SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution) ESTD. 1999 - Approved by AICTE - Accredited by NBA 'A' Grade Accreditation by NAAC - Affiliated to Anna University ISO 9001:2015 Certified Institution

DEPARTMENT OF MATHEMATICS

QUESTION BANK

I SEMESTER

M.E. Structural Engineering

1918103 – Advanced Mathematical Methods

Regulation – 2019

Academic Year 2021- 2022

Prepared by

Mr. N. Sundarakannan, Assistant Professor

SRM VALLIAMMAI ENGNIEERING COLLEGE

(An Autonomous Institution)

SRM Nagar, Kattankulathur – 603203.

DEPARTMENT OF MATHEMATICS

Year & Semester	: I /I
Section	: M.E. (Structural Engineering)
Subject Code	: 1918103
Subject Name	: ADVANCED MATHEMATICAL METHODS
Degree & Branch	: M.E – Structural Engineering
Staff in charge	: Mr. N. SUNDARAKANNAN

S.NoQUESTIONSCOMPETENCELEVELUNIT -1LAPLACE TRANSFORM TECHNIQUES FOR PARTIALJEVELJEVELDIFFERENTIAL EQUATIONSJEVELJEVELJEVEL

Laplace transform, Definitions, properties – Transform error function, Bessel's function, Dirac Delta function, Unit Step functions – Convolution theorem – Inverse Laplace Transform: Complex inversion formula – Solutions to partial differential equations: Heat equation, Wave equation.

PART A - 2 MARK QUESTIONS			
1.	Define Laplace Transform of a function	Remembering	BTL1
2.	State the existence of Laplace Transform	Analyzing	BTL4
3.	If $L(f(t) = F(s))$, then prove that $L[e^{at}f(t)] = F(s-a)$	Applying	BTL3
4.	Find $L[t\cos^2 t]$	Analyzing	BTL4
5.	Determine $L\{2t - 3e^{2t}\}$	Analyzing	BTL4
6.	Find $L[e^{-4t} \sin 3t]$	Analyzing	BTL4
7.	State Initial and Final value theorems for Laplace transform	Remembering	BTL1
8.	Find $L\left[\frac{e^{-bt}-e^{-at}}{t}\right]$	Analyzing	BTL4
9.	State and prove that change of scale property in Laplace transforms	Applying	BTL3
10.	Define Laplace transform of Error function	Remembering	BTL1
11.	Find Laplace transform of $t e^{-2t} \cos t$	Analyzing	BTL4
12.	Define Bessel's function .	Applying	BTL3
13.	Find $L^{-1}\left(\frac{s-5}{s^2+25}\right)$	Analyzing	BTL4
14.	Show that $\int_0^t J_0(u) J_0(t-u) du = \sin t$	Understand	BTL2
15.	Find the inverse Laplace transform of $\log\left(\frac{s+a}{s+b}\right)$	Analyzing	BTL4

16.	Define Laplace transform of unit step function and find its Laplace transform	Remembering	BTL1
17.	Find the inverse Laplace transform of $\log\left(\frac{s+1}{s-1}\right)$	Applying	BTL3
18.	State Convolution theorem	Applying	BTL3
19.	Define Dirac- Delta function.	Applying	BTL3
20.	Find $L^{-1}\left(\frac{1}{(s+1)^2}\right)$	Analyzing	BTL4
	PART B - 13 MARK QUESTIONS		
1	Find (i) $L[t \sin 5t \cos 2t]$ (ii) $L[t e^{-t} \cos 2t]$	Applying	BTL3
2	Find the Laplace Transform of $erf(t^{\frac{1}{2}})$	Analyzing	BTL4
3	(i) Find $L\left(\frac{\cos\sqrt{t}}{\sqrt{t}}\right)$ (ii) Find the Laplace Transform of $\left[\frac{t}{2} - for \ 0 \le t \le h\right]$	Evaluating	BTL5
	$f(t) = \begin{cases} \frac{t}{b}, & \text{for } 0 < t < b\\ \frac{2b-t}{b}, & \text{for } b < t < 2b \end{cases}$ given that $f(t+2b)=f(t)$ for $t > 0$		
4	Using Convolution theorem, find the inverse Laplace Transform of $\frac{s}{(s^2+9)(s^2+25)}$	Analyzing	BTL4
5	Find the Laplace transform of (i) $J_0(t)$ (ii) $t J_0(t)$	Evaluating	BTL5
6	Using Convolution theorem, evaluating $L^{-1}(\frac{s}{(s + a)(s^{2} + 1)})$	Applying	BTL3
7	Using Laplace transform, solve the IBVP $PDE: u_t = 3u_{xx}$, $BCs: u(\frac{\pi}{2}, t) = 0$, $u_x(0, t) = 0$, $ICs: u(x, 0) = 30\cos 5x$.	Evaluating	BTL5
8	Using Laplace transform, solve the IBVP $u_{tt} = u_{xx} 0 < x < l, t > 0, u(x,0) = 0, u_t(x,0) = \sin(\frac{\pi x}{l}), 0 < x < l,$ u(0,t) = 0 and u(l,t) = 0, t > 0	Evaluating	BTL5
9	Using Laplace transform, solve the IBVP $PDE: u_{tt} = u_{xx} \ 0 < x < 1, t > 0, \ BCs: u(x,0) = u(1,t) = 0, t > 0$ $ICs: u(x,0) = \sin \pi x, \ u_t(x,0) = -\sin \pi x, \ 0 < x < 1$	Evaluating	BTL5
10	Using Laplace transform solve the following IBVP $PDE : ku_t = u_{xx}$, $0 < x < l, 0 < t < \infty$, $BCS : u(0,t) = 0$, $u(l,t) = g(t)$, $0 < t < \infty$, IC : u(x,0) = 0, 0 < x < l.	Analyzing	BTL4

