
JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 1 (2010)42

Modern Homing Missile Guidance Theory  
and Techniques
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INTRODUCTION
Classical guidance laws, with proportional navigation 

(PN) being the most prominent example, had proven to 
be effective homing guidance strategies up through the 
1960s and early 1970s. By the mid-1970s, however, the 
predicted capability of future airborne threats (highly 
maneuverable aircraft, supersonic cruise missiles, tacti-
cal and strategic ballistic missile reentry vehicles, etc.) 
indicated that PN-guided weapons might be ineffective 
against them. However, by that time, the application of 

optimal control theory to missile guidance problems had 
sufficiently matured, offering new and potentially prom-
ising alternative guidance law designs.1–3 Around this 
time, the computer power required to mechanize such 
advanced algorithms also was sufficient to make their 
application practical.

Most modern guidance laws are derived using linear- 
quadratic (LQ) optimal control theory to obtain  
analytic feedback solutions.1, 4, 5 Many of the modern 

lassically derived homing guidance laws, such as proportional 
navigation, can be highly effective when the homing mis-

sile has significantly more maneuver capability than the threat. 
As threats become more capable, however, higher performance is required from the  
missile guidance law to achieve intercept. To address this challenge, most modern guid-
ance laws are derived using linear-quadratic optimal control theory to obtain analytic 
feedback solutions. Generally, optimal control strategies use a cost function to explicitly 
optimize the missile performance criteria. In addition, it is typical for these guidance 
laws to employ more sophisticated models of the target and missile maneuver capabil-
ity in an effort to improve overall performance. In this article, we will present a review 
of optimal control theory and derive a number of optimal guidance laws of increasing 
complexity. We also will explore the advantages that such guidance laws have over 
proportional navigation when engaging more stressing threats
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formulations take target maneuver into account to deal 
with highly maneuvering target scenarios (particularly 
true for terminal homing guidance). The availability 
of target acceleration information for the guidance law 
varies, depending on targeting sensor capability and 
type and the specific guidance law formulation. Typi-
cally, there also is an explicit assumption made about 
the missile airframe/autopilot dynamic response charac-
teristics in the modern formulations. We will show later 
that PN is an optimal guidance law in the absence of 
airframe/autopilot lag (and under certain other assumed 
conditions). To some extent, the feedback nature of the 
homing guidance law allows the missile to correct for 
inaccurate predictions of target maneuver and other 
unmodeled dynamics (see Fig. 1). However, the require-
ment for better performance continues to push optimal 
guidance law development, in part by forcing the con-
sideration (inclusion) of more detailed dynamics of the 
interceptor and its target. It is interesting that most if 
not all modern guidance laws derived using optimal con-
trol theory can be shown to be supersets of PN.

In the following sections, we first provide a cursory 
review of dynamic optimization techniques with a focus 
on LQ optimal control theory. Using this as background, 
we then develop a number of terminal homing guid-
ance laws based on various assumptions, in the order of 
assumption complexity. In our companion article in this 
issue, “Guidance Filter Fundamentals,” we introduce 
guidance filtering, with a focus on Kalman guidance 
filter techniques.

REVIEW OF LQ OPTIMAL CONTROL
Here, we start by considering a general nonlinear 

dynamics model of the system to be controlled (i.e., the 
“plant”). This dynamics model can be expressed as 

 ( ) ( ( ), ( ), ) .t t t tx f x u=$  (1)

In Eq. 1, x  is the n-dimensional state vector of real 
elements ( ),x uR Rn m! !  is the control vector, and 
t represents time (later we will provide more detail as 
to the structure of the state and control vectors for the 
homing guidance problem). With this general system, we 
associate the following scalar performance index:

 

( ( ), ( ), ) ( ( ), )

( ( ), ( ), ) .

J t t t t t

L t t t dt

x u x

x u

f f
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t
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0
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In this equation, [t0, tf] is the time interval of inter-
est. The performance index comprises two parts: (i) 
a scalar algebraic function of the final state and time 
(final state penalty), ( ( ), )t tx f f , and (ii) a scalar inte-
gral function of the state and control (Lagrangian), 

( ( ), ( ), ) .L t t t dtx uf

0

t

t#  The choice of ( ( ), )t tx f f  
and ( ( ), ( ), )L t t t dtx uf

0

t

t#  (this choice is a significant part 
of the design problem) will dictate the nature of the 
optimizing solution. Thus, the performance index 
is selected to make the plant in Eq. 1 exhibit desired  
characteristics and behavior (transient response, stabil-
ity, etc.). 

For our purposes, the optimal control problem is  
to find a control, ( )tu* , on the time interval [t0, tf] that 
drives the plant in Eq. 1 along a trajectory, ( )tx* , such 
that the scalar performance index in Eq. 2 is minimized. 

It is difficult to find analytic guidance law expressions 
for such general nonlinear systems. Therefore, we will 
turn our attention to a subset of optimal control that 
can yield tractable analytic solutions, known as the LQ 
optimal control problem.
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Figure 1. The traditional guidance, navigation, and control topology for a guided missile comprises guidance filter, guidance law, 
autopilot, and inertial navigation components. Each component may be synthesized by using a variety of techniques, the most 
popular of which are indicated here in blue text.
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The LQ Optimal Control Problem
Here, we assume that the nonlinear model in Eq. 1 

can be linearized about an equilibrium point ( , )x u0 0  
and represented by the time-varying linear dynamic 
system described in Eq. 31, 4:

 ( ) ( ) ( ) ( ) ( ) .t t t t tx A x B u= +$  (3)

In this model (as in the nonlinear case), x Rn!  is the 
state vector, u Rm! is the control vector, and t repre-
sents time. Here, however, A(t) and B(t) are the time-
varying Jacobian matrices

=
( ( , , )/tf x u x x x

u u
0

0

2 2 =  and 
=

( , , )/tf x u u x x
u u

0

0

2 2 = , respectively)

of appropriate dimension. 
Using the “shorthand” notation 

S
( ) ( ) ( )t t tz z SzT2 _ , 

we next define the quadratic performance index (a 
special case of the performance index shown in Eq. 2) 
shown in Eq. 4:

dt .
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In Eq. 4, the following assumptions are made: the ter-
minal penalty weighting matrix, Qf, is positive semi-
definite (the eigenvalues of Qf are 0, expressed as 
Qf  0); the state penalty weighting matrix, Q(t), is 
positive semi-definite (Q(t)  0); and the control pen-
alty matrix, R(t), is positive definite (R(t) > 0). Thus, the 
LQ optimal control problem is to find a control, ( )tu* , 
such that the quadratic cost in Eq. 4 is minimized sub-
ject to the constraint imposed by the linear dynamic 
system in Eq. 3. 

