its limitation.

2.2 SVMperfand Its Kernelized Extension
Since many performance measures cannot be decom-
posed over individual predictions, SVMperf [15] takes
a multivariate prediction formulation and considers
to map a tuple of n patterns x̄ = (x1, . . . ,xn) to a
tuple of n class labels ȳ = (y1, . . . , yn) by

f̄ : Xn 7→ Yn ,

where Yn ⊆ {−1,+1}n is set of all admissible label
vectors. To implement this mapping, it exploits a
discriminant function and makes prediction as

f̄(x̄) = arg max
ȳ′∈Yn

w>Ψ(x̄, ȳ) , (1)

where w is a parameter vector and Ψ(x̄, ȳ′) is a feature
vector relating x̄ and ȳ′. Obviously, the computational
efficiency of the inference (1) highly depends on the
form of the feature vector Ψ(x̄, ȳ′) .

2.2.1 Linear Case
In [15], the feature vector Ψ(x̄, ȳ′) is restricted to be

Ψ(x̄, ȳ′) =
∑n

i=1
y′ixi ,

and thus the argmax in (1) can be achieved by assign-
ing y′i to sign(w>xi), leading to a linear classifier

f(x) = sign[w>x] .

To learn the parameter w, the following optimization
problem is formulated

min
w,ξ≥0

1

2
‖w‖2 + C ξ (2)

s.t. ∀ ȳ′ ∈ Yn \ ȳ :

w>[Ψ(x̄, ȳ)−Ψ(x̄, ȳ′)] ≥ ∆(ȳ, ȳ′)− ξ ,

where ∆(ȳ, ȳ′) is the loss of mapping x̄ to ȳ′ while its
true label vector is ȳ. It is not hard to find that ∆(ȳ, ȳ′)
can incorporate many types of performance measures,
and the problem (2) optimizes an upper bound of the
empirical risk [15].
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Algorithm 1 Cutting-plane algorithm for training lin-
ear SVMperf [15]

1: Input: D = {(xi, yi)}ni=1, C, ε
2: W ← ∅
3: repeat
4: (w, ξ)← arg minw,ξ≥0

1
2‖w‖

2 + Cξ
s.t. ∀ ȳ′ ∈ W :

w>[Ψ(x̄, ȳ)−Ψ(x̄, ȳ′)] ≥ ∆(ȳ, ȳ′)− ξ ,
5: find the most violated constraint by

ȳ′ ← arg maxȳ′′∈Yn{∆(ȳ, ȳ′′) + w>Ψ(x̄, ȳ′′)}
6: W ←W ∪ {ȳ′}
7: until ∆(ȳ, ȳ′)−w>[Ψ(x̄, ȳ)−Ψ(x̄, ȳ′)] ≤ ξ + ε

While there are a huge number of constraints in
(2), the cutting-plane algorithm in Algorithm 1 can be
used to solve it, and this algorithm has been shown
to need at most O(1/ε) iterations to converge to an ε-
accurate solution [15], [16]. In each iteration, it needs
to find the most violated constraint by solving

arg max
ȳ′∈Yn

{∆(ȳ, ȳ′) + w>Ψ(x̄, ȳ′)} . (3)

It has been shown that if the discriminant function
w>Ψ(x̄, ȳ′) can be written in the form

∑n
i=1 y

′
if(xi),

the inference (3) can be solved for many performance
measures in polynomial time, that is, O(n2) for con-
tingency table based performance measures (such as
F1-score) and O(n log n) for AUC [15]. Hence, Algo-
rithm 1 can train SVMperf in polynomial time.

2.2.2 Kernelized Extension
Using kernel trick, the linear SVMperf described above
can be extended to the non-linear case [16]. It is easy
to obtain that the dual of (2) as

max
α≥0

− 1

2
α>Hα +

∑
ȳ′∈Yn

αȳ′∆(ȳ, ȳ′) (4)

s.t.
∑

ȳ′∈Yn
αȳ′ = C ,

where α is the column vector of αȳ′ ’s and H is the
Gram matrix with the entry H(ȳ′, ȳ′′) equal to[

Ψ(x̄, ȳ)−Ψ(x̄, ȳ′)]>[Ψ(x̄, ȳ)−Ψ(x̄, ȳ′′)
]
.

By replacing the primal problem with its dual in Line
4, it is easy to get the dual variant of Algorithm 1,
which can solve the problem (4) in at most O(1/ε) iter-
ations [16], [17]. In the solution, each αȳ′ corresponds
to a constraint in W , and the discriminant function
w>Ψ(x̄, ȳ′) in (1) can be written as∑

ȳ′′∈W
αȳ′′ [Ψ(x̄, ȳ)−Ψ(x̄, ȳ′′)]>Ψ(x̄, ȳ′) .

Obviously, the inner product Ψ(x̄, ȳ′)>Ψ(x̄, ȳ′′) can be
computed via a kernel K(x̄, ȳ′, x̄, ȳ′′). However, if so,
it can be found that the argmax in (1) and (3) will
become computationally intractable. Hence, feature
vectors of the following form are used

Ψ(x̄, ȳ′) =
∑n

i=1
y′iΦ(xi) ,

where Φ(xi)
>Φ(xj) can be computed via a kernel

function K(xi,xj) = Φ(xi)
>Φ(xj). Then, the discrim-

inant function becomes

w>Ψ(x̄, ȳ′) =
∑n

i=1
y′i
∑n

j=1
βjK(xi,xj) , (5)

where βj =
∑
ȳ′′∈W αȳ′′(yj − y′′j ). In this case, the

argmax in (1) can be achieved by assigning each
y′i with sign

[∑n
j=1 βjK(xi,xj)

]
, which produces the

kernelized classifier

f(x) = sign
[∑n

i=1
βiK(x,xi)

]
.

However, in each iteration, the Gram matrix H
needs to be updated by adding a new row/column
for the new constraint. Suppose ȳ+ is added, for every
ȳ′ ∈ W , it requires computing H(ȳ′, ȳ+) as∑n

i=1

∑n

j=1
(yi − y′i)(yj − y+

j )K(xi,xj) .