11	Using Laplace transform method solve the initial boundary value problem described by $u_{tt} = c^2 u_{xx}$, $0 \le x < \infty$, $t \ge 0$, subject to the conditions $u(0,t) = 0$, $u(x,0) = 0$, $u_t(0,t) = l$ for $0 \le x < \infty$ and u is bouded as $x \to \infty$.	Evaluating	BTL5
12	Applying the convolution theorem to evaluating $L^{-1}\left[\frac{s}{(s^2 + a^2)^2};t\right]$	Analyzing	BTL4
13	Derive the Laplace transform of Bessel functions (i) $J_0(x)$ (ii) $J_1(x)$ (ii) Find $L^{-1}\log\left(\frac{s^2-1}{s^2}\right)$	Analyzing	BTL4
14	Find the inverse Laplace Transform of $\frac{\sinh(x\sqrt{s})}{\sinh(l\sqrt{s})}$ in $0 < x < l$.	Evaluating	BTL5
	Part C (15 Marks)		
1.	Verify Initial Value Theorem and Final Value Theorem for $f(t) = 1 + e^{-t} (\sin t + \cos t)$	Evaluating	BTL5
2.	A infinitely long string having one end at $x=0$ is initially at rest along x-axis. The end $x=0$ is given transverse displacement f(t), when t >0. Find the displacement of any point of the string at any time.	Evaluating	BTL5
3.	Find the inverse Laplace Transform of $\frac{1}{(s+1)(s-2)^2}$ by complex inverse formula.	Analyzing	BTL4
4.	Solve the following IBVP using Laplace Transform PDE: $u_t = u_{xx}$, $0 < x < 1$, $t > 0$: BCs: $u(0,t) = 1$, $u(1,t) = 1$, $t > 0$ ICs: $u(x,0) = 1 + \sin \pi x$, $0 < x < 1$.	Applying	BTL3
	-2 FOURIER TRANSFORM TECHNIQUES FOR PAI ERENTIAL EQUATIONS	RTIAL	
	r transform: Definitions, properties – Transform of elementa	ry functions. Dira	c Delta
	on – Convolution theorem – Parseval's identity – Solutions to	-	
equati	ons: Heat equation, Wave equation, Laplace and Poison's eq	uations.	
	PART A - 2 MARK QUESTIONS		
1	Define Fourier transform of a function	Remembering	BTL1
2	Find the Fourier transform of $f(x) = \begin{cases} \cos x, \text{ in } 0 < x < \pi \\ 0, \text{ otherwise} \end{cases}$	Remembering	BTL1
3	State Fourier transform pairs	Analyzing	BTL4
4	State and prove shifting property in Fourier transform	Applying	BTL3
5	Find the Fourier transform of $e^{-a x }$, $-\infty < x < \infty$	Remembering	BTL1