To solve this continuous-time optimal control prob-
lem, one can use Lagrange multipliers, ( ) t , to adjoin 
the (dynamic) constraints (Eq. 3) to the performance 
index (Eq. 4).1, 5 Consequently, an augmented cost func-
tion can be written as
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Referring to Eq. 5, we define the Hamiltonian function 
H as shown:
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Then, from the calculus of variations, four necessary 
conditions for optimality must be satisfied5 to solve our 
problem: state, costate, boundary, and stationarity con-
ditions must all hold. These four conditions are listed in 
Table 1. 

From Table 1 (and based on our previous description 
of the dimension of the plant state vector), it can be seen 
that there is a system of 2n dynamic equations that must 
be solved; n equations must be solved forward in time 
over [t0, tf] (state equations), and n equations must be 
solved backward in time over [tf, t0] (costate equations). 
We further note that the equations are coupled. Apply-
ing the stationarity condition to Eqs. 3–6 yields the fol-
lowing result for the control:

 ( ) – ( ) ( ) ( ) .t t t tu R B– T1=  (7)

Using Eq. 7 in the state and costate necessary conditions, 
and taking into account the boundary condition, leads 
to the following two-point boundary value problem:
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Here, we are concerned with solution methods that 
can yield analytic (closed-form) solutions rather than 
iterative numerical or gain scheduling techniques. We 
note, however, that the sparseness/structure of the con-
stituent plant and cost matrices—e.g., A(t), B(t), Q(t), 
and R(t)—will dictate the ease by which this can be 
accomplished. Qualitatively speaking, the level of dif-
ficulty involved in obtaining analytic solutions is related 
primarily to the complexity of state equation coupling 
into the costate equations, most notably by the structure 
of Q(t) and, to a lesser extent, by the structure of A(t). As 
we will see later, however, this fact does not negate our 
ability to derive effective guidance laws. 

Given a suitable system structure in Eqs. 7 and 8 (as 
discussed above), one conceptually straightforward way 
to solve this problem is to directly integrate the costate 
equations backward in time from tf to t  t0 using the 
terminal costate conditions and then integrate the state 

Table 1. Necessary conditions for optimality.

 Condition Expression
State 
Equation

( ( ), ( ), )/ ( ) ( ),H t t t t t t tx u x for 02 2 $= o

Costate 
Equation

( ( ), ( ), )/ ( ) – ( ),H t t t t t t tx u x for f2 2 #= o

Stationarity ( ( ), ( ), )/ ( ) ,H t t t t t tx u u 0 for 02 2 $=

Boundary ( ( ), )/ ( ) ( ), ( )t t t ttx x x givenf f f f 02 2 =
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equations forward in time using the costate solutions 
and initial conditions on the states. This process can be 
done by hand or by using any available symbolic solu-
tion software (Maple, Mathematica, etc.). Another way 
to solve the two-point boundary value problem speci-
fied in Eq. 8 employs the sweep method.1 This technique 
assumes that the state ( )tx  and costate ( ) t  satisfy the 
linear relation shown below over the interval t ∈ [t0, tf] 
and given an (as yet) unknown matrix function Pc(t): 

 ( ) ( ) ( ) . t t tP xc=  (9)

Using the assumed relation in Eq. 9, the control in Eq. 7 
can be written as

 ( ) – ( ) ( ) ( ) ( ) .t t t t tu R B P x– T
c

1=  (10)

To find Pc(t) such that the control (Eq. 10) is com-
pletely defined, we differentiate Eq. 9 and make use of 
the dynamic equations in Eq. 8. Doing so leads to a  
requirement to solve the following matrix Riccati dif-
ferential equation:
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The optimal control is determined by first solving the 
matrix Riccati differential equation backward in time 
from tf to t and then using this solution in Eq. 10. There 
are many ways to solve this equation. For completeness, 
we present a matrix exponential method of solution.

Solving the Matrix Riccati Differential Equation via 
Matrix Exponential Method

We first want to rewrite Eq. 11 in terms of the time-
to-go variable defined as –t t tgo f_ . We use the fact that 
dtgo/dt = –1 (for fixed tf) to express Eq. 11 in terms of 
tgo as shown (note that plant matrices must be time-
independent for this technique):
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Clearly, this matrix differential equation is quadratic in 
Pc(tgo) and is of dimension n. Note, however, that if we 
assume that Pc(tgo) takes the form Pc(tgo) = Y(tgo)W

–1(tgo), 
then its solution may (instead) be found by solving the 
homogeneous linear matrix differential equation of 
dimension 2n shown in Eq. 13:

 d –A BR B( ) ( )t tW W
.