Thus, let m denote the number of constraints in W
and n denote the data size, it takes O(mn2) kernel
evaluations in each iteration. Also, it should be noted
that computing the discriminative function (5) also
requires O(n2) kernel evaluations, and this adds to the
computational cost of the inference (3). These issues
make the kernelized extension of SVMperf suffer from
computational problems, even on reasonably-sized
data set. However, as we know, nonlinear classifiers
are quite needed in many practical application. Hence,
training nonlinear classifier that optimizes a specific
performance measure becomes central to this work.

3 CLASSIFIER ADAPTATION FOR PERFOR-
MANCE MEASURES

In this section, we introduce our proposed approach
CAPO, which is short for Classifier Adaptation for
Performance measures Optimization.

3.1 Motivation and Basic Idea
Notice the fact that it is generally not straightforward
to design learning algorithms which optimize specific
performance measure, while there has been many
well-developed learning algorithms in the literature
and some of them can train complex nonlinear clas-
sifiers quite efficiently. Our intuitive motivation of
this work is to exploit these existing algorithms to
help training the needed classifier that optimizes the
concerned performance measure.

Specifically, denote f∗(x) as the ideal classifier
which minimizes the empirical risk ∆(f ;D), it is
generally not easy to design algorithms which can
efficiently find f∗(x) in the function space by mini-
mizing ∆(f ;D) due to its nonlinear and nonsmooth
nature, especially when we are interested in complex
nonlinear classifiers. Meanwhile, by using many off-
the-shelf learning algorithms, we can get certain clas-
sifier f ′(x) quite efficiently, even on large-scale data
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set. Obviously, f ′(x) can differ from the ideal classifier
f∗(x), since it may optimize a different loss from
∆(f ;D). However, since many performance measures
are closely related, for example, both F1-score and
PRBEP are functions of precision and recall, the av-
erage AUC is an increasing function of accuracy [8],
f ′(x) can be regarded as a rough estimated classifier
of f∗(x), then we conjecture that f ′(x) will be helpful
to finding f∗(x) in the function space, for example,
it can reduce the computational cost of searching the
whole function space. Subsequently, f ′(x) is called as
auxiliary classifier and f∗(x) as target classifier.

To implement this motivation, we take classifier
adaptation techniques [21], [30] which have achieved
successes in domain adaptation [9]. Specifically, after
getting the auxiliary classifier f ′(x), we adapt it to
a new classifier f(x) and it is expected that the
adapted classifier f(x) can achieve good performance
in terms of the concerned performance measure. For
the classifier adaptation procedure, it is expected that
• Adapted classifier outperforms auxiliary classi-

fier in terms of concerned performance measure;
• The adaptation procedure is more efficient than

directly training a new classifier for concerned
performance measure;

• The adaptation framework can handle different
types of auxiliary classifiers and different perfor-
mance measures.

Since many existing algorithms can train auxiliary
classifiers efficiently, we focus on the classifier adap-
tation procedure in the remainder of the paper.

3.2 Classifier Adaptation Procedure
For the aim of this work, we study the classifier adap-
tation problem under the function-level adaptation
framework, which is originally proposed for domain
adaption in [30], [29].

3.2.1 Single Auxiliary Classifier
The basic idea is to directly modify the decision
function of auxiliary classifier which can be of any
type. Concretely, given one auxiliary classifier f ′(x),
we construct the new classifier f(x) by adding a delta
function fδ(x) = w>Φ(x), i.e.,

f(x) = sign
[
f ′(x) + w>Φ(x)

]
,

where w is the parameter of fδ(x), and Φ(·) is a fea-
ture mapping. It should be noted that f ′(x) is the aux-
iliary classifier directly producing +1/-1 predictions,
and it can be of any type (e.g., SVM, neural network,
decision tree, etc) because it is treated as a “black-
box” in CAPO; while fδ(x) is a real-valued function,
which is added to modify the decision of f ′(x) such
that f(x) can achieve good performance in terms of
our concerned performance measure. Obviously, our
task is reduced to learn the delta function fδ(x), and
hence the classifier f(x).

Based on the principle of regularized risk minimiza-
tion, the following problem should be considered

min
w

Ω(w) + C ·∆(ȳ, ȳ∗) , (6)

where Ω(w) is a regularization term, ∆(ȳ, ȳ′) is the
empirical risk on training data D with ȳ = (y1, . . . , yn)
are the true class labels and ȳ∗ = (f(x1), . . . , f(xn))
are the predictions of f(x), and C is the regularization
parameter. In practice, the problem (6) is not easy to
solve, mainly due to the following two issues:

1) For some multivariate performance measures
like F1-score, ∆ cannot be decomposed over in-
dividual predictions, i.e., they cannot be written
in the form of ∆(ȳ, ȳ′) =

∑n
i=1 `(yi, h(xi)) ;

2) The empirical risk ∆ can be nonconvex and
nonsmooth;

To cope with these issues, inspired by SVMperf [15], we
take the multivariate prediction formulation. That is,
instead of learning f(x) : X 7→ Y directly, we consider
f̄ : Xn 7→ Yn which maps a tuple of n patterns
x̄ = (x1, . . . ,xn) to n class labels ȳ = (y1, . . . , yn).
Specifically, the mapping is implemented by maximiz-
ing a discriminant function F (x̄, ȳ), i.e.,

ȳ = arg max
ȳ′∈Yn

F (x̄, ȳ′) . (7)

In this work, F (x̄, ȳ) =
∑n
i=1 yif(xi) is used, so the

argmax in (7) can be easily obtained by assigning y′i
with f(x). In this way, (7) becomes

ȳ = arg max
ȳ′∈Yn

[
1
w

]>
Υ(x̄, ȳ) ,

where
Υ(x̄, ȳ) =

∑n

i=1
yi

[
f ′(xi)
Φ(xi)

]
.

Instead of directly minimizing ∆(ȳ, ȳ′), we consider
its convex upper bound as follows.

Proposition 1: Given training data D and the dis-
criminative funciton F (x, ȳ), the risk function

R(w;D) = max
ȳ′∈Yn

[F (x̄, ȳ′)− F (x̄, ȳ) + ∆(ȳ, ȳ′)] (8)

is a convex upper bound of the empirical risk ∆(ȳ, ȳ∗)
with ȳ∗ = arg maxȳ′∈Yn F (x̄, ȳ).