6	Find the Fourier Transform of $f(x) = \begin{cases} 1, in x < a \\ 0, in x > a \end{cases}$	Analyzing	BTL4
7	State and prove modulation property in Fourier transform	Applying	BTL3
8	State and prove change of scale property in Fourier transform	Applying	BTL3
9	State Fourier Cosine transform pair	Remembering	BTL1
10	State Fourier Sine transform pair	Remembering	BTL1
11	Find the Fourier Sine transform of e^{-ax} , $0 < x < \infty$	Analyzing	BTL4
12	Find the Fourier Sine transform of 1/x	Analyzing	BTL4
13	Find the Fourier cosine transform of e^{-x} , $0 < x < \infty$	Remembering	BTL1
14	Determine the frequency spectrum of the signal $g(t) = f(t) \cos \omega_c t$	Applying	BTL3
15	If $F(\alpha)$ is the Fourier Transform of $f(x)$, then the Fourier Transform of $f(ax)$ is $\frac{1}{ a }F(\alpha/a)$	Applying	BTL3
16	Find the Fourier transform of Dirac Delta function	Analyzing	BTL4
17	State convolution Theorem on Fourier Transform	Remembering	BTL1
18	State Parseval's identity on Fourier Transform	Remembering	BTL1
19	Find the Fourier cosine Transform of $f(x) = \begin{cases} x, & 0 < x < a \\ 0, & x > a \end{cases}$	Analyzing	BTL4
20	If $F(s)$ is the Fourier transform of $f(x)$, then find the Fourier transform of $f(x) \cos ax$	Evaluating	BTL5
	PART B – 13 MARK QUESTIONS		
1	Find the Fourier Transform of $f(x) = \begin{cases} 1 - x , & \text{if } x < 1 \\ 0, & \text{if } x > 1 \end{cases}$ hence deduce that $\int_{0}^{\infty} (\frac{\sin t}{t})^{4} dt = \frac{\pi}{3}$	Analyzing	BTL4
2	Find the Fourier Cosine and Sine Transform of e^{-2x} and evaluate the integrals (i) $\int_{0}^{\infty} \frac{\cos \alpha x}{\alpha^{2} + 4} d\alpha$ (ii) $\int_{0}^{\infty} \frac{\alpha \sin \alpha x}{\alpha^{2} + 4} d\alpha$	Analyzing	BTL4
3	Find the Fourier Transform of $f(x)$ defined by $f(x) = \begin{cases} 1 - x^2, & \text{if } x < 1 \\ 0, & \text{if } x > 1 \end{cases}$ hence evaluate $\int_{0}^{\infty} \left(\frac{x \cos x - \sin x}{x^3}\right) \cos \frac{x}{2} dx.$	Analyzing	BTL4
4	Find the Fourier Transform of $f(x) = \begin{cases} 1, & \text{if } x < a \\ 0, & \text{if } x > a \end{cases}$ hence deduce that $\int_{0}^{\infty} \left[\frac{\sin t}{t}\right] dt = \frac{\pi}{2}$ and $\int_{0}^{\infty} \left[\frac{\sin t}{t}\right]^{2} dt = \frac{\pi}{2}$	Evaluating	BTL5

5	(i) Using Fourier Sine Transform, prove that $\int_{0}^{\infty} \frac{x^{2} dx}{(x^{2}+9)(x^{2}+16)} = \frac{\pi}{14}$ (ii) Find the Fourier transform of $e^{-a x }$ if $a > 0$, deduce that $\int_{0}^{\infty} \frac{dx}{(x^{2}+a^{2})} = \frac{\pi}{4a^{3}}$, if $a > 0$	Evaluating	BTL5
6	A one-dimensional infinite solid, $-\infty < x < \infty$, is initially at temperature F(x). For times t>0, heat is generated within the solid at a rate of g(x,t) units, Determines the temperature in the solid for t>0	Evaluating	BTL5
7	A uniform string of length L is stretched tightly between two fixed points at x=0 and x=L. If it is displaced a small distance ϵ at a point x=b, 0 <b<l, and="" from="" released="" rest<br="">at time t=0, find an expression for the displacement at subsequent times.</b<l,>	Evaluating	BTL5
8	Solve the heat conduction problem described by $\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}, 0 < x < \infty, t > 0, u(0,t) = u_0, t > 0$ $u(x,0) = 00 < x < \infty, u \text{ and } \frac{\partial u}{\partial x} \text{ both tend to zero as } x \to \infty$	Analyzing	BLT4
9	Find the steady state temperature distribution $u(x,y)$ in a long square bar of side π with one face maintained at constant temperature u_0 and other faces at zero temperature.	Analyzing	BLT4
10	Using the method of integral transform, solve the following potential problem in the semi-infinite Strip described by <i>PDE</i> : $u_{xx} + u_{yy} = 0$, $0 < x < \infty$, $0 < y < a$ Subject to BCs: $u(x,0)=f(x)$, $u(x,a)=0$, $u(x,y)=0$, $0 < y < a$, $0 < x < \infty$ and $\frac{\partial u}{\partial x}$ tend to zero as $x \to \infty$	Analyzing	BTL4
11	Using the finite Fourier transform, solve the BVP described by PDE: $\frac{\partial V}{\partial t} = \frac{\partial^2 V}{\partial x^2}, 0 < x < 6, t > 0, \text{ subject to BC:}$ $V_x(0,t) = 0 = V_x(6,t), \text{ IC : V(x,0)=2x.}$	Analyzing	BTL4
12	Solve the heat conduction problem described	Analyzing	BTL4