–
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1
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Q A( ) ( )dt t tY Y

= = =G G G  (13)

From linear system theory, we know that the solution 
to Eq. 13 can be expressed by the following matrix 
exponential:
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In Eq. 14,  is the Hamiltonian matrix. With regard to 
ease of determining analytic solutions, in an analogous 
way to our previous discussion, the complexity of the 
system structure (and the system order) will dictate how 
difficult it may be to obtain an analytic solution to the 
matrix exponential exp(tgo). Once an analytic solution 
is found, the exponential matrix solution is partitioned 
as shown:

 
( ) ( )� �t t

( ) .�exp tgo
go go

go go

11 12

21 22
/

( ) ( )� �t t
= G  (15)

Using Eq. 15, the relation Pc(tgo) = Y(tgo)W
–1(tgo), 

Y(0)  Qf, W(0) = I, and the initial condition from 
Eq. 12 (Pc(tgo = 0) = Qf), the solution to the matrix Ric-
cati differential equation Pc(tgo) can be expressed as
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From Eq. 16, it becomes clear that the existence of Pc(tgo) 
is equivalent to having a nonsingular 11(tgo) + 12(tgo)Qf. 
(We do not explore this important issue here, but the 
interested reader is referred to Refs. 1 and 4–11 for fur-
ther treatment of the subject.) Using Eq. 16 in Eq. 10, 
the optimal control then is fully specified. Hand calcu-
lations (for systems of low order) or symbolic solution 
software can be employed to mechanize this technique. 

THE PLANAR INTERCEPT PROBLEM
In general, the guidance process takes place in three-

dimensional space. However, such analysis can be com-
plex and is beyond the scope of this article. Thus, here 
we will consider the formulation of the planar intercept 
(pursuit-evasion) problem that we will use, subsequently, 
in the derivation of a number of different modern guid-
ance laws. This approach is not overly restrictive or 
unrealistic in that many (if not most) guidance law 
implementations, including modern ones, use the same 
approach, i.e., planar guidance laws are devised and 
implemented in each of the maneuver planes. Figure 2 
illustrates the planar (two-dimensional) engagement 
geometry and defines the angular and Cartesian quan-
tities depicted therein. In Fig. 2, the x axis represents 
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downrange, for example, while the y/z axis can repre-
sent either crossrange or altitude, respectively (we will 
use y below). For simplicity, we assume a flat-Earth 
model with an inertial coordinate system that is fixed 
to the surface of the Earth. Furthermore, we will assume 
that the missile and target speeds, vM  and vT , 
respectively, are constant. 

In Fig. 2, the positions of the missile (pursuer) M and 
target (evader) T are shown with respect to the origin (O) 
of the coordinate system, rM  and rT , respectively. Thus, 
the relative position vector [or line-of-sight (LOS) vector, 
as it was previously defined] is given by –r r rT M= , and 
the relative velocity vector is given by –r v v vT M_ =o . 
From Fig. 2, note that an intercept condition is satisfied 
if yt = 0 and Vc > 0 (i.e., a collision triangle condition). 
As illustrated, for this condition to be satisfied, the mis-
sile velocity vector must lead the LOS by the lead angle 
L. Determining the lead angle necessary to establish a 
collision triangle is, implicitly, a key purpose of the guid-
ance law. How this is done is a factor of many things, 
including what measurements are available to the guid-
ance system and what assumptions were made during 
formulation of the guidance law (e.g., a non-maneuver-
ing target was assumed). 

The homing kinematics can be expressed in vari-
ous ways. Here, we concentrate on Cartesian forms 
of expression. From a previous section, the target-to-
missile range was defined as rR = , and target–mis-
sile closing velocity was defined as – –V R v 1c r:_ /o , 
where the LOS unit vector is /R1 rr = . Thus, refer-
ring to Fig. 2, expressions for target–missile relative 
position, relative velocity, and relative acceleration 
are given below, where we have defined the quantities 

, , ,v a v av a v aandM M M M T T T T_ _ _ _ .
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Referring again to Fig. 2, we note that if the clos-
ing velocity is positive (Vc > 0), then we only need to 
actively control the kinematics in the y/z coordinate to 
achieve an intercept. That is, if Vc > 0 and the missile 
actively reduces and holds ry to zero by appropriately 
accelerating normal to the LOS, then rx will continue 
to decrease until collision occurs. We will assume this 
condition holds and disregard the x components in the 
following analysis. 

The homing kinematics shown in Eqs. 17 are clearly 
nonlinear. In order to develop guidance laws using linear 
optimal control theory, the equations of motion must 
be linear. Referring to the expression for relative posi-
tion in Eqs. 17, note that for l very small, the y-axis 
component of relative position is approximately given 
by ry  Rl. Moreover, for very small T and l (e.g., 
near-collision course conditions), the y-axis compo-
nent of relative acceleration is approximately given by 
ay  aT – aM. Hence, given the near-collision course 
conditions, we can draw the linearized block diagram 
of the engagement kinematics as shown in Fig. 3. Cor-
respondingly, we will express the kinematic equations 

�M = Missile flight path angle

rM = Missile inertial position vector

�T = Target flight path angle
�   = LOS angle

rT = Target inertial position vector
vM = Missile velocity vector
vT = Target velocity vector

L  = Lead angle

R  = Range to target

aM = Missile acceleration,
        normal to LOS
aT = Target acceleration,
        normal to VT

rx  = Relative position x (rTx – rMx)
ry  = Relative position y (rTy – rMy)
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�

T
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Figure  2. Planar engagement geometry. The planar intercept 
problem is illustrated along with most of the angular and Carte-
sian quantities necessary to derive modern guidance laws. The 
x  axis represents downrange while the y/z axis can represent 
either crossrange or altitude. A flat-Earth model is assumed with 
an inertial coordinate system that is fixed to the surface of the 
Earth. The positions of the missile (M) and target (T) are shown 
with respect to the origin (O) of the coordinate system. Differen-
tiation of the target–missile relative position vector yields relative 
velocity; double differentiation yields relative acceleration.
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Figure  3. Linear engagement kinematics. Planar linear homing 
loop kinematics are illustrated here. The integral of target–missile 
relative acceleration yields relative velocity; double integration 
yields relative position. The LOS angle, λ, is obtained by dividing 
relative position by target–missile range.
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of motion in state-space form. To this end, we define 
the state vector x xx T

1 2_ 6 @ , the control u, the plant 
disturbance w, and the pseudo-measurement y where 

, , ,x r x v u a w ay y M T1 2_ _ _ _  (any residual target 
acceleration is treated as a disturbance), and y R_ l  
(the linearized Cartesian pseudo-measurement is com-
posed of range times the LOS angle). Given these defini-
tions, the kinematic equations of motion in state-space 
form are written as

 
( ) ( ) ( ) ( ), (0)

( ) ( )

,
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, , .

t t u t w t
y t t

x Ax B D x x
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0
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1
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0= + + =
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o

; ; 6 ;E E @ E
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These equations will form the basis for developing a 
number of terminal homing guidance laws in the fol-
lowing subsections. In some cases, the equations are 
modified or expanded as needed to reflect additional 
assumptions or special conditions.

