
A Study of UI Construction in Android and Flutter: Comparative & Analysis

Donglan Zou1,2,a,*, Mohamad Yusof Darus1,b

1College of Computing, Informatics and Mathematics, UiTM, Malaysia

2School of Mathematics and Computer Science, Xinyu University, Xinyu, Jiangxi, China

a29877624@qq.com, byusof@fskm.uitm.edu.my

*Corresponding author

Keywords: UI Construction, Android, Flutter, Mobile Application, Performance Comparisons

Abstract: Android is a mobile operating system based on a modified version of the Linux kernel and

other open-source software, designed primarily for touchscreen mobile devices such as smartphones

and tablets. At present, there are many technologies and frameworks that can be used for application

development, especially mobile application development. Flutter is a popular user interface

framework for mobile app development from Google. It has gained momentum over the past years.

With the rapid growth of smartphones and tablets, learning mobile programming has become a crucial

skill for students. Mobile app development involves writing a separate codebase for each platform.

However, with the advent of cross-platform mobile programming, a paradigm shift has occurred in

the mobile development landscape. Learning cross-platform mobile programming concepts and

understanding their UI construction can be challenging, especially for beginners. This paper presents

the study and comparison of UI construction, explicitly focusing on Android and Flutter framework.

It starts by overview the Architecture of the two application development framework, then brief

describes the process of building UI using Android and Flutter mobile application development tools.

Followed by, it contains a case study of the applications developed by these technologies. At last, the

differences in UI construction between Android and Flutter are summarized, and performance

comparisons are conducted based on experimental data. The result has contributed to helping

beginners quickly understand and master these two development tools.

1. Introduction

The usage of mobile devices like cellular phones, smartphones, and tablets has witnessed a

significant surge in popularity over time. Alongside this rise in popularity, the availability of

applications designed for these devices has also increased. In 2022, over 3.5 million mobile apps were

available on the Google Play Store and approximately 2.2 million apps on the Apple App Store. In

educations, mobile application development is an important field to study. In response to this demand,

a large number of educational institutions started giving students opportunities to take mobile

programming classes. The Association for Computing Machinery (ACM) recommends including

topics related to mobile computing across the computer science curriculum.

To improve mobile programming education with self-study of students, Y. W. Syaifudin have

developed a web application system that aims to learn mobile programming using the native

programming language on the Android platform named Android programming learning assistance

system(APLAS)[1] . Traditionally, mobile app development involved writing separate codebase for

each platform, such as iOS (Apple) and Android (Google). However, with the advent of cross-

platform mobile programming, a paradigm shift has occurred in the mobile development landscape.

Cross-platform mobile programming refers to the development of mobile applications that can run

on multiple operating systems and platform using a single codebase. It leverages frameworks and

tools that allow developers to write a code once and deploy it across different platforms, to save time

and effort [2] . Therefore, it is important for students to study cross-platform app development.

Recently, Flutter has gained popularity as a software development kit for creating cross-platform

applications compatible with Android and iOS. As a result, numerous software developers have

2024 International Conference on Modern Education, Economy, and Information Technology (MEEIT 2024)

Copyright © (2024) Francis Academic Press, UK DOI: 10.25236/meeit.2024.027174

embraced Flutter as their preferred choice. Abdul Rahman Patta studied the grammar-concept

understanding problem (GUP) in mobile programming using Flutter frameworks, serving as an

introductory exploration of Flutter programming for novice students [3].

For mobile application developers, both Android and Flutter should be familiar. Android is an

operating system for mobile phones and tablets developed by Google based on the Linux platform.

Since its inception, it has received unprecedented attention and quickly become one of the most

popular operating systems on mobile platforms. Flutter is also an open-source mobile application

development framework developed by Google. Its main goal is to provide a unified, high-

performance, and easy to learn cross platform UI toolkit, allowing developers to build iOS and

Android applications simultaneously using a single code repository. Flutter adopts a unique

"responsive" architecture design, combined with Dart language and custom rendering engine, to

achieve efficient interface drawing and animation effects.