Proof: The convexity of (8) with respect to w
is due to the fact that F is linear in w and a
maximum of linear functions is convex. Since ȳ∗ =
arg maxȳ′∈Yn F (x̄, ȳ), it follows

R(w;D) ≥ F (x, ȳ∗)− F (x, ȳ) + ∆(y, ȳ∗) ≥ ∆(y, ȳ∗) .

Thus, R(w;D) is a convex upper bound.
Consequently, by taking Ω(w) = ‖w‖2 and the con-

vex upper bound R(w;D), the problem (6) becomes

min
w,ξ≥0

1

2
‖w‖2 + Cξ (9)

s.t. ∀ ȳ′ ∈ Yn \ ȳ :[
1
w

]>
[Υ(x̄, ȳ)−Υ(x̄, ȳ′)] ≥ ∆(ȳ, ȳ′)− ξ ,



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. X, XXXX 20XX 5

where ξ is a slack variable introduced to hide the max
in (8). Although the regularization term ‖w‖2 has the
same form as that of SVMperf in (2), it has a different
meaning, as stated in following proposition.

Proposition 2: By minimizing the regularization
term ‖w‖2 in the problem (9), the adapted classifier
f(x) is made to be near the auxiliary classifier f ′(x)
in reproducing kernel Hilbert space.

Proof: The Lagrangian function of (9) is

L =
1

2
‖w‖2 +

(
C − γ −

∑
ȳ′∈Yn

αȳ′
)
ξ−∑

ȳ′∈Yn
αȳ′

([
1
w

]>
[Υ(x̄, ȳ)−Υ(x̄, ȳ′)]−∆(ȳ, ȳ′)

)
,

where αȳ′ and γ are Lagrangian multipliers. By setting
the derivative of L w.r.t. w to zero, we obtain

w =
∑n

i=1
βiΦ(xi) and fδ(x) =

∑n

i=1
βiK(xi,x) ,

where βi =
∑
ȳ′∈Yn αȳ′(yi − y′i) and K(xi,x) =

Φ(xi)
>Φ(x). Since f(x) = f ′(x) + fδ(x), the distance

between f and f ′ in RKHS is ‖f−f ′‖2 = ‖fδ‖2 which
is computed as 〈fδ, fδ〉 =

∑n
i=1

∑n
j=1 βiβjK(xi,xj).

Meanwhile, since w =
∑n
i=1 βiΦ(xi), we have

‖w‖2 =
∑n

i=1

∑n

j=1
βiβiΦ(xi)

>Φ(xi) .

By computing Φ(xi)
>Φ(xi) via K(xi,xj), we obtain

‖f − f ′‖2 = ‖w‖2, which completes the proof.
In summary, by solving the problem (9), CAPO

finds the adapted classifier f(x) near the auxiliary
classifier f ′(x) such that f(x) minimizes an upper
bound of the empirical risk, and the parameter C
balances these two goals.

3.2.2 Multiple Auxiliary Classifiers

If there are multiple auxiliary classifiers, rather than
choosing one, we learn the target classifier by leverag-
ing all the auxiliary classifiers. A straightforward idea
is to construct an ensemble of them, then the ensemble
is treated as a single classifier to be adapted. Suppose
we have m auxiliary classifiers f1(x), . . . , fm(x), the
target classifier f(x) can be formulated as

f(x) = sign
[∑m

i=1
aif

i(x) + w>Φ(x)
]
, (10)

where ai is the weight of the auxiliary classifier f i(x),
and fδ(x) = w>Φ(x) is the delta function as above.
We learn the ensemble weights a = [a1, . . . , am]>

and the parameter w of fδ(x) simultaneously. Let
fi = [f1(xi), . . . , f

m(xi)]
> and

Ψ(x̄, ȳ) =
∑n

i=1
yi

[
fi

Υ(xi)

]
.

Following the same strategy as above, the following
problem is formulated.

min
a,w,ξ≥0

1

2
‖w‖2 +

1

2
B‖a‖2 + Cξ (11)

s.t. ∀ ȳ′ ∈ Yn \ ȳ :[
a
w

]>
[Ψ(x̄, ȳ)−Ψ(x̄, ȳ′)] ≥ ∆(ȳ, ȳ′)− ξ.

where ‖a‖2 penalizes large weights on the auxiliary
classifiers. It prevents the target classifier f(x) from
too much reliance on the auxiliary classifiers, because
they do not directly optimize the target performance
measure. The term ‖w‖2 measures the distance be-
tween f(x) and

∑m
i=1 aif

i(x) in the function space.
Thus, minimizing 1

2‖w‖
2 finds the final classifier f(x)

near the ensemble of auxiliary classifiers
∑m
i=1 aif

i(x)
in the function space. The two goals are balanced by
the parameter B. Hence, in summary, it learns an
ensemble of auxiliary classifiers, and seeks the target
classifier near the ensemble such that the risk in terms
of concerned performance measure is minimized.

3.2.3 Efficient Learning via Feature Augmentation
Obviously, in CAPO, the auxiliary classifier f ′(x)
can be nonlinear classifiers such as SVM and neural
network, thus the adapted classifier f(x) is nonlinear
even if the delta function fδ(x) is linear. Empirical
studies in Section 5 show that using linear delta func-
tion fδ(x) achieves good performance whilst keeping
computational efficiency.

Consider linear delta funcion, i.e., Φ(x) = x and
fδ(x) = w>x, and take CAPO with multiple auxiliary
classifiers for example, if we augment the original
features with outputs of auxiliary classifiers, and let

v =

[√
B a
w

]
and x′i =

[ 1√
B

fi
xi

]
, (12)

the adaptation problem (11) can be written as

min
v,ξ≥0

1

2
‖v‖2 + Cξ (13)

s.t. ∀ ȳ′ ∈ Yn \ ȳ :

v>
[∑n

i=1
yix
′
i −
∑n

i=1
y′ix
′
i

]
≥ ∆(ȳ, ȳ′)− ξ.