DERIVATION OF PN GUIDANCE LAW VIA  
LQ OPTIMIZATION

In the previous article in this issue, “Basic Principles 
of Homing Guidance,” a classical development of PN 
guidance was given based on that found in Ref. 12. In 
the present article, we will leverage off the discussion of 
the previous subsection and develop a planar version of 
the PN guidance law using LQ optimization techniques.  
To start, we will state the key assumptions used to 
develop the guidance law:

•	 We use the linear engagement kinematics model 
discussed previously and, hence, the state vector is  

( ) ( ) ( )t x t x tx T
1 2= 6 @ (the state vector comprises 

the components of relative position and relative 
velocity perpendicular to the reference x axis shown 
in Fig. 2).

•	 All the states are available for feedback.

•	 The missile and target speeds, v vM M=  and 
v vT T= , respectively, are constant.

•	 The missile control variable is commanded acceler-
ation normal to the reference x axis (u = ac), which, 
for very small LOS angles (l), is approximately per-
pendicular to the instantaneous LOS.

•	 The target is assumed to be nonmaneuvering 
(aT = 0) and, therefore, the linear plant disturbance 
is given to be w = 0.

•	 The missile responds perfectly (instantaneously) to 
an acceleration command from the guidance law 
(aM  ac).The system pseudo-measurement is rela-
tive position y = x1.

With these assumptions in mind, and referring to Eq. 18, 
the LQ optimization problem is stated as
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In words, find a minimum-energy control u(t) on the 
time interval [t0, tf] that minimizes a quadratic func-
tion of the final (terminal) relative position and relative 
velocity and subject to the specified dynamic con-
straints. In Eq. 19, the terminal performance weighting 
matrix, Qf, is yet to be specified. We define the scalar 
b > 0 as the penalty on relative position at time tf (i.e., 
final miss distance) and scalar c  0 as the penalty on 
relative velocity at tf (c specified as a positive nonzero 
value reflects some desire to control or minimize the  
terminal lateral relative velocity as is the case for a ren-
dezvous maneuver). Given the penalty variables, Qf is 
the diagonal matrix given in Eq. 20: 

 .
b

c
Q

0
0

f = ; E  (20)

The choice of b and c is problem-specific, but for inter-
cept problems we typically let b → , c = 0, and for ren-
dezvous problems we have b → , c → .

General Solution for Nonmaneuvering Target
We can solve the design problem posed in Eq. 19 by 

using the LQ solution method discussed previously. We 
define –t t tgo f_  and initially assume the scalar vari-
ables b and c are finite and nonzero. Using Maple, we 
symbolically solve Eqs. 15 and 16 to obtain an analytic 
expression for Pc(t). We then use Pc(t) in Eq. 10 to obtain 
the following general guidance law solution:

 

( )

( ) ( )
.

u t

t

ct x t x t t
3

1

1

go
bt go

ct

go go bt
c

go

1

2 3
4

2
1

1 3
1

2

go

go

go

3

2

=

+ +

ct1+ + + +

1 ct+^

` c

h

j m
R

T

S
S
S
SS

V

X

W
W
W
WW

(21)

We emphasize the fact that this general solution is 
relevant given the assumptions enumerated above,  
particularly the fact that a nonmaneuvering target and 
perfect interceptor response to commanded acceleration 
are assumed. 

The structure of the guidance law u1(t), shown above, 
can be expressed as

 ( ) ( , )/ ( , , ) ,u t N t t z tQ x Qf go go f go1
2= u8 B  
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Figure 4. Rendezvous trajectory. A plot of intercept trajectories 
(in downrange and crossrange) are shown with different terminal 
penalties for relative position and relative velocity, respectively. 
The target trajectory is traveling from right to left (shown as the 
dashed black line) at the top. The target velocity is a constant 
500 m/s. The initial missile velocity is 1000 m/s with no heading 
error. The final time is 20  s. The inset highlights the endgame 
geometries in each case. Notice that as the terminal penalty 
on relative velocity is increased, the missile trajectory tends to  
“bow out” such that the final missile velocity can be aligned with 
the target velocity. Similarly, as the terminal penalty on relative 
position increases, the final miss distance is reduced.

where the quantity

 ( , ) /N tQ 3 1f go bt go
ct3
4

go

go
3_ + +ct1 +u ^c h m 

is the effective navigation ratio and , ,z tx Qf go^ h com-
prises the remainder of the numerator in Eq. 21. Thus, 
for this general case, the effective navigation ratio is not 
a constant value.

It is clear that mechanization of this guidance law 
requires feedback of the relative position and relative 
velocity states to compute the control solution. Typically,  
only the relative position pseudo-measurement is avail-
able, formed using measurements of LOS angle and 
range (assuming a range measurement is available). In 
our companion article in this issue, “Guidance Filter 
Fundamentals,” we discuss filtering techniques that 
enable us to estimate any unmeasured but observ-
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Figure  5. Rendezvous acceleration. A plot of called-for accel-
erations for intercept trajectories with differing terminal relative 
position and relative velocity penalties is shown here. The engage-
ment is the same as in Fig 4. As can be seen, substantially more 
acceleration is required as the penalty on the terminal relative 
velocity is increased.

able states for feedback. From above, we also see that  
time-to-go (tgo) is needed in the guidance law. Later, we 
also discuss how one can estimate time-to-go for use in 
the control solution.