In order to enable beginners to quickly understand and master these two development tools, this

paper starts from the user interface design of the two, analyzes and compares the differences in the

UI construction process of the two, and also analyzes and compares the differences in running speed

and memory consumption under the same function implementation.

2. Foundations and Related Works

This section presents a brief overview of Android architecture and Flutter architecture, a brief

describe of their UI construct process as well as the main contributions in the field of mobile

development.

2.1. Literature Review

Since the inception of mobile devices, there have been several attempts to generate new processes

for learning development of apps. The strategy so far has been to combine all existing methodologies

or parts of them, with agile processes receiving the most attention.

In [4], Syaifudin et al. presented an implementation of an automated Dart code verification system

for assisting mobile application programming learning using Flutter. Their work focused on

developing a learning support system that integrates an automated Dart code verification mechanism,

which draws upon a software testing methodology commonly used in Android application

development.

In [3], Abdul Rahman Patta et al. Presented an implementation of grammar-concept understanding

problem for cross-platform mobile programming learning, explicitly focusing on the Flutter

framework. The evaluation of the implementation involved 109 undergraduate students in Makassar

State University, Indonesia, who were assigned 22 instances covering 71 carefully selected keywords

and questions. The results show that their proposal effectively reveals students understanding levels.

These findings contribute to identifying areas for improvement and developing targeted learning

resources to enhance mobile programming education.

In [5], Kishore, Khare et al. presented the study and comparison of the two most famous cross-

platform application development technologies. It started by discussing the basic functions of the

application development methodologies. Followed by, it contained a comparison of the performance

of the applications developed by these technologies. After that Stability of applications made by the

flutter and React Native is checked on different parameters. There was an implementation of an

application using Flutter and React Native which will be used for performance analysis between two

applications running Android and Web platforms.

In [6], Boukhary and Colmenares et al. proposed a new Flutter architecture based on the Clean

Architecture by Uncle Bob. The Flutter Clean Architecture proposed in their research is packaged

and released through a Flutter package. The architecture was tested by developing a full application

from scratch using the package and documenting the process. The Flutter Clean Architecture provided

a solution to the state management problem as well as a potential overall choice for Flutter mobile

application architecture.

In [7], Choudhari, Gawai et al. proposed an app which is cost-effective as well as time saving. The

175

highlights of the project are that this app will give the statistical data of electricity used while

simultaneously uploading the meter readings in the app and will also monitor the power consumption,

Daily usage will be known to the user and this app would also provide the value of electricity units.

User would be able to know the electricity bill till any time of the month and in addition to this, a

report in the form of statistics and numbers will be updated daily in a journal. The prime reason behind

developing such an app is to create an overall awareness about amount of electricity usage and

consumption.

In [8], Perinello and Gaggi et al. studied if the cross-platform development frameworks Flutter and

React Native allow to achieve accessibility of user interface of mobile applications. Their analysis

shows that both frameworks do not provide a complete accessibility by default (RQ1), but they were

able to find solutions to make components and widgets accessible (RQ2). Moreover, their analysis

shows that React Native offers a more concise approach which leads to a briefer and thus readable

source code (RQ3).

In [9], Martinez, Ferre et al. with the aim of defining a mobile application development framework

that considers the specific characteristics of developing mobile apps, carried out a systematic mapping

study of the software development process for mobile applications, then administered a survey and

completed a qualitative study with industry experts. These studies identify the main trends in the

software process for mobile apps, and to uncover the main challenges for app development. Their

have organized the findings in a framework that integrates the specific challenges of mobile

development, which called Mobile Ilities, with software development activities that are linked

through an agile process. Their proposal has served as a guide for novice developers throughout the

process of creating a final product, combining the existing knowledge of developers about Scrum

with the specific characteristics of mobile development, and providing mechanisms to link these

characteristics with the elements of the development process.

In [10], AMMAR et al. proposed a new approach and its support system for the automatic

generation of mobile user interfaces. The approach and the system are based on a set of standards and

relevant technologies such as EMF, GMF, ATL, and Xpand.

In the above literature, the authors' research has provided some assistance for students to learn

mobile application development, but none of them have specifically studied UI construction for

Android and Flutter.