For CAPO with one auxiliary classifier, it is easy
to find that there exist a constant B such that the
adaptation problem (9) can also be transformed into
problem (13) if we define

v =

[√
B
w

]
and x′i =

[ 1√
B

fi
xi

]
. (14)

Note that the problem (13) is the same as that of linear
SVMperf in (2). Thus, after obtaining auxiliary classi-
fiers, if we augment the original data features with
the outputs of auxiliary classifiers according to (12)
or (14), the classifier adaptation problem of CAPO can
be efficiently solved by the cutting plane algorithm in
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Algorithm 1. Obviously, as linear SVMperf, CAPO can
also handle all the performance measures based on
the contingency table and AUC.

In practice, CAPO is an efficient approach for train-
ing nonlinear classifiers optimizing specific perfor-
mance measures, because its both steps can be effi-
ciently performed. Moreover, because auxiliary classi-
fiers can be seen as estimation of the needed classifier,
it can be expected that Algorithm 1 needs fewer
iterations to converge, i.e. fewer times of solving the
inference (3); and hence its classifier adaptation proce-
dure can be more efficient than linear SVMperf which
searches the function space directly. This has been
validated by the experimental results in Section 5.2.

4 DISCUSSION WITH RELATED WORK

The most famous work that optimizes performance
measures is SVMperf [15]. By taking a multivariate
prediction formulation, it finds the classifier in the
function space directly. Our proposed CAPO works
in a different manner and employs auxiliary classi-
fiers to help find the target classifier in the function
space. Furthermore, CAPO is a framework that can
use different types of auxiliary classifiers. If nonlinear
auxiliary classifier is used, the obtained classifier will
also be nonlinear. This is very helpful, because nonlin-
ear classifier is preferred in many applications while
training nonlinear SVMperf is computationally expen-
sive. In summary, compared with SVMperf, CAPO can
provide the needed nonlinearity whilst keeping even
improving computational efficiency.

Another related work is A-SVM [30], which learns
a new SVM classifier by adapting auxiliary classifiers
trained in other related domains. CAPO differs from
A-SVM in several aspects: 1) CAPO aims to opti-
mize specific performance measures, while A-SVM
considers hinge loss; 2) The auxiliary classifiers of
CAPO are used to help find the target classifier in the
function space, while A-SVM is proposed for domain
adaptation [9] and it employs auxiliary classifier to
extract knowledge from related domains, similar ideas
can be found in [10]. Generally speaking, classifier
adaptation techniques which try to obtain a new clas-
sifier based on existed classifiers, were mainly used
for domain adaptation in previous studies [30], [10].
Here, we use classifier adaptation to optimize specific
performance measures, which is quite different.

Ensemble learning is the learning paradigm which
employs multiple learners to solve one task [33], and it
achieves state-of-the-art performance in many practice
applications. In current work, the final classifier gen-
erated by CAPO is an ensemble constituting of aux-
iliary classifiers and the delta function. But, different
from conventional ensemble methods, the component
classifiers of CAPO are of two kinds and generated
in two steps: first, auxiliary classifiers are trained;
then a delta function which is designed to correct the

decision of auxiliary classifiers is added such that the
concerned performance measure is optimized.

From the feature augmentation perspective, the
nonlinear auxiliary classifiers construct nonlinear fea-
tures that are augmented to the original features, so
that the final classifier can have nonlinear general-
ization performance. This is like constructive induc-
tion [22] which tries to change the representation of
data by creating new features.

Curriculum learning [2] is a learning paradigm
which circumvents a challenging learning task by
starting with relatively easier subtasks; then with the
help of learnt subtasks, the target task can be effec-
tively solved. It was first proposed for training neural
networks in [11], and is closely related to the idea
of “twice learning” proposed in [34], where a neural
network ensemble was trained to help induce a deci-
sion tree. The study in [2] shows promising empirical
results of curriculum learning. Our proposed CAPO
is similar to curriculum learning since it also tries to
solve a difficult problem by starting with relatively
easier subtasks, but they are quite different because
we do not provide a curriculum learning strategy.

5 EMPIRICAL STUDIES

In this section, we perform experiments to evaluate
the performance and efficiency of CAPO.

5.1 Configuration

The following five data sets from different application
domains are used in our experiments.
• IJCNN1: This data set is from IJCNN 2001 neural

network competition (task 1), here we use win-
ner’s transformation in [7].

• Mitfaces: Face detection data set from CBCL at
MIT [1].

• Reuters: Text classification data which is to dis-
criminate the money-fx documents from others
in the Reuters-21578 collection.

• Splice: The task is to recognize two classes of
splice junctions in a DNA sequence.

• USPS*: This data set is to classify the digits
“01234” against the digits “56789” on the USPS
handwritten digits recognition data.

Table 1 summarizes the information of data sets. On
each data set, we optimize 4 performance measures

TABLE 1
Data sets used in the experiments.

DATA SET #FEATURE #TRAIN #TEST

IJCNN1 22 49,990 91,701
Mitfaces 361 6,977 24,045
Reuters 8,315 7,770 3,299
Splice 60 1,000 2,175
USPS* 256 7,291 2,007
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TABLE 2
Performance of compared methods, where the best performance for each task is bolded and the methods that
cannot be completed in 24 hours are indicated by “N/A”. For CAPO, the raw performance of auxiliary classifier

is shown in brackets following the entry of corresponding CAPO.

TASK CAPOcvm CAPOdt CAPOnn CAPO* SVMperf
lin SVMperf

rbf SVMlight
lin SVMlight

rbf

IJ
C

N
N

1 Accuracy .9540 (.9521) .9702 (.9702) .9150 (.8914) .9703 .9193 .9658 N/A N/A
F1 .7620 (.7544) .8473 (.8471) .5753 (.2643) .8468 .5565 N/A N/A N/A
PRBEP .7723 (.7376) .8470 (.8364) .5692 (.3222) .8605 .6016 N/A N/A N/A
AUC .9607 (.8839) .9734 (.9464) .9198 (.8658) .9810 .9180 N/A N/A N/A

M
it

fa
ce

s Accuracy .9842 (.9839) .9458 (.9302) .9696 (.9067) .9841 .9727 .9840 .9733 N/A
F1 .4658 (.4665) .1605 (.1342) .2281 (.1768) .4514 .2056 N/A .2015 N/A
PRBEP .5127 (.4979) .1864 (.1822) .2500 (.1059) .4873 .2140 N/A .2309 N/A
AUC .9148 (.9148) .7991 (.7201) .8368 (.7979) .9137 .8533 N/A .8450 N/A