Employing Eq. 21 in a simple planar engagement 
simulation, we can show what effect a terminal rela-
tive velocity penalty will have (in combination with a 
terminal relative position penalty) on the shape of the 
missile trajectory. In Fig. 4, a missile is on course to inter-
cept a constant-velocity target; it can be seen that the 
missile trajectory shape changes for different terminal 
relative position and velocity penalties (i.e., variations 
in the penalty weights b and c). Note that, in this simple 
example, there is no assumption that controlled missile 
acceleration is restricted to the lateral direction. Figure 5 
shows the resulting acceleration history for each case. 
Note that with a nonzero terminal penalty on relative 
position in combination with no penalty on relative 
velocity (the blue curve in Fig. 5) the missile does not 
maneuver at all; this is because the target maneuver 
assumption implicit in the guidance law derivation (i.e., 
the target will not maneuver) happens to be correct in 
this case, and the missile is already on a collision course 
at the start of the engagement. 

Special Case 1: PN Guidance Law
If we assume that c = 0 and we evaluate 

b"3
( )lim u t1 = 

uPN(t), then Eq. 21 collapses to the well- known Carte-
sian form of the PN guidance law:

 ( ) ( ) ( ) .u t x t x t tPN t go
3

1 2
go
2= +6 @  (22)
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Leveraging the discussion above for Eq. 21, we can see 
that the effective navigation ratio in Eq. 21 has now col-
lapsed to become 

PN
N 3=u . 

In Eq. 22, the quantity in square brackets now repre-
sents the miss distance that would result if the missile 
and target did not maneuver over the time period [t, tf], 
which often is referred to as the zero-effort-miss  
(ZEM). We want to emphasize that the guidance law 
ZEM is an estimate of future miss that is parameterized 
on the assumptions upon which the guidance law was 
derived (linear engagement, constant velocity, non-
maneuvering target, etc.). Hence, the PN ZEM (in the 
y axis, for example) is given by ZEMPN = ry(t) + vy(t)tgo. 
Note that the accuracy of the guidance law ZEM esti-
mate is directly related to how well the guidance law will 
perform in any particular engagement (actual final miss 
distance, maximum commanded acceleration, amount 
of fuel used, etc.).

Under the current stated assumptions, we can show 
that Eq. 22 is equivalent to the traditional LOS rate 
expression for PN, which was shown in the previous 
article in this issue, “Basic Principles of Homing Guid-
ance,” to be a NVMc cl= o . We first differentiate ry  Rl 
to obtain v RRy . l l+o o . Next, recalling that R =o

–Vv 1 cr: =  and noting that we can express range-to-
go as R = Vctgo, we have the following relationship for 
LOS rate:

 .
V t

r v t

c go

y y go
2l =

+
o  (23)

Examining the traditional LOS rate expression for PN, 
as well as Eqs. 22 and 23, it can be seen that if we set 
N = 3, then the traditional LOS rate expression for 
PN and Eq. 22 are equivalent expressions. Hence, the  
“optimal” PN navigation gain is N = 3.

Special Case 2: Rendezvous Guidance Law
For the classic rendezvous problem, we desire to con-

verge on and match the velocity vector of the target at 
the final time tf. If we evaluate 

,b c"3
( ) ( )lim u t u t1 REN= , 

then Eq. 21 collapses to the Cartesian form of the ren-
dezvous (REN) guidance law

 ( ) ( ) ( ) .u t
t

x t x t t6

go
go2 1 3

2
2REN = +8 B  (24)

Example Results
The example in this section is illustrated by Fig. 6, 

where we demonstrate how PN performance degrades if 
(i) the interceptor response is not ideal (i.e., the actual 
interceptor response deviates from that assumed in the 
derivation of PN) and (ii) the target performs an unan-
ticipated maneuver some time during the terminal 

homing portion of the engagement. A planar (down-
range and crossrange) Simulink terminal homing sim-
ulation was used to examine the PN performance. To 
avoid layering of complexity in the results, all simula-
tion noise sources (seeker noise, gyro noise, etc.) were 
turned off for this study. However, a simplified guidance 
filter still was used in the loop to provide estimates of 
relative position and velocity to the PN guidance law, 
thereby having some effect on overall guidance per-
formance. Figure 6a illustrates nominal missile and 
target trajectories in a plot of downrange versus cross-
range. The total terminal homing time is about 3 s. As 
is evident, at the start of terminal homing, the missile 
is traveling in from the left (increasing downrange) 
and the target is traveling in from the right (decreas-
ing downrange). The missile, under PN guidance, is 
initially on a collision course with the target, and the 
target is, initially, non-maneuvering. At 2 s time-to-go, 
the target pulls a hard turn in the increasing crossrange  
direction.

Recall that PN assumes that the missile acceleration 
response to guidance commands is perfect or instan-
taneous (i.e., no-lag), and that the target does not 
maneuver. Thus, we will examine the sensitivity of PN 
to these assumptions by simulating a non-ideal mis-
sile acceleration response in addition to target maneu-
ver. We will parametrically scale the nominal missile 
autopilot time constant (100 ms for our nominal case), 
starting with a scale factor of 1 (the nominal or near-
perfect response) up to 5 (a very “sluggish” response 
of approximately 500 ms) and examine the effect on 
guidance performance. Figure 6b illustrates the accel-
eration step response of the interceptor for 100-, 300-, 
and 500-ms time constants. Figures 6c and 6d pres-
ent the simulation results for levels of target hard-turn 
acceleration from 0 to 5 g. Figure 6c shows final miss 
distance versus target hard-turn acceleration level for 
the three different interceptor time constants. As can 
be seen, as the missile time response deviates from 
the ideal case, guidance performance (miss distance) 
degrades as target maneuver levels increase. Figure 6d 
illustrates the magnitude of missile total achieved accel-
eration for variation of target maneuver g levels shown 
and for the three missile time constants considered. 
As can be seen, when the missile autopilot response 
time deviates further from that which PN assumes, 
respectively higher acceleration is required from the 
missile; this is further exacerbated by higher target  
g levels.