2.2. Overview of Android Architecture

The underlying of the Android system is built on top of the Linux system, which consists of four

layers: operating system, middleware, user interface, and application software. From top to bottom,

the architecture of Android consists of four layers: Application layer, Application Framework layer,

System Runtime layer, and Linux Kernel layer, as shown in Fig. 1.

Android applications are composed of components that can call independent functional modules.

Components can be classified into four core components, namely Activity, Service,

BroadcastReceiver, and ContentProvider. These four major components need to be registered with

corresponding tags in the project's AndroidManifest.xml file. In an Android application, it mainly

consists of four independent components that can be called and coordinated to form a true Android

application [11].The communication of these components is mainly assisted by Intent. Intent is

responsible for describing the actions, data involved, and additional data involved in a single

operation in an application. Android component diagram as shown in Fig. 2.

Android, based on the description of this Intent, is responsible for finding the corresponding

component, passing the Intent to the calling component, and completing the component call.

Therefore, Intent plays a role as a media intermediary here, providing relevant information on

component calls to each other, achieving decoupling between the caller and the called.

176

Fig. 1 Android Architecture Diagram.

Fig. 2 Android component diagram.

2.3. The File System Structure of Android Engineering

The directory structure of an Android application in Android Studio is shown in Fig. 3:

Fig. 3 Directory structure diagram of Android applications.

From Fig. 3, it can be obtained that Android application include Source Program Folder src,

177

Resource Folder res, Layout Folder res/layout, Value Folder res/values, Using the Extension Jar

Package Folder libs and Engineering Project configuration list file AndroidManifest.xml these

primary components. AndroidManifest.xml file contains relevant information that must be mastered

before running the Android system, such as the application name, icon, package name of the

application, component registration information, authorization, and the minimum Android version

for running the device.

The entry point for running Android applications needs to be set to MAIN the AndroidManifest.xml

file. For example, the code for defining MainActivity.java as the main activity of an application is as

follows in Fig. 4:

Fig. 4 Code in AndroidManifest.xml file.

2.4. Hierarchy of Android UI Building

In Android, all UI elements are built through View and ViewGroup. For an Android application's

user interface, ViewGroup serves as a container for the controls in the interface, which can include

both regular View controls and ViewGroup controls[12].As shown in Fig. 5 and Fig. 6:

Fig. 5 Android View Hierarchy Chart.

Fig. 6 Android UI Element Structure Diagram.

Interface layout writing method

Android has two interface layout methods. The first is to write the layout in an xml file, and the

most commonly used is also this method. It can effectively isolate the code layout in the interface

from Java code, making the structure of the program clearer, as shown in Fig. 7.

178

Fig. 7 Writing layouts in XML files.

The second method is to write layouts in Java code, where all layout and control objects can be

created using the “new” keyword. The created View control can be added to the ViewGroup layout to

display the View control in the layout interface, as shown in Fig. 8.

Fig. 8 Writing layouts in Java files.

2.5. Flutter Architecture

Flutter is an open-source mobile application development framework developed by Google. Its

main goal is to provide a unified, high-performance, and easy to learn cross platform UI toolkit,

allowing developers to build iOS and Android applications simultaneously using a single code

repository. Flutter adopts a unique "responsive" architecture design, combined with Dart language

and custom rendering engine, to achieve efficient interface drawing and animation effects [13]. The

system framework diagram is shown in Fig. 9.

.

Fig. 9 Flutter system framework diagram.

From the above figure, we can see that the architecture of Flutter can be divided into three parts,

from bottom to top, which are Embedded, Engine, and Framework. The Framework section is

implemented in pure Dart language. The Foundation layer, along with the Animation, Painting, and

179

Gestures layers, provides animation, drawing, and gesture operations, which are specifically provided

by Google for developers to call. The Rendering layer is responsible for building the UI tree, which

means that when an Element on the UI tree changes, it recalculates the position and size of the

changed part, updates the UI tree, and ultimately presents the updated interface to the user[14].

The application development of Flutter is mainly completed by the following 5 parts.