R
eu

te
rs Accuracy .9745 (.9745) .9664 (.9660) .9715 (.9315) .9739 .9727 .9727 .9724 .9721

F1 .7730 (.7729) .6973 (.6890) .7455 (.1439) .7731 .7375 N/A .7599 .7540
PRBEP .7654 (.7709) .7207 (.6871) .7151 (.3743) .7765 .7598 N/A .7709 .7598
AUC .9870 (.9363) .9842 (.9144) .9868 (.8322) .9838 .9878 N/A .9872 .9873

Sp
lic

e Accuracy .8947 (.8947) .9347 (.9347) .9651 (.9651) .9664 .8451 .8947 .8446 .8975
F1 .8955 (.8943) .9371 (.9362) .9659 (.9659) .9512 .8451 N/A .8487 .8990
PRBEP .8762 (.8691) .9363 (.9355) .9576 (.9558) .9584 .8532 N/A .8523 .9036
AUC .9457 (.8992) .9760 (.9307) .9836 (.9667) .9852 .9304 N/A .9267 .9639

U
S P

S*

Accuracy .9691 (.9689) .9233 (.9233) .8520 (.7798) .9676 .8411 .9706 N/A N/A
F1 .9611 (.9613) .9060 (.9053) .8188 (.7486) .9617 .8012 N/A N/A N/A
PRBEP .9500 (.9488) .9000 (.8898) .8195 (.7500) .9573 .7963 N/A N/A N/A
AUC .9731 (.9658) .9557 (.9179) .9137 (.7582) .9843 .9052 N/A N/A N/A

(accuracy, F1-score, PRBEP and AUC) so there are
20 tasks in total. For each task, we train classifiers
on training examples, and then evaluate their perfor-
mances on test examples. The experiments are run on
an Intel Xeon E5520 machine with 8GB memory.

5.2 Comparison with State-of-the-art Methods

First, we compare the performance and efficiency of
CAPO with state-of-the-art methods. Specifically, we
compare three methods which can optimize different
performance measures, including SVMperf, classifica-
tion SVM incorporating with a cost model [23], and
our proposed CAPO. Detailed implementations of
these methods are described as follows.
• CAPO: We use three kinds of classifiers as aux-

iliary classifiers, including Core Vector Machine
(CVM)1 [26], RBF Neural Network (NN) [3] and
C4.5 Decision Tree (DT) [25], and corresponding
CAPO’s are denoted as CAPOcvm, CAPOnn and
CAPOdt, respectively. In CAPOcvm, the CVM is
with RBF kernel k(xi;xj) = exp(γ‖xi − xj‖2),
where γ is set to the default value (inverse
squared averaged distance between examples),
and the parameter C is set to 1. In CAPOnn

and CAPOdt, NN and DT are implemented by
WEKA [13] with default parameters. Further-
more, we also implement CAPO*, which exploits
all the three auxiliary classifiers. The parameter C

1. http://www.cs.ust.hk/˜ivor/cvm.html. Here, we use
the option “-c 1 -e 0.001” for all auxiliary CVMs.

is selected from C ∈ {2−7, . . . , 27} by 5-fold cross
validation on training data, and the parameter B
of CAPO* is simply set to 1.

• SVMperf: We use the codes of SVMperf provided
by Joachims 2. Both linear kernel and RBF kernel
are used, the corresponding methods are denoted
as SVMperf

lin and SVMperf
rbf , respectively. The param-

eter C for both methods and the kernel width γ
for SVMperf

rbf are selected from C ∈ {2−7, . . . , 27}
and γ ∈ {2−2γ0, . . . , 2

2γ0} by 5-fold cross vali-
dation on training data, where γ0 is the inverse
squared averaged distance between examples.

• SVM with cost model: We implement the SVM
with cost model with SVMlight 3, where the pa-
rameter j is used to set different costs for dif-
ferent classes. Specifically, we use SVMlight

lin and
SVMlight

rbf , where linear kernel and RBF kernel are
used. The parameter C and j for both methods
and the kernel width γ for SVMlight

rbf are selected
from C ∈ {2−7, . . . , 27}, j ∈ {2−2, . . . , 26} and
γ ∈ {2−2γ0, . . . , 2

2γ0} by 5-fold cross validation.
For parameter selection, we extend the search space

if the most frequently selected parameter was on
a boundary. Note that both SVM with cost model
and SVMperf are strong baselines to compare against.
Lewis [20] won the TREC-2001 batch filtering evalu-
ation by using the former, and Joachims [15] showed
that SVMperf performed better. We apply these meth-

2. http://svmlight.joachims.org/svm_perf.html.
3. http://svmlight.joachims.org.
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TABLE 3
CPU time for parameter selection (in seconds), where the tasks not completed in 24 hours are indicated by

“N/A”. For CAPO, the CPU time for training auxiliary classifiers is not counted, and they are shown in Table 4.

TASK CAPOcvm CAPOdt CAPOnn CAPO* SVMperf
lin SVMperf

rbf SVMlight
lin SVMlight

rbf

IJ
C

N
N

1 Accuracy 9.3 11.1 9.9 11.2 10.0 96.6

N/A N/AF1 9,451.5 9,011.5 14,809.3 6,652.8 12,281.3 N/A
PRBEP 1,507.9 1,033.3 2,276.2 1,005.1 2,034.0 N/A
AUC 88.0 38.0 124.0 40.6 112.6 N/A

M
it

fa
ce

s Accuracy 9.5 11.2 23.7 9.0 27.2 27,089.3

6,114.7 N/AF1 465.6 802.5 1,211.5 379.0 1,189.4 N/A
PRBEP 126.9 183.4 241.6 119.6 234.4 N/A
AUC 37.7 48.5 74.0 30.6 79.3 N/A

R
eu

te
rs Accuracy 5.7 2.1 2.6 3.9 2.3 39,813.1

283.1 53,113.8F1 68.7 67.4 64.3 67.6 60.2 N/A
PRBEP 10.8 13.1 11.9 10.6 11.4 N/A
AUC 18.9 8.6 8.7 3.9 8.1 N/A

Sp
lic

e Accuracy 4.0 484.5 697.1 2.0 3,602.4 2,187.1

16,297.6 464.2F1 168.2 592.3 3,373.9 58.4 10,201.5 N/A
PRBEP 11.8 17.0 27.3 6.8 82.6 N/A
AUC 2.0 3.3 7.3 1.2 42.0 N/A

U
SP

S*

Accuracy 24.6 35.4 215.3 15.6 221.5 24,026.7

N/A N/AF1 2,199.0 2,605.4 5,429.9 1,514.8 5,225.9 N/A
PRBEP 626.2 566.1 938.9 404.4 895.2 N/A
AUC 155.6 139.9 424.3 76.1 452.5 N/A

TABLE 4
CPU time for training auxiliary classifiers (in seconds).