EXTENSIONS TO PN: OTHER OPTIMAL HOMING 
GUIDANCE LAWS

In Eq. 21, a general guidance law that is based on 
some specific assumptions regarding the (linearized) 



N. F. PALUMBO, R. A. BLAUWKAMP, and J. M. LLOYD

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 1 (2010)50

Figure 6. PN performance versus time constant. (a) A planar missile–target engagement with a 
plot of downrange versus crossrange. The total terminal homing time is approximately 3 s. At the 
start of terminal homing, the missile is traveling in from the left (increasing downrange) and the 
target is traveling in from the right (decreasing downrange). (b) The acceleration step response of 
the missile interceptor for 100-, 300-, and 500-ms time constants. (c and d) Simulation results for 
a PN-guided missile versus varying levels of target hard-turn acceleration from 0 to 5 g. (c) Final 
miss distance versus target hard-turn acceleration level for the three different interceptor time 
constants. The graph illustrates the fact that, for non-ideal interceptor response, PN-homing guid-
ance performance degrades with increasing target maneuver levels. This degradation worsens as 
the autopilot response becomes more sluggish. Notice that as the autopilot response approaches 
the ideal case (blue curve), the miss distance becomes nearly insensitive to target maneuver. For 
an ideal autopilot response, PN-homing would result in acceleration requirements of three times 
the target maneuver. (d) The magnitude of total achieved missile acceleration for the same varia-
tion of target maneuver g levels and for the three missile time constants considered. As the missile 
autopilot response time deviates further from that which PN assumes, increasingly higher accel-
eration levels are required from the missile. 

engagement kinematics, 
target maneuver (actually, 
a lack of it), and intercep-
tor response characteristics 
(the perfect response to an 
acceleration command) is 
shown. We also showed that 
the general optimal guid-
ance law derived there col-
lapses to the well-known PN 
guidance law if we assign 
cost function components as 
c = 0 and b →  (see Eqs. 19 
and 20). For completeness’ 
sake, here we will derive a 
number of related optimal 
guidance laws under differ-
ing assumptions regarding 
target maneuver and inter-
ceptor response models. 
For certain scenarios, these 
assumptions can have a 
significant impact on guid-
ance law performance. For 
example, in Example Results, 
it was observed that, during 
the endgame, PN (which is 
derived assuming no target 
maneuver) can call for sig-
nificant acceleration from 
the interceptor when pitted 
against a target pulling a 
hard-turn maneuver. Hence, 
one can develop a guidance 
law that specifically takes 
target acceleration into 
account. Of course, mecha-
nization of such a guidance 
law will be more complex 
and will require the feed-
back of additional informa-
tion (e.g., target maneuver). 
In addition, if the derivation 
assumptions become too spe-
cific, the resulting guidance 
law may work well if those 
assumptions actually hold, 
but performance might rap-
idly degrade as reality devi-
ates from the assumptions.

Constant Target 
Acceleration Assumption

Here, all of the previous 
assumptions hold with the 
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exception of target maneuver; we will assume that the target is pulling a hard-turn 
maneuver (i.e., constant acceleration in a particular direction). Therefore, we aug-
ment the previous (PN) state vector (where ,x r x vy y1 2_ _ ) to include a target 
acceleration state x aTy3 _ , leading to x x xx T

1 2 3_ 6 @ . As before, the control u is 
missile acceleration u aM_^ h; the plant (process) disturbance is not considered when 
deriving the guidance law (w = 0), but it will come into play when developing a target 
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acceleration estimator; and the pseudo-measurement, again, is relative position 
y x1_^ h. With these modeling assumptions in mind (particularly that x aTy3 _  

constant), the LQ optimization problem is stated as
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 (25)

As before (Eq. 20), the terminal penalty matrix is defined as Qf = diag{b, c, 0}. 
Following a solution procedure identical to that outlined previously, we obtain the 
following general solution:
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If we compare the guidance law in Eq. 26 to our previous result (Eq. 21), it is 
clear that the only difference is in the numerator; Eq. 26 includes the addition of a 
(time-varying) gain multiplying the target acceleration state. Therefore, in addition to 
requiring estimates of relative position, relative velocity, and time-to-go, the new law 
also requires an estimate of target acceleration. This requirement has implications on 
the guidance filter structure, as we will see later. More important, estimating target 
acceleration given a relative position (pseudo-)measurement can be very noisy unless 
the measurement quality is very good. Hence, if sensor quality is not sufficient, lead-
ing to a target acceleration estimate that is too noisy, then guidance law performance 
could actually be worse than if we simply used PN to begin with. These factors must 
be carefully considered during the missile design phase.

Special Case 1: Augmented PN
If we assume that c = 0 and we evaluate 

b"3
( ) ( )lim u t u t2 APN= , then Eq. 26 col-

lapses to the well-known augmented PN (APN) guidance law:

 ( ) ( ) ( ) ( ) .u t
t

x t x t t x t t3
APN

go
go go2 1 2 2

1
3

2= + +8 B  (27)

Leveraging the discussion above, if we compare Eq. 27 to the expression for PN given 
in Eq. 22, the only difference is the addition of the a tT go2

1 2  term in the numerator 
of the APN guidance law. Thus, for APN, the effective navigation ratio is the same 
as in PN guidance (

APN
N 3=u ), but the ZEM estimate is now given by ZEMAPN =

( ) ( ) ( )r t v t t a t ty y go T go2
1+ + 2 .