Dart language: Flutter is based on Google's own Dart programming language, which is a strongly

typed, object-oriented, garbage collection language with concise syntax and easy to understand and

get started with. Dart provides Flutter with rich API and library support for building UI components

and handling business logic.

Widget system: The core concept of Flutter is "Widget", which is a reusable UI element or user

interface component, such as buttons, text boxes, lists, etc. The Widget tree forms the view hierarchy

of the entire application, with each Widget having its own state and build function (build()),

responsible for generating and managing its own UI display. When the state of the Widget changes,

Flutter will automatically rebuild the UI and update it by using the spreading algorithm to calculate

the minimum change, thereby achieving efficient interface refresh [15].

Material Design & Cupertino Widgets: Flutter adopts two style systems, Material Design and

Cupertino, corresponding to the design specifications of Android and iOS platforms, respectively.

The collection of widgets under these two styles is called Material and Cupertino Widget Libraries,

which encapsulate various UI components that match the characteristics of their respective platforms,

allowing developers to quickly build application interfaces with platform characteristics [3].

Flutter Engine: Flutter's self-developed rendering engine, also known as Skia rendering engine, is

the foundation for running Flutter applications. Skia is an open-source graphics library used to render

high-performance 2D vector images and hardware accelerated images. Flutter Engine converts the

Dart bytecode generated by the Dart compiler into a command sequence that Skia can understand,

and drives Skia to draw UI elements on the GPU, achieving smooth animation effects and interactive

experience [13].

Platform Channels: Flutter enables cross platform communication between Android and iOS

through Platform Channels, allowing Dart code to interact with native layers (Java or Objective-C)

and call native APIs to perform complex operations such as accessing device sensors, network

requests, media playback, etc. Through this approach, Flutter ensures high performance even in

scenarios with high performance requirements [15].

Hot Reloading & DevTools: Flutter has a built-in Hot Reloading feature, which allows for real-

time preview and hot deployment of code changes without affecting the user experience. DevTools

provides a powerful set of debugging tools, including viewing the Widget hierarchy, tracking state

changes, analyzing memory leaks, and more, making it easy for developers to quickly locate and

solve problems during the development process [16].

2.6. Hierarchy of Flutter UI Building

In flutter development, everything is a component, and all components are built on Widgets. The

interface built by these Widgets constitutes the hierarchical structure diagram we see currently, as

shown in Fig. 10.

The simplest Flutter application, just one Widget! As in the following example: pass a Widget to

the runApp function, as shown in Fig. 11.

The runApp function takes the given Widget and makes it the root of the widget tree. In this

example, the widget tree consists of two Widgets: Center (and its child widgets) and Text. The

framework forces the root widget to cover the entire screen, which means the text "Hello, world" will

be centered on the screen. The direction of text display needs to be specified in the Text instance.

When using MaterialApp, the direction of the text will be set automatically.

When writing an application, developers usually create new Widgets. These Widgets are either

StatelessWidgets or StatefulWidgets. The specific choice depends on whether your widget needs to

manage some state. The main job of the Widget is to implement a build function to build itself. A

Widget usually consists of a number of lower-level Widgets. The Flutter framework will build these

180

Widgets in sequence until the lowest-level sub-widget is built. These lowest-level Widgets are usually

RenderObject, which calculates and describes the geometry of the Widget [17].

Fig. 10 Flutter program development hierarchy diagram.

Fig. 11 Simple flutter code example.

Fig. 12 Research Process Flowchart

181

3. Methodology

An experiment was carried out to find out the result of this research paper. This section presents

the experiment and how it was prepared, its goal, and its process itself. Two applications are made

for the Login function. one is using Android and another one is made using Flutter.

The research is executed in chronological phases as shown in Fig. 12 as Methodology Framework.

4. Testing & Result

4.1. UI Instance Generation Testing

This Login function contains two text input boxes and a "Login" button. One is for account input,

and the other is for password input. The account includes two types: mobile phone number and email,

which can simultaneously verify the input content.

Android UI code for implementing the Login function is shown in Fig. 13,and the running effect

is shown in Fig. 14.

Fig. 13 Android login interface code.

Fig. 14 Android login interface running renderings.