DATA SET CVM DT NN

IJCNN1 1.6 19.9 20.2
Mitfaces 2.8 66.1 63.6
Reuters 2.1 1,689.7 1,771.0
Splice 0.1 0.4 0.9
USPS* 2.3 45.9 37.1

ods to the 20 tasks mentioned above, and report their
performance. Since time efficiency is also concerned,
we report the CPU time used for parameter selection.
Note that if one task is not completed in 24 hours, we
would stop it and mark it with “N/A”.

Table 2 presents the performance of compared
methods as well as the raw performance of auxiliary
classifiers (in the brackets following the entries of
corresponding CAPO methods), where the best result
for each task is bolded. It is obvious that CAPO
and SVMperf

lin succeed to finish all tasks in 24 hours.
We can observe that CAPO achieves performance
improvements over auxiliary classifiers on most tasks,
and many of the performance improvements are quite
large. For example, on Reuters the best AUC achieved
by auxiliary classifiers is 0.9363, while CAPO methods
achieve AUC higher than 0.98. This result shows that
CAPO is effective in improving the performance with
respect to the concerned performance measure. More
results for the case of multiple auxiliary classifiers is
given in Section 5.3. Moreover, we could see from
the results that CAPO methods perform much bet-

ter than linear methods, i.e., SVMperf
lin and SVMlight

lin ,
especially when optimizing multivariate performance
measures like F1-score and PRBEP. For example,
CAPO* achieves PRBEP 0.8605 but SVMperf

lin achieves
only 0.6016 on IJCNN1; CAPOnn achieves F1-score
0.9659, but that of SVMperf

lin and SVMlight
lin are both

less than 0.85 on Splice. This can be explained by
that CAPO methods exploit the nonlinearity provided
by auxiliary classifiers. Meanwhile, it is interesting
that all methods achieve similar performances on
Reuters, this coincides with the common knowledge
that linear classifier is strong enough for text classifi-
cation tasks. For kernelized methods, i.e., SVMperf

rbf and
SVMlight

rbf , it is easy to see that they fail to finish in 24
hours on most tasks. On the smallest data set Splice,
SVMlight

rbf succeeds to finish all tasks, its performance is
better than linear methods (SVMperf

lin and SVMlight
lin ), this

can be explained that SVMlight
rbf exploits nonlinearity by

using RBF kernel. Meanwhile, it is easy to see that the
performances of CAPO methods especially CAPO*
are superior to SVMlight

rbf . This can be understood that
RBF kernel may not be suitable for this data, while
CAPO* exploits nonlinearity introduced by different
kinds of auxiliary classifiers. By comparing CAPO*
with other CAPO methods with one auxiliary clas-
sifier, it can be found there are many cases where
CAPO* performs better. This is not hard to under-
stand because CAPO* exploits more nonlinearity by
using different kinds of auxiliary classifiers.

Table 3 shows the CPU time used for parameter
selection via cross validation. On each data set, we
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Fig. 1. Number of inferences of the most violated constraints (#Inference) when training SVMperf
lin , CAPOcvm and

CAPO* on USPS* and Reuters, where x-axis and y-axis show the C values and #Inference respectively.

employ the same auxiliary classifiers for four different
measures, so the time used for training auxiliary clas-
sifiers on one data set are identical, which are shown
in Table 4. Also, because four tasks of SVMlight on
one data set have the same cross validation process,
they have the same cross validation time. From Ta-
ble 3 and 4, we can see kernelized nonlinear methods
(SVMperf

rbf and SVMlight
rbf ) fail to finish in 24 hours on

most tasks. This can be understood that the Gram ma-
trix updating in SVMperf

rbf costs much time as described
in Section 2.2, and SVMlight

rbf has many parameters to
tune. Meanwhile, it can be found that CAPO methods
are more efficient than others, even after adding the
time used for training auxiliary classifiers.

Moreover, it is interesting to find that the classifier
adaptation procedure of CAPO costs much less time
than SVMperf

lin except on Reuters, though it employs
the later to solve the adaptation problem. For ex-
ample, when optimizing F1-score on Splice, CAPO*
consumes only 58.4 seconds for cross validation while
SVMperf

lin costs more than 10,000 seconds. To under-
stand this phenomenon, we record the number of
inferences of the most violated constraint (i.e. solving
the argmax in (3) when training SVMperf

lin , CAPOcvm

and CAPO*. Concretely, on two representative data
sets Reuters and USPS*, the number of inferences
under different C values are recorded and Figure 1
shows the results. From Figure 1 (a), we can find
that on USPS*, CAPO* and CAPOcvm have fewer
inferences than SVMperf

lin , especially when C is large.
Since the training cost of Algorithm 1 is dominated
by the inference, the high efficiency of CAPO* and
CAPOcvm is due to fewer number of inferences. This
can be understood by that auxiliary classifiers provide
estimates of the target classifier and CAPO searches
them, while SVMperf

lin searches in the whole function

space. On Reuters where three methods have similar
time efficiency, we can find from Figure 1 (b) that the
numbers of inferences are small and similar. This can
be understood that linear classifier is strong enough
for text classification tasks. Moreover, the adaptation
procedure of CAPO* is more efficient than CAPOcvm,
and Figure 1 (a) also shows CAPO* has fewer number
of inferences. This indicates that it may be easier to
find the target classifier by using multiple auxiliary
classifiers, coinciding with the fact that an ensemble
can provide better estimate of the target classifier.