Special Case 2: Augmented REN Guidance Law
If we evaluate 

,b c"3
( ) ( )lim u t u tAREN2 = , then Eq. 26 collapses to the augmented 

REN (AREN) guidance law:
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 ( ) ( ) ( ) ( ) .u t
t

x t x t t x t6
AREN

go
go2 1 3

2
2 3= + +8 B  (28)

Notice that, unlike the APN law given in Eq. 27, the 
AREN guidance law calls for a direct cancellation of the 
target maneuver term in the acceleration command. 

Example Results: Maneuver Requirements for  
PN Versus APN

Here, in a similar approach to that found in Ref. 13, 
we compare the maneuver requirements for PN and 
APN guidance laws versus a target that pulls a hard-turn 
maneuver under ideal conditions (e.g., no sensor mea-
surement noise or interceptor lag). Recall that the PN 
guidance law is derived assuming that the target does 
not maneuver, whereas the key APN assumption is that 
the target pulls a hard turn.

Assuming that the interceptor responds perfectly to 
PN acceleration commands, using Eq. 22 we can write 
the following second-order differential equation: 

   ( ) ( ) –
( – )

[ ( ) ( )( – )] .
dt
d r t a t

t t
N r t t t tvy T

f
y y f2

2

2= +  (29)

Note that we have left the navigation gain as the 
variable N. Next, we assume zero initial conditions—
ry(0) = 0, vy(0) = 0—and use Maple to solve Eq. 29, thus 
giving analytic expressions for ry(t) and vy(t). We then 
take ry(t) and vy(t) and reinsert them into Eq. 22 to 
obtain the following expression for missile acceleration 
caused by a hard-turn target maneuver:

 ( ) – – – .a t N
N

t
t a2 1 1

–
M

f

N
T

2

PN
= c m= G  (30)

For the APN case, we employ an analogous proce-
dure, using Eq. 27 as the starting point. For this case, we 
obtain the following expression for missile acceleration, 
given that the target pulls a hard-turn maneuver:

 ( ) – .a t N
t
t a2 1

–
M

f

N
T

2

APN
= ; E  (31)

Figure 7 illustrates a comparison of PN and APN 
acceleration requirements for various guidance gain 
values versus a target pulling a hard turn, via Eqs. 30  
and 31, respectively. Referring to Fig. 7, we see that 
PN (solid lines) demands an increasing level of mis-
sile acceleration as flight time increases. In fact, for a 
guidance gain of 3, PN requires three times the accel-
eration of the target to effect an intercept; hence, the 
well-known 3-to-1 ratio rule of thumb. If we increase 
the guidance gain, theory says that the theoretical 

3-to-1 rule of thumb can be relaxed. In practice, how-
ever, higher gains may lead to excessive noise through-
put, perhaps negating any theoretically perceived  
benefits. 

Unlike PN, APN (dashed lines in Fig. 7) is more 
anticipatory in that it demands maximum acceleration 
at the beginning of the engagement and less accelera-
tion as engagement time increases. Moreover, note that 
for a guidance gain of 3, APN (theoretically) requires 
half the acceleration that PN does when engaging 
a target that is pulling a hard turn. Note that, for a  
guidance gain of 4, the theoretical acceleration require-
ments for PN and APN are the same and, for gains 
above 4, APN demands more acceleration than PN 
(although saturating the acceleration command early is 
not nearly the problem that saturating late is).

Constant Target Jerk Assumption
The assumptions stated during the deriva-

tion of APN are still valid with the exception 
of target maneuver; here, we will assume that 
the target acceleration is linearly increasing (i.e.,  
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Figure  7. A comparison is made of PN and APN accelera-
tion requirements for various guidance gain values versus a 
target pulling a hard turn. PN results (solid lines) indicate that 
PN demands an increasing level of missile acceleration as flight 
time increases. Notice that for a guidance gain of 3, PN requires 
three times the acceleration of the target to effect an intercept; 
hence, the well-known 3-to-1 ratio rule of thumb. Increasing the 
guidance gain can theoretically relax the 3-to-1 rule of thumb, 
but higher gains may lead to excessive noise throughput. The 
graph illustrates that APN (dashed lines) is more anticipatory in 
that it demands maximum acceleration at the beginning of the 
engagement and less as engagement time increases. Note that for 
a guidance gain of 3, APN (theoretically) requires half the accel-
eration that PN does when engaging a target that is pulling a  
hard turn. 
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constant jerk in a particular direction). This may be a reasonable assumption, 
for example, in order to develop a terminal homing guidance strategy for use 
during boost-phase ballistic missile defense, where it is necessary to engage and 
destroy the enemy missile while it is still boosting. In such a context, it is pos-
sible that a linearly increasing acceleration model (assumption) better reflects actual 
target maneuver (acceleration) as compared to the APN assumption. Therefore, 
we augment the previous (PN) state vector (where ,x r x vy y1 2_ _ ) to include a 
target acceleration state x aTy3 _  and a target jerk state x x jTy4 3_ =o , leading to 

x x x xx T
1 2 3 4_ 6 @ . As before, the control u is missile acceleration (u aM_ ), the 

plant (process) disturbance is not considered (w = 0), but it will come into play when 
developing a target state estimator, and the pseudo-measurement, again, is rela-
tive position ( xy 1_ ). With these modeling assumptions in mind (particularly that 
x jTy4 _ / constant), the LQ optimization problem is stated as
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Defining the terminal penalty matrix to be Qf = diag{b, c, 0, 0}, and following 
a solution procedure identical to that outlined previously, we obtain the following 
general solution:
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If we compare the guidance law in Eq. 33 to our previous result (Eq. 26), we see, 
again, that the only difference is in the numerator; Eq. 33 includes the addition of a 
(time-varying) gain multiplying the target jerk state. Analogous to the previous case, 
this has (additional) implications on the guidance filter structure. More important, 
estimating target jerk given a relative position (pseudo-)measurement can be very 
noisy unless the measurement quality is excellent. If sensor quality is not sufficient, 
then guidance law performance could be significantly worse than if we simply used 
PN or APN to begin with. 