In flutter, the code to implement the login interface is shown in Fig. 15 and the running effect is

shown in Fig. 16.

182

Fig. 15 Flutter login function code.

183

Fig. 16 Flutter login function code running renderings.

4.2. Experimental Result

The apps made using the various frameworks are compared on various parameters and the results

are as follows [18].

1) Application Size

The applications run on the same system and their sizes were measured when they were loaded

into the computer. Android app used the least amount of space in the system, while flutter apps used

more space, as shown in Table 1.

Table 1 Application Size Comparison.

Application App Size

Native Android 21.6MB

Flutter 193.3MB

2) Performance Comparison

The performance of the app is measured as per various parameters like CPU Usage, Memory

Usage, Network Usage and Energy Usage. Table 2 is attached below indicating the same.

Table 2 Performance Comparison.

Application
CPU

Usage

Memory

Usage

Energy

Usage

Native Android 100% 2.65KB Very high

Flutter 25% 4.45KB Very high

a) CPU Usage

The CPU usage is found out using the profiler of each platform. Android has the highest CPU

usage, as shown in Table 2.

b) Memory Usage

The memory usage is found out using the profiler of the platform only. Table 2 shows that Android

has the highest memory usage.

c) Energy Usage

Table 2 shows the energy usage comparison. It is found using profiler tool only. Both android and

flutter

184

3) Code Reusability

Code Reusability is measured in the code by the number of times the same code is repeated

throughout the whole code. In this case, as shown in Table 3 android is the best suited code as about

95 percent code is repeated, flutter have 90% reusability respectively.

Table 3 Various Parameter Comparison.

Technology

Used
 App Size

Environment

Code

Complexity

Package and it’s

installations

Code

Reusability

Native

Android

Storage

used is 21.6

MB.

Android

Studio

Version

Time

complexity -

O(n). Space

complexity - n

Android 13.0

100 percent of

code can be

reused.

Flutter

Storage

used is

139.3 MB.

Flutter 3.19.5

Time

complexity -

O(n). Space

complexity - n

Flutter and dart

plugins.

90 percent of

code can be

reused.

4) Code Complexity

It is determined using the function O(n) and due to the same logic implemented in all two codes,

the complexity remains the same, that is O(n) and space complexity is n, where n is the number of

moves taken. This is shown in Table 3.

5. Comparative & Analysis

5.1. UI interfaces are written differently

In Android, xml is usually used to write UI, and then it is parsed into a tree-structured UI tree

through LayoutInflater. It also supports writing UI in code. The program is more readable. Convenient

for program debugging and modification.

There is no xml layout file in Flutter, but layout through Widget tree. Flutter can only construct a

UI tree through code, representing an interface. In Android, we can directly modify Views to update

them. However, in Flutter, Widgets are immutable and cannot be updated directly. Instead, the

Widget's state is modified.

Widgets in Flutter are divided into two types: stateful and stateless.

 StatelessWidget stateless control. A UI that once created will not change on the fly.

 StatefulWidget with state control. UI that needs to be dynamically modified depending on

external information after creation.

5.2. The components of the UI interface are different

In Android, the component element of the UI interface is View. All interface elements inherit the

View class and are derived from View. The component elements of the Flutter UI interface are Widgets,

and any interface element inherits Widgets.

What does View correspond to in Flutter?

In the Android framework, View is the basis for all content displayed on the screen, and all controls

(Button, TextView, etc.) are a View. In Flutter, Widget can be roughly regarded as the equivalent of

View, because it cannot be completely mapped to View in Android.

Widgets have no life cycle and are immutable once created. When a Widget needs to be changed,

Flutter will rebuild a new Widget instance tree. Widget itself is not a View, it does not draw anything

directly, it is just a description of the UI and its semantics.

How do they add or delete files in the layout?

In Android, subviews can be dynamically added and deleted through the addChild() or

removeChild() method of the parent view.

In Flutter, the drawn content can be modified through the Boolean value and return value of the

185

parent View.

5.3. UI interface elements have different variability

View in Android is variable. When user interacts or data is updated, the invalidate method of View

can be directly called to redraw to update the UI.