	$a_{ii} = a_{i}^2 a_{ii}$		
	$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}, \ 0 < x < \infty, t > 0 \ u(0,t) = u_0 \ t > 0,$		
	$u(x,0) = 0, \ 0 < x < \infty, \ u \ and \ \frac{\partial u}{\partial x} \ both tend to zero$		
	$as x \rightarrow \infty$		
13	Compute the displacement $u(x, t)$ of an infinite string using the method of Fourier transform given that the string is initially at rest and that the initial displacement is $f(x)$, $-\infty < x < \infty$.	Creating	BTLe
14	Solve the following boundary value problem in the half- plane y > 0 described by PDE $:u_{xx} + u_{yy} = 0, -\infty < x < \infty$, y>0 BCs $:u(x,0) = f(x), -\infty < x < \infty$ u is bounded as $y \to \infty; u$ and $\frac{\partial u}{\partial x}$ both vanish as $ x \to \infty$	Evaluating	BTL5
	$\frac{\partial x}{\partial x}$ Part C - 15 Marks		
	Using the Fourier Cosine Transform of e^{-ax} & e^{-bx} , show		
1.	that $\int_0^\infty \frac{d\alpha}{(a^2 + \alpha^2)(b^2 + \alpha^2)} = \frac{\pi}{2ab(a+b)}$. $a > 0, b > 0$	Evaluating	BTLS
2.	Determine the temperature distribution in the semi- infinite medium $x \ge 0$. When the end $x = 0$ is maintained at zero temperature and the initial temperature distribution is $f(x)$.	Creating	BTL
3.	Obtain the solution of free vibration of a semi infinite string governed by PDE $u_{tt} = c^2 u_{xx} 0 < x < \infty$, $c > 0$ ICs: $u(x,0) = f(x)$, $u_t(x,0) = g(x)$, $0 < x < \infty$.	Creating	BTL
	Solve the following Neumann Problem PDE: $u_{xx}(x, y) + u_{yy}(x, y) = 0, -\infty < x < \infty$		
4.	BC : $u_y(x,0) = f(x), -\infty < x < \infty$ u and $\frac{\partial u}{\partial x}$ both vanish	Creating	BTL
	••••		

UNIT -3 CALCULUS OF VARIATIONS

Concept of variation and its properties – Euler's equation – Functional dependant on first and higher order derivatives – Functionals dependant on functions of several independent variables – Variational problems with moving boundaries – Problems with constraints – Direct methods – Ritz and Kantorovich methods.

	PART A - 2 MARK QUESTIONS		
1	Define a functional	Remembering	BTL1
2	Write Euler's equation for functional.	Applying	BTL3

3	Write Euler-Poisson equation.	Remembering	BTL1
	Find the exteremals of the functional		
4	$\int_{0}^{\pi} (y^{2} - y'^{2} - 2y \sin x) dx.$	Remembering	BTL1
5	Test for an extremum the functional Find the extremals of $\int_{x_0}^{x_1} (y^2 + y^{1^2} - 2ye^x) dx$	Applying	BTL3
6	Prove that the commutative character of the operators of variation and differentiation.	Applying	BTL3
7	Show that the symbols $\frac{d}{dx}$ and δ commutative	Remembering	BTL1
8	State Brachistochrone problem.	Remembering	BTL1
9	Find the curves on which the functional $\int_{0}^{1} (y'^{2} + 12xy) dx \text{ with } y(0) = 0 \text{ and } y(1) = 1 \text{ can be}$ extremised.	Applying	BTL3
10	Write the ostrogradsky equation for the functional $I[z(x,y)] = \iint_{D} \left\{ \left(\frac{\partial z}{\partial x} \right)^{2} + \left(\frac{\partial z}{\partial y} \right)^{2} + zf(x,y) \right\} dxdy$	Analyzing	BTL4
11	Write the ostrogradsky equation for the functional $\iint_{D} \left(\left[\frac{\partial z}{\partial x} \right]^{2} + \left[\frac{\partial z}{\partial y} \right]^{2} \right) dx dy$	Analyzing	BTL4
12	Define isoperimetric problems.	Applying	BTL3
13	Define moving boundaries.	Remembering	BTL1
14	Find the transversality condition for the functional $v = \int_{x_0}^{x_1} A(x, y) \cdot \sqrt{\left[1 + \left(\frac{dy}{dx}\right)^2\right]} dx$ with the right boundary moving along $y_1 = qp(x_1)$	Applying	BTL3
15	Test for an extremum the functional $I[y(x)] = \int_{0}^{1} (xy + y^{2} - 2y^{2}y') dx y(0)=1, y(1)=2.$	Evaluating	BTL5
16	Write down biharmonic equation.	Applying	BTL3
17	State Hamilton's Principle	Remembering	BTL1
18	Find the fundmental lemma of calculus of variation.	Remembering	BTL1
19	Explain direct methods in variational problem	Understand	BTL2
20	Explain Rayleigh-Ritz method.	Understand	BTL2
	PART B - 13 MARK QUESTIONS	·	
1	(i) $I[y(x)] = \int_{0}^{1} (xy + y^2 - 2y^2y') dx$, $y(0) = 1$, $y(1) = 2$. (ii) Find the extremals of $\int_{x_0}^{x_1} (y^{1^2} + 2yy^1 - 16y^2) dx$	Analyzing	BTL4
2	(i)Solve the extremal $v[y(x)] = \int_{x_0}^{x_1} \frac{dy}{dx} \left(1 + x^2 \frac{dy}{dx}\right) dx$. (ii)Find the extremal of the function	Applying	BTL3