Therefore, we can see that the auxiliary classifiers
not only inject nonlinearity, but also make the classi-
fier adaptation procedure more efficient.

5.3 Effect of Delta Function
To show the effect of adding delta function on auxil-
iary classifiers, we compare the performance of CAPO
with that of the weighted ensemble of auxiliary classi-
fiers which does not include a delta function. In detail,
we train five CVMs as auxiliary classifiers due to its
high efficiency. Each CVM is with one of the following
five kernels: 1) RBF kernel k(xi;xj) = exp(γ‖xi −
xj‖2); 2) polynomial kernel k(xi;xj) = (γx>i xj + c0)d;
3) Laplacian kernel k(xi;xj) = exp(γ‖xi − xj‖);
4) inverse distance kernel k(xi;xj) = 1√

γ‖xi−xj‖+1 ;
and 5) inverse squared distance kernel k(xi;xj) =

1
γ‖xi−xj‖2+1 , where all kernels are with default pa-
rameters (c0 = 0 and d = 3 in the polynomial kernel,
γ is the inverse squared averaged distance between
examples in all kernels). Then, CAPO employs these
five CVMs as auxiliary classifiers, and the weighted
ensemble learns a set of weights to combine them such
that the empirical risk is minimized. Both methods
select C from {2−7, . . . , 27} by 5-fold cross-validation
on training data, and B of CAPO is fixed to 1.
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Fig. 2. Comparison between relative improvement of averaged performance of auxiliary classifiers and relative
performance improvement of CAPO after auxiliary classifier selection.

TABLE 5
Performance of CAPO and weighted ensemble, where
both methods exploit five CVMs with different kernels.

TASK CAPO Ensemble

IJCNN1

Accuracy .9712 .9632
F1 .8438 .8439
PRBEP .8472 .8000
AUC .9892 .9837

Mitfaces

Accuracy .9842 .9837
F1 .4563 .4446
PRBEP .4831 .4767
AUC .9097 .9097

Reuters

Accuracy .9715 .9715
F1 .7429 .7181
PRBEP .7598 .7318
AUC .9847 .7979

Splice

Accuracy .8952 .8938
F1 .9024 .9024
PRBEP .9010 .8912
AUC .9486 .9022

USPS*

Accuracy .9706 .9701
F1 .9659 .9644
PRBEP .9634 .9622
AUC .9823 .9705

Table 5 presents the performances of two methods.
It can be seen that CAPO achieves better perfor-
mance than the weighted ensemble. For example, the
weighted ensemble achieves PRBEP 0.8000 on IJCNN1
while CAPO achieves 0.8472; the weighted ensemble
achieves AUC 0.9022 but CAPO achieves 0.9486 on
Splice. Noting that their difference is that CAPO
exploits the delta function, we can see that by adding
the delta function, CAPO achieves performance im-
provement w.r.t. concerned performance measure.

5.4 Effect of Auxiliary Classifier Selection

In above experiments, we directly use common learn-
ing algorithms to train auxiliary classifiers, it is ob-
vious that these auxiliary classifiers are not spe-
cially improved according to the concerned perfor-
mance measure. Then, a straightforward question is
how CAPO performs if the auxiliary classifiers are
specially improved w.r.t. the concerned performance
measure, or in other words how CAPO performs if we
train auxiliary classifiers according to the concerned

performance measure. Subsequently, we perform ex-
periments to answer this question. Specifically, rather
than training five CVMs with five different kernels
with default parameters, we train a set of fifty CVMs
and select five from them as auxiliary classifiers based
on the concerned performance measure. In detail,
these fifty CVMs are trained by independently using
the five kernels mentioned above, and the parame-
ter γ for each kernel is set as γ = 1.5θγ0, where
θ ∈ {−0.5, 0, 0.5, . . . , 4} and γ0 is the default value,
and then five CVMs which performs best in terms of
the concerned performance measure are selected as
auxiliary classifiers. For example, if we want to train
classifier optimizing F1-score, then the five CVMs
which achieves the highest F1-score are selected. As
above, we choose the parameter C ∈ {2−7, . . . , 27} by
5-fold cross validation and fix B to be 1.

On each task, we compute the relative improvement
of the averaged performance of auxiliary classifiers
and that of obtained CAPO, and report them in
Figure 2. The relative performance improvement is
computed as the performance improvement caused
by the auxiliary classifier selection divided by the
performance before selection. From Figure 2, it is
easy to see that although the averaged performance
of auxiliary classifiers improves a lot after selection,
yet the performance of CAPO keeps similar in most
cases, and even degrades in some cases. This may
suggest that it is enough to use common CVMs as
auxiliary classifiers, and it is not needed to specially
design auxiliary classifiers according to the target
performance measure. This can be explained that the
auxiliary classifiers are used to provide approximate
solutions to the problem, which are combined and
further refined by the delta function to obtain the final
solution, thus actually these approximate solutions
are not required to be very accurate. Moreover, it is
obvious that with respect to time efficiency, CAPO
with auxiliary classifier selection has no superiority
over the original one, especially after counting the
time used for training fifty auxiliary CVMs.

5.5 Parameter Sensibility
To study the impact of parameters, we perform ex-
periments on two medium-sized data sets USPS* and
Reuters. The two data sets are representative, since
nonlinear classifiers perform well on USPS* while lin-
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(b) Results on Reuters

Fig. 3. Performance and CPU time (in seconds) with different C ’s, (a) on USPS*; (b) on Reuters. Each subfigure
shows performance in the 1st row and corresponding CPU time in the 2nd row.

ear classifiers work well on Reuters. We study the per-
formance and time efficiency of CAPO1 and CAPO5

under different C and B values, where CAPO1 uses
one auxiliary CVM with RBF kernel and CAPO5 uses
five auxiliary CVMs with five different kernels as
above, all kernels are with default parameters.