Widget itself in Flutter is immutable. So how does Flutter update the interface? Flutter updates the

interface through the StatefulWidget control object.

The base class of statefulwidget is StatefulWidget, which is associated with a State object and saves

the state information of the Widget, such as whether it is currently selected, etc. State information can

also be saved in the Widget, and then State obtains the state information through the Widget. The

createState function of the statefulwidget is responsible for creating its own associated State object.

The statefulwidget entrusts its own construction to the State object. The build function of the State

object is responsible for building the Widget. When the user interacts or the data changes, the Widget

state changes. The setState method of State is called to notify it, and then the State is based on the

current state information, rebuild the Widget tree.

5.4. Other differences

The difference between the UI construction of Android and Flutter is not only the components

used in the above experiments, but also differences in Custom Widgets, dynamic addition of Child

Widgets, Canvas Drawing and Gesture Monitoring, as shown in Table 4.

Table 4 Other differences between Android & Flutter.

Application
Custom

Widget

Dynamically adding

child widgets

 Canvas

drawing

Gesture

monitoring

Native
Android

inherit View addView()/removeView()
inherit View,

override onDraw()

inherit View,
override

onTouchEvent()

Flutter

inherit
StatelessWidget/
StatefulWidget,
Override build()

two sets of Widget tree CustomPaint GestureDetector

From the Table 4, implement Custom View by inheriting an existing View in Android, while inherit

StatelessWidget/StatefulWidget, and override build() method in Flutter. Regarding the dynamic

addition of Child Widgets, it can be added/removed at any time through addView/removeView method

in Android. For Flutter the parent Widget can only prepare two sets of Widget tree to implement this

function. In Android it can inherit View and override onDraw method to customize the drawing

through Canvas, while Flutter use CustomPaint class. Regarding the Gesture monitoring, Android

inherit View, override onTouchEvent() method, while Flutter use GestureDetector class.

6. Conclusion

This paper elaborates on the process of building UI using two mobile application development

platforms, Android and Flutter, and compares and analyzes the differences between them.Their

differences are:

 UI interfaces are written differently.

In Android it usually uses xml to construct UI, and it also supports building UI in java code. The

program is more readable and convenient for program debugging and modification. In Flutter it can

only construct a UI by Widget.

 The components of the UI interface are different.

All interface elements inherit the View class and are derived from View. The component elements of

the Flutter UI interface are Widgets, and any interface element inherits Widgets.

 UI interface elements have different variability

View in Android is variable. When user interacts or data is updated, the invalidate method of View

can be directly called to redraw to update the UI. Widget itself in Flutter is immutable. Flutter updates

186

the interface through the StatefulWidget control object.

 Different ways to implement Custom Widget

Implement Custom View by inheriting an existing View in Android, while inherit

StatelessWidget/StatefulWidget, and override build() method in Flutter.

 Different in dynamically adding Child Widgets

It can be added/removed at any time through addView/removeView method in Android. For Flutter

the parent Widget can only prepare two sets of Widget tree to implement this function.

 Different ways to implement Canvas Drawing

In Android it can inherit View and override onDraw method to customize the drawing through

Canvas, while Flutter use CustomPaint class.

 Different ways to implement Gesture Monitoring

Android inherit View, override onTouchEvent() method, while Flutter use GestureDetector class

to achieve the Gesture Monitoring function.

This paper also discusses the test results obtained after implementing the application. the obtained

indicated that Android has the smallest application size, while flutter has the largest application size.

Comparing the code complexity of the development code of each of the applications, it obtained that

the highest code reusability percentage is in Native Android, followed by Flutter.

This study’s outcomes have contributed to helping beginners quickly understand and master these

two development tools. However, this paper only discussed the difference on UI construction between

Android and Flutter. There are many differences between flutter and Android. In future work, the

researcher will focus on studying the differences between Android and Flutter in loading images,

animations, and other aspects.