	$v[y(x), z(x)] \int_{x_0}^x \left[2yz - 2y^2 + y'^2 - z'^2 \right] dx.$		
3	 (i)Show that the straight line is the sharpest distance between two points in a plane. (ii) A curve c joining the points (x1, y1) and (x2, y2) is revolved about the x-axis. Find the shape of the curve, so that the surface area generated is a minimum. 	Analyzing	BTL4
4	(i)State and Prove Brachistochrone problem .(ii) Show that the curve which extremize $I = \int_0^{\frac{\pi}{2}} [(y^{11})^2 - y^2 + x^2] dx \text{ given that}$ $y(0) = 0, y^1(0) = 1, y\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}, y^1\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \text{ is } y = \sin x.$	Analyzing	BTL4
5	Find the shortest distance between the point (-1,5) and the parabola $y^2 = x$	Analyzing	BTL4
6	(i)Find the plane curve of a fixed perimeter and maximum area. (ii)Find the extremals of the functional $\int_{0}^{1} (1 + y''^{2}) dx$. Subject to $y(0) = 0$, $y'(0) = 1$, $y(1) = 1$, $y'(1) = 1$.	Evaluating	BTL5
7	Find the extremal of the functional $\int_{0}^{\pi} (y^{2} - y^{2} + 4y \cos x) dx. y(0) = 0 , y(\pi) = 0.$ Find the extremal of the functional $I(y, z) = \int_{0}^{1} (y^{2} + z^{2} + 2y) dx; y(0) = 1, y(1) = \frac{3}{2},$ $z(0) = 0, z(1) = 1)$	Evaluating	BTL5
8	Solve the boundary value problem $y^{11} - y + x = 0$ ($0 \le x \le 1$) $y(0) = y(1) = 0$ by Rayleigh Ritz method.	Applying	BTL3
9	To determine the shape of a solid of revolution moving in a flow of gas with least resistance.	Analyzing	BTL4
10	Derive the Euler's equation and use it, find the extremals of the functional $V[y(x)] = \int_{x_0}^{x_1} (y^2 + y'^2 - 2y \sin x) dx.$	Creating	BTL6
11	Find an approximate solution to the problem of the minimum, of the functional $J(y) = \int_{0}^{1} (y'^2 - y^2 + 2xy) dx.y(0) = 0 = y(1)$ by Ritz method and compare it with the exact solution.	Evaluating	BTL5
12	Find the solid of maximum volume formed by the revolution of a given surface area.	Evaluating	BTL5
13	Find the extremals of the functional $v[y(x), z(x)] = \int_{0}^{\pi/2} (y'^{2} + z'^{2} + 2yz) dx.$ Given that	Evaluating	BTL5

		ГГ	
	$y(0) = 0$, $y(\pi/2) = -1$, $z(0) = 0$, $z(\pi/2) = 1$		
14	Find the curve connect in the points A and B which is traversed by a particle aliding from A to D in the abortant	Creating	
14	traversed by a particle sliding from A to B in the shortest time.	Creating	BTL6
	Part C – 15 Marks		
1.	Discuss the Branchistochrone Problem.	Remembering	BTL1
	Deterine the extermal of the functional		
2.	$I(y(x)) = \int_{-a}^{a} \left(\frac{1}{2}\mu y''^{2} + \rho y\right) dx$ that satisfies the condition $u(x) = \int_{-a}^{a} \left(\frac{1}{2}\mu y''^{2} + \rho y\right) dx$	Applying	BTL3
	$f_{-a}(2)$ that satisfies the condition	11 5 6	-
	y(-a) = 0, y(-a) = 0, y(a) = 0, y(a) = 0		
3.	Prove that the sphere is the solid figure of revolution	Remembering	BTL1
	which for a given surface area has maximum volume.	<i>C</i>	
	Using Ritz method, find the approximate solution of the problem of the minimum of the functional		
4.	$I(y(x)) = \int_0^2 (y'^2 + y^2 + 2xy) dx , y(0) = y(2) = 0$	Applying	BTL3
4.	$T(y(x)) = \int_{0}^{1} (y + y + 2xy) \mu x$, $y(0) = y(2) = 0$ and compare	Applying	DILJ
	with the exact solution.		
,			
Fluid	flow and heat flow problems. PART A - 2 MARK QUESTIONS		
1	Define Conformal Mapping and give an example.	Remembering	BTL1
2	Define Isogonal trandformation	Remembering	BTL1
3	Find the stagnation points of the flow represented by the complex potential $\Omega(z) = z^2$	Remembering	BTL1
4	Define Mobius transformation	Remembering	BTL1
5	Define cross ratio of Z_1 , Z_2 , Z_3 , Z_4	Understand	BTL2
6	Define Schwarz-Christoffel transformation.	Applying	
7	Define invariant point of the transformation w = f(z)	Remembering	BTL3
8			BTL3 BTL1
0		Applying	BTL1
9	Find the fixed points of the transformation $w = \frac{z-2}{z+4}$		BTL1 BTL3
	Find the fixed points of the transformation $w = \frac{z-2}{z+4}$ Find the critical point of the transformation	Applying Analyzing	BTL1 BTL3
10	Find the fixed points of the transformation $w = \frac{z-2}{z+4}$ Find the critical point of the transformation $W^2 = (Z - \alpha)(Z - \beta)$		BTL1 BTL3 BTL4
10 11	Find the fixed points of the transformation $w = \frac{z-2}{z+4}$ Find the critical point of the transformation	Analyzing	BTL1 BTL3 BTL4 BTL4
	Find the fixed points of the transformation $w = \frac{z-2}{z+4}$ Find the critical point of the transformation $W^2 = (Z - \alpha)(Z - \beta)$ Find the fixed points of $w = \frac{3z+1}{z-1}$	Analyzing Analyzing	BTL3 BTL1 BTL3 BTL4 BTL4 BTL5