First, we vary C within {2−7, 2−6, . . . , 27} and
fix B to be 1. For comparison, we also train
SVMperf

lin and SVMperf
rbf with the same C’s. Figure 3

shows the results. It can be found that CAPO1 and
CAPO5 generally outperform SVMperf at different
C’s, except that SVMperf

rbf achieves comparable per-
formance as CAPO for PRBEP and AUC on USPS*
and SVMperf

lin performs better for AUC at large
C’s on Reuters. With respect to time efficiency,
CAPO1, CAPO5 and SVMperf

lin cost comparable CPU
time, which is much less than SVMperf

rbf . Moreover,
CAPO1 and CAPO5 scales better when C increases,
and they are more efficient than SVMperf

lin at large
C’s. Moreover, it is easy to find that our methods,
especially CAPO5, are more robust with C.

Second, we vary B within {2−7, 2−6, . . . , 27} with
fixed C = 1 for CAPO1 and CAPO5. As compar-
isons, SVMperf

lin and SVMperf
rbf are trained C = 1. The

results are shown in Figure 4, where SVMperf
lin and

SVMperf
rbf are illustrated as straight lines because they

do not have the parameter B. In general, CAPO1 and
CAPO5 achieve better performance at different B’s
in most cases, except for AUC on Reuters. Also,
CAPO1 and CAPO5 have comparable efficiency with
SVMperf

lin , which is much better than SVMperf
rbf . We can

see that our methods are quite robust to parameters B,
and comparatively speaking, CAPO5 is more robust
than CAPO1.

Thus, we can see that our methods, especially
CAPO5, are robust to B and C. Comparatively speak-
ing, CAPO5 is more robust and more efficient than
CAPO1, this verifies our previous results.

5.6 Scalability w.r.t. Training Set Size
To evaluate scalability of CAPO, we perform exper-
iments on the largest data set IJCNN1. We first train
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(b) Results on Reuters

Fig. 4. Performance and CPU time (in seconds) with different B’s: (a) on USPS*, (b) on Reuters. Each subfigure
shows performance in the 1st row and corresponding CPU time in the 2nd row.

CAPO1 and CAPO5 using {1/32, 1/16, 1/8, 1/4, 1/2, 1}
of all training examples, and then evaluate them
on test examples. As comparisons, SVMperf

lin and
SVMperf

rbf are also trained under the same configuration.
In this experiment, we simply fix both the parameters
B and C to be 1. We report performance of compared
methods and the corresponding used CPU time.

Figure 5 shows the results of the achieved per-
formance and the corresponding running time in
first and second row respectively. As we can see,
all methods scale well except that SVMperf

rbf has to be
terminated early when the training set size increases.
Moreover, compared with SVMperf

lin , it is easy to see
that CAPO5 achieves better performance but costs less
time at every training set size.

5.7 Summary
Based on above empirical studies, we can see that
CAPO is an effective and efficient approach to train-
ing classifier that optimizes performance measures.
Compared with SVMperf and SVM with cost model, it

can achieve better performances at lower time costs.
As well, it has been shown that CAPO is robust to
parameters and scales well w.r.t. the training data
size. For practical implementation, training auxiliary
classifiers by optimizing accuracy is a good choice, be-
cause many efficient algorithms have been developed
in the literature, and the experiments in Section 5.4
suggest that using auxiliary classifiers with higher
target performances does not show significant superi-
ority, especially when tuning auxiliary classifiers costs
much time. Meanwhile, it can be better to use multiple
diverse auxiliary classifiers.

6 CONCLUSION AND FUTURE WORK

This paper presents a new approach CAPO to training
classifier that optimizes specific performance measure.
Rather than designing sophisticated algorithms, we
solve the problem in two steps: first, we train auxil-
iary classifiers by taking existing off-the-shelf learning
algorithms; then these auxiliary classifiers are adapted
to optimize the concerned performance measure. We



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. X, XXXX 20XX 13

10
3

10
4

10
5

0.7

0.8

0.9

1

Training set size

A
cc

u
ra

cy

 

 

SVMperf−lin

SVMperf−rbf

CAPO−1

CAPO−5

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

Training set size

F
1

 

 

SVMperf−lin

SVMperf−rbf

CAPO−1

CAPO−5

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

Training set size

P
R

B
E

P

 

 

SVMperf−lin

SVMperf−rbf

CAPO−1

CAPO−5

10
3

10
4

10
5

0.7

0.8

0.9

1

Training set size

A
U

C

 

 

SVMperf−lin

SVMperf−rbf

CAPO−1

CAPO−5

10
3

10
4

10
5

10
−2

10
0

10
2

10
4

Training set size

C
P

U
 T

im
e 

(A
cc

u
ra

cy
)

 

 

SVMperf−lin

SVMperf−rbf

CAPO−1

CAPO−5

10
3

10
4

10
5

10
−4

10
−2

10
0

10
2

10
4

Training set size

C
P

U
 T

im
e 

(F
1
)

 

 

SVMperf−lin

SVMperf−rbf

CAPO−1

CAPO−5

10
3

10
4

10
5

10
−4

10
−2

10
0

10
2

10
4

Training set size

C
P

U
 T

im
e 

(P
R

B
E

P
)

 

 

SVMperf−lin

SVMperf−rbf

CAPO−1

CAPO−5

10
3

10
4

10
5

10
−4

10
−2

10
0

10
2

10
4

Training set size

C
P

U
 T

im
e 

(A
U

C
)

 

 

SVMperf−lin

SVMperf−rbf

CAPO−1

CAPO−5

Fig. 5. Performance (1st row) and CPU time (2nd row; in seconds) with different training set sizes on IJCNN1.

show that the classifier adaptation problem can be
formulated as an optimization problem similar to
linear SVMperf and can be efficiently solved. In prac-
tice, the auxiliary classifier (or ensemble of auxiliary
classifiers) benefits CAPO in two aspects:

1) By using nonlinear auxiliary classifiers, it injects
nonlinearity that is quite needed in practical
applications;

2) It provides an estimate of the target classifier,
making the classifier adaption procedure more
efficient.

Extensive empirical studies show that the classifier
adaptation procedure helps to find the target classifier
for the concerned performance measure. Moreover,
the learning process becomes more efficient than lin-
ear SVMperf, due to fewer inferences in CAPO.

In this work, linear delta function is used for clas-
sifier adaptation. Although it achieves good perfor-
mances, an interesting and promising future work is
to exploit nonlinear delta function for this problem.
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