Acknowledgements

(1) National Natural Science Foundation of China (No. 62062063)

(2) The Science and Technology Research Project of Jiangxi Provincial Department of Education,

China (No. GJJ202310);

(3) The Jiangxi Provincial Natural Science Foundation, China (No.20224BAB202022)

References

[1] Y. W. Syaifudin, N.F., M. Kuribayashi, and W.-C. Kao, A proposal of Android programming

learning assistant system with implementation of basic application learning. Int. J. Web Inform. Sys.,

2019. 6.

[2] Mahendra, M. and B. Anggorojati, Evaluating the performance of Android based Cross-Platform

App Development Frameworks, in Proceedings of the 6th International Conference on

Communication and Information Processing. 2021, Association for Computing Machinery: Tokyo,

Japan. p. 32–37.

[3] Abdul Rahman Patta, N.F., Xiqin Lu, Yan Watequlis Syaifudin, A Study of Grammar-concept

Understanding Problem for Flutter Cross-platform Mobile Programming Learning. 2023 6th

International Conference on Vocational Education and Electrical Engineering (ICVEE), 2023. 2023

6th.

[4] Syaifudin, Y. W., et al. (2022). An Implementation of Automatic Dart Code Verification for

Mobile Application Programming Learning Assistance System Using Flutter. 2022 International

Conference on Electrical and Information Technology (IEIT): 322-326.

[5] Kishore, K., et al. (2022). "Performance and stability Comparison of React and Flutter: Cross-

platform Application Development." 2022 International Conference on Cyber Resilience (ICCR): 1-

4.

[6] Boukhary, S. and E. Colmenares (2019). A Clean Approach to Flutter Development through the

Flutter Clean Architecture Package. 2019 International Conference on Computational Science and

187

Computational Intelligence (CSCI).

[7] Choudhari, A., et al. (2022). A Mobile App for Smart Electricity Usage Monitoring. 2022 Second

International Conference on Artificial Intelligence and Smart Energy (ICAIS): 1667-1673.

[8] Perinello, L. and O. Gaggi (2024). Accessibility of Mobile User Interfaces using Flutter and

React Native. 2024 IEEE 21st Consumer Communications & Networking Conference (CCNC): 1-6.

[9] Martinez, D., et al. (2020). "An Agile-Based Integrated Framework for Mobile Application

Development Considering Ilities." IEEE Access 8: 72461-72470.

[10] AMMAR, L. B. (2021). "An Automated Model-Based Approach for Developing Mobile User

Interfaces." IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9.

[11] Mayrhofer, R., et al. (2021). "The Android Platform Security Model." ACM Transactions on

Privacy and Security 24(3): 1-35.

[12] Jackson,W. (2014). "Android Apps for Absolute Beginners." New York, NY:Apress.

[13] Durai, S., et al. (2022). Cloud Computing based Multipurpose E-Service Application using

Flutter. 2022 6th International Conference on Computing Methodologies and Communication

(ICCMC): 1122-1126.

[14] Nagaraj, K., et al. (2022). Application Development for a Project using Flutter. 2022 3rd

International Conference on Smart Electronics and Communication (ICOSEC): 947-951.

[15] Syaifudin, Y. W., Hatjrianto, A. S., Funabiki, N., Liliana, D. Y., Kaswar, A. B., & Nurhasan, U.

(2022). An Implementation of Automatic Dart Code Verification for Mobile Application

Programming Learning Assistance System Using Flutter. Paper presented at the 2022 International

Conference on Electrical and Information Technology (IEIT).

[16] Aakanksha Tashildar, N. S., Rushabh Gala, Trishul Giri, Pranali Chavhan. (2020). Application

Development for a Project using Flutter. International Research Journal of Modernization in

Engineering Technology and Science, 02(08).

[17] Syaifudin, Y. W., et al. (2024). Implementation of Self-Learning Topic for Developing

Interactive Mobile Application in Flutter Programming Learning Assistance System. 2024 ASU

International Conference in Emerging Technologies for Sustainability and Intelligent Systems

(ICETSIS): 1103-1107.

[18] Suri, B., et al. (2022). Cross-Platform Empirical Analysis of Mobile Application Development

frameworks: Kotlin, React Native and Flutter. Proceedings of the 4th International Conference on

Information Management & Machine Intelligence: 1-6.

188