 $G(\omega)$ maps the curve C on to the real axis of the w-plane.

Remembering

Remembering

BTL1

BTL1

Discuss the transformation defined by $w = \cosh z$.

Define equipotential lines.

12 13

14	State the formula for Schwarz Christoffel transformation	Understand	BTL2
15	Define Heat flux of heat flow.	Remembering	BTL1
16	State the basic assumptions of fluid flow.	Remembering	BTL1
17	Define streamline	Remembering	BTL1
18	Show that for a closed polygon, the sum of exponents in	Applying	BTL3
	Schwarz Christoffel transformation is -2.		
19	Define complex temperature of heat flow	Understand	BTL2
20	Define velocity potential, source and sink	Remembering	BTL1
	PART B - 13 MARK QUESTIONS		
1	(i) Prove that the bilinear transformation transforms	Understanding	BTL2
	circles of the z plane into circles of the w plane, where by	onderstanding	DILL
	circles we include circles of infinite radius which are		
	straight lines		
	(ii) Define Bilinear transformation and find the bilinear		
	transformation which maps $z_1 = -2, z_2 = 0, z_3 = 2$ on to the		
	points $w_1 = \infty$, $w_2 = 1/2$, $w_3 = 3/4$.		
2	Find a transformation which maps a polygon in the w-plane	Applying	BTL3
-	to the unit circle in the z-plane.	1 1991 9 118	DILU
	v		
	\uparrow		
	-π+ <i>i</i> π R		
	P		
	z- plane w - plane		
3	(i) Find the function harmonic in the upper half of the z-	Remembering	BTL-1
	plane, which takes the prescribed values on x- axis given by		
	$G(x) = \begin{cases} 1., \ x > 0 \\ 0, \ x < 0 \end{cases}$		
	$O(x) = \begin{cases} 0, x < 0 \end{cases}$		
	(ii) Finds DLT $z_1 = 0$, $z_2 = -i$, $z = -1$ in to the point s		
	(ii)Find a BLT $z_1 = 0$, $z_2 = -i$, $z = -1$ in to the point s $w_1 = 1$, $w_2 = 1$ $w_3 = 0$		
4	Find the bilinear transformation which maps the points	Understand	BTL2
	z=1, i, -1 into the points $w=2$, i, -2.Find the fixed and		
	critical points of the transformation.		
5	Prove that a harmonic function $\Phi(x, y)$ remains harmonic	Understand	BTL2
	under the transformation $w=f(z)$ where $f(z)$ is analytic and		
	$f'(z) \neq 0$		
6	Find the transformation which maps the semi-infinite strip	Analyzing	BTL4
	bounded by v=0, u=0 and v=b into the upper half of the z-		
	plane.		

7	Find the complex potential due to a source at $z=-a$ and a sink at $z=a$ equal strengths k, Determine the equipotential lines and streamlines and represent graphically and find the speed of the fluid at any point.	Evaluating	BTL5
8	Discuss the motion of a fluid having complex potential $\Omega(z) = ik \log z$ where $k > 0$	Applying	BTL3
9	The complex potential of a fluid flow is given by $\Omega(z) = V_0(z + \frac{a^2}{z}) \text{ where } V_0 \text{ and } \alpha \text{ are positive constants.}$ (a) Obtain equations for the streamlines and equipotential lines, represent them graphically and interpret physically. (b) Show that we can interpret the flow as that around a circular obstacle of radius a. (c) Find the velocity at any point and determine its value far from the obstacle (d) Find the stagnation points.	Evaluating	BTL5
10	 Fluid emanates at a constant rate from an infinite line source perpendicular to the z plane at z=0 (a) Show that the speed of the fluid at a distance r from the source is V=k/r, where k is a constant (b) Show that the complex potential is Ω(z) = k h z. (c) What modification should be made in (b) if the line source is at z=a? (d) What modification is made in (b) if the source is replaced by a sink in which fluid is disappearing at a constant rate? 	Analyzing	BTL4
11	 (i) Find a bilinear transformation which maps points z= 0, -i, -1 into w= i, 1, 0 respectively (ii) Find the complex potential for a fluid moving with constant speed V₀ in a direction making an angle δ with the positive x-axis. Also determine the velocity potential and stream function. 	Applying	BTL3
12	Find the transformation which transforms the semi-infinite strip bounded by $v=0$, $v=\pi$ and $u=0$ onto the upper half z-plane.	Analyzing	BTL4
13	Show that the transformation $w = \frac{3-z}{z-2}$ transforms circle with center(5/2, 0) and radius 1/2 in the z-plane into the imaginary axis in w-plane and the interior of the circle into the right half of the plane.	Applying	BTL3
14	Find the transformation that maps an infinite strip $0 \le v \le \pi$ of the w-plane onto the upper half of z-plane.	Analyzing	BTL4
	Part C- 15 Marks		
1.	Find the complex potential for a fluid moving with constant speed V_0 in a direction making an angle δ with the positive	Evaluating	BTL5

	x axis. Also		
	(i) Determine the velocity potential and stream function		
	(ii)Determine the equations for the streamlines and		
	equipotential lines.		
2.	Discuss the Schwarz- Christoffel transformation.	Analyzing	BTL4
3.	Find the Bilinear transformation which maps the points z=	Applying	BTL3
	1, i, -1onto w= i, 0, -i. Hence find the image of $ z <1$ and		
	the invariant points of the transformation.		
4.	Discuss the different types of Fluid flow and Heat Flow.	Analyzing	BTL4
UNI	T-5 TENSOR ANALYSIS		
	mation convention – Contravariant and covaraiant vectors – C		sors –
	rproduct – Quotient law – Metric tensor – Chrirstoffel symbols	s – Covariant	
diffe	rentiation – Gradient, divergence and curl.		
1	PART A - 2 MARK QUESTIONS: Define Tensor and Summation convention	Domomharing	דד 1
$\frac{1}{2}$		Remembering	BTL1
2 3	Define Kronecker delta function of tensor Define Covariant and Contravariant vectors	Remembering Remembering	BTL1 BTL1
<u> </u>	Define contraction of a tensor.	Remembering	BTL3
4 5		Applying	BTL3
5	If A_i is a covariant and B^i is a contravariant vector, show that $A_i B^i$ is an invariant	Applying	DILS
6	State the Quotient law of tensors.	Applying	BTL3
7	Define reciprocal tensors.	Remembering	BTL1
8		Remembering	BTL1
0	Prove tha $[pr,q] + [qr,p] = \frac{\partial g_{pq}}{\partial x^r}$.	Termentoering	
9	Define Symmetric and Skew-symmetric tensors	Remembering	BTL1
10	Define divergence of a contra variant vector	Remembering	BTL1
11	Prove that Kronecker delta (δ) is a mixed tensor of order 2.	Analyzing	BTL4
12	Define Metric tensor and Conjugate tensor	Applying	BTL3
13	State the Christoffel symbol of first and second kind.	Understand	BTL2
14	If f is a function of 'n' variables x^i then write the	Applying	BTL3
	differential of f using summation convention.		
15	Write the terms contained in $S = a_{ij}x^ix^j$, taking n=3.	Applying	BTL3
16	If $(ds)^2 = (dr)^2 + r^2 (d\theta)^2 + r^2 \sin^2 \theta (d\phi)^2$, find the value of	Creating	BTL6
	[22.1] and [13,3]		
17	Prove that $divA_i = \frac{1}{\sqrt{g}} \frac{\partial(\sqrt{g}A^k)}{\partial x^k}$.	Analyzing	BTL4
	$\int \sqrt{g} = \partial x^k$		
18	Define Curl of a contra variant vector.	Applying	BTL3
19	Given A^i and B^j are contra variant vectors, show that	Applying	BTL3
	$A^i B^j$ is contra variant tensor of rank 2		

20	Prove that the property of the Christoffel symbols	Analyzing	BTL4		
	$\Gamma_{ij,k} + \Gamma_{kj,i} = \frac{\partial g_{ik}}{\partial q^{j}}$				
1	PART B – 13 MARK QUESTIONS1(i) In a contravariant vector has components $dx dy$ inEvaluatingBTL5				
	(i)In a contravariant vector has components $\frac{dx}{dt}, \frac{dy}{dt}$ in	Evaluating	DILJ		
	rectangular coordinates, show that they are $\frac{dr}{dt}$ and $\frac{d\theta}{dt}$ in				
	polar coordinates. (ii) If A^i is a contravariant vector and B_i is a covariant				
	(ii) If A^i is a contravariant vector and B_j is a covariant vector prove that $A_i B_j^i$ is a mixed tensor of order 2				
2	vector, prove that $A_i B^j$ is a mixed tensor of order 2.	A			
2	 (i) State and prove Quotient law of tensor. (ii) Find g and g^{ij} corresponding to the metric 	Analyzing	BTL4		
3	$(ds)^{2} = 5(dx^{1})^{2} + 3(dx^{2})^{2} + 4(dx^{3})^{2} - 6dx^{1}dx^{2} + 4dx^{2}dx^{3}$ Find the components of the first and second fundamental	Creating	BTL6		
5	tensor in spherical coordinates.	Creating	DILO		
4	Find the components of the metric tensor and the conjugate	Applying	BTL3		
	tensor in the cylindrical co-ordinates				
5	(i)Define Christoffel's symbols. Show that they are not	Analyzing	BTL4		
	tensors (ii) Prove that the covariant derivative of e^{ij} is zero				
6	(ii) Prove that the covariant derivative of g^{ij} is zero.	Evaluating	BTL5		
0	A covariant tensor has components $x + y$, xy , $2z - y^2$ in	Evaluating	DILJ		
	rectangular co-ordinates. Find its covariant components in cylindrical co-ordinates.				
7	Given the covariant components in rectangular co-ordinates	Analyzing	BTL4		
	$2x - z$, x^2y , yz . Find the covariant components in				
	(i) Spherical polar co-ordinates (r, θ, φ) (ii) Cylindrical co-				
	ordinates(ρ, φ, z)				
8	Show that the tensors g_{ij} , g^{ij} and the Kroneckor delta δ_j^{i} are	Applying	BTL3		
	constants with respect to covariant differentiation.				
9	(i) Find the g and g^{ij} for the metric	Evaluating	BTL5		
	$ds^{2} = 5(dx^{1})^{2} + 3(dx^{2})^{2} + 4(dx^{3})^{2} - 6dx^{1}dx^{2} + 4dx^{2}dx^{3} + 0dx^{3}dx^{1}(ii)$				
	Prove that the covariant derivative of g^{ij} is zero.				
10	If $(ds)^2 = (dr)^2 + r^2(d\theta)^2 + r^2 \sin^2 \theta (d\phi)^2$, find the value of	Evaluating	BTL5		
	(i) [22,1] and [13,3] (ii) $\begin{cases} 1\\22 \end{cases}$ and $\begin{cases} 3\\13 \end{cases}$				
11	Determine the metric tensors g_{ij} , g^{ij} in cylindrical co-	Evaluating	BTL5		
	ordinates.				
12	Prove that the covariant derivative of g^{ij} is zero.	Evaluating	BTL5		
13	Prove that	Evaluating	BTL5		

	(i) $\frac{\partial g_{ij}}{\partial x^k} = [ik, j] + [jk, i]$ (ii) $\frac{\partial g^{ij}}{\partial x^k} = -g^{jl} \begin{cases} i \\ lk \end{cases} - g^{im} \begin{cases} j \\ mk \end{cases}$			
14	Given the metric $ds^{2} = (dx^{1})^{2} + (x^{1})^{2}(dx^{2})^{2} + (x^{1})^{2} \sin^{2}(x^{2})(dx^{3})^{2}$ find the Christoffel symbols [22,,1], [32, 3] $\begin{cases} 2 \\ 2 \\ 1 \end{cases}$ and $\begin{cases} 3 \\ 3 \\ 2 \end{cases}$	Evaluating	BTL5	
15.	A covariant tensor has componets xy , $2y - z^2$, xz in rectangular coordinates. Find its covariant components in spherical coordinates	Evaluating	BLT5	
	Part C – 15 Marks			
1.	(i) Show that any innerpoduct of the tensor A_m^l and B_r^{pq} is a tensor of rank three. (ii) If g denotes the determinant of g_{ij} then prove that $\begin{cases} i \\ i \\ j \end{cases} = \frac{\partial}{\partial x^i} (\log \sqrt{g})$	Creating	BTL6	
2.	Explain short notes about metric tensor with suitable example.	Analyzing	BTL4	
3.	Discuss the Curl and Divergent of a tenor.	Analyzing	BTL4	
4.	A covariant tensor has components xy , $2y-z^2$, xz in rectangular coordinates. Find its covariant components in spherical coordinates.	Applying	BTL3	