Special Case 1: Extended PN
If we assume that c = 0 and we evaluate 

b"3
( ) ( )lim u t u tEPN3 = , then Eq. 33 collapses 

to the extended PN (EPN) guidance law

 ( ) ( ) ( ) ( ) ( ) .u t
t

x t x t t x t t x t t3
EPN

go
go go go2 1 2 2

1
3

2
6
1

4
3= + + +8 B  (34)

By this time, a pattern should be emerging regarding the current line of guid-
ance laws. For example, if we compare PN (Eq. 22), APN (Eq. 27), and EPN (Eq. 34), 
we see that the effective navigation ratios for these three cases are all the same  
constant:
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Figure  8. Comparison of ZEM 
removal against a boosting 
threat. Plots of the predicted 
ZEM for PN, APN, and EPN guid-
ance laws are illustrated. Here, 
“truth” is computed by integrat-
ing forward a duplicate of the 
threat truth model and propa-
gating the kill vehicle ballisti-
cally. The “model” curve reflects 
the assumed ZEM calculation 
for the particular guidance 
law, using truth data. The “esti-
mate” curve is this same calcu-
lation with estimated data (via 
noisy measurements), as must 
be used in practice. Intercept 
is achieved at tgo  =  0 in each 

case, since the ZEM goes nearly to zero. The magnitude of the ZEM is plotted; in each plot, the portion of the model-based ZEM and  
estimated ZEM to the right of 12 s is in the opposite direction from the true ZEM.

 
PN APN EPN

N N N 3= = =u u u . 

It is the ZEM estimates that evolve from

 ( ) ( )ZEM r t v t tPN y y go= + , to 

 ( )ZEM ZEM a t tAPN PN T go2
1= + 2 , and now to 

 ( )ZEM ZEM j t tEPN APN T go6
1 3= + . 

With regard to EPN, the addition of target accelera-
tion and target jerk states will dictate a more complex 
guidance filter structure, and it may be very sensitive 
to sensor noise and actual target maneuver modali-
ties as compared with PN or APN. We also note that, 
if we evaluate 

,b c"3
( )lim u t3 , then Eq. 33 collapses to 

the AREN guidance law previously given in Eq. 28.
A simulation study of PN, APN, and EPN guid-

ance laws against a boosting threat illustrates the 
benefits of better matching the target assumptions to 
the intended target. In this engagement, an exoatmo-
spheric kill vehicle intercepts a threat that accelerates 
(boosts) according to the ideal rocket equation, with a 
maximum 8.5-g threat acceleration occurring at inter-
cept. Figure 8 shows how the ZEM prediction for each 
guidance law compares with the true ZEM as each 
evolves over time and under the control of the relevant 
guidance law. Each of the models of ZEM has signifi-
cant error initially (the direction is wrong, causing the 
truth to increase while the assumed ZEM decreases), 
but for an assumed target maneuver model that more 
closely matches the actual target maneuver (i.e., EPN), 
this error is much less and the sign of the ZEM is cor-
rect sooner. The curves also show some trade-off in 

estimate quality (noise) as more derivatives are used 
in the calculation. Figure 9 demonstrates the resulting 
acceleration commands and fuel usage for the different 
guidance laws via logging of the resultant DV, which is 
defined as

 ( ) ,daMt

tf

0

 #  

where aM  is the achieved acceleration vector. The 
required DV (translating to fuel usage) for PN, at 
1356 m/s, is substantially more than APN, at 309 m/s, 
or EPN, at 236 m/s. The required acceleration capabil-
ity of the kill vehicle also is substantially different, with 
PN requiring 27 g capability, APN requiring 3.7 g, and 
EPN requiring 3.2 g.
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Figure  9. Acceleration command history and cumulative ∆V 
used for PN, APN, and EPN guidance laws versus a boosting 
threat. The progression is from right to left as time-to-go (tgo) 
decreases toward intercept in this single-simulation run.
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Non-Ideal Missile Response Assumption
Here, the assumptions stated during the derivation of APN are still valid, save for 

that pertaining to a perfect missile response. Instead, we will add the more realistic 
assumption that the missile responds to an acceleration command via the first-order 
lag transfer function

 ( )/ ( ) ,a s a s Ts 1
1

M c = +   

hence the reference to a non-ideal missile response. The time constant, T, is a compos-
ite (roll-up) function of the missile response at a specific flight condition and depends 
largely on the missile aerodynamic characteristics and flight control system design. 
We augment the previous (APN) state vector (where , ,x r x v x aandy y Ty1 2 3_ _ _
) to include a missile acceleration state x aMy4 _ , leading to x x x xx T

1 2 3 4_ 6 @ . 
(Note that the fourth state here is missile acceleration, not target jerk as was the case 
when deriving EPN guidance law.) As before, the control u is missile acceleration 
(u aM_ ), the plant (process) disturbance is not considered (w = 0), but it will come into 
play when developing a target acceleration estimator, and the pseudo-measurement, 
again, is relative position (y x1_ ). In addition, we add a missile accelerometer mea-
surement. With these modeling assumptions in mind, the LQ optimization problem is  
stated as

 

( ) ( )

( )
–

–

( ) ( ),
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 (35)

Here, we do not consider a terminal velocity penalty in order to reduce over-
all guidance law complexity, which leads to the terminal penalty matrix given by 
Qf = diag{b, 0, 0, 0}. Thus, following an identical solution procedure to that outlined 
previously, we obtain the following general guidance law solution:

/T
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Upon examination of Eq. 36, it becomes clear that the non-ideal missile response 
assumption adds additional complexity to the guidance law structure (remember that 
we have not considered a terminal penalty on relative velocity, i.e., c = 0). To better 
visualize this complexity, consider the constant target acceleration guidance law 
given in Eq. 26. If we take 

c 0"
( )lim u t2 , we obtain the following result:

 
c 0=

( )
( ) ( ) ( )

.u t
t

x t x t t x t t3
1go bt

go go
2 2 3

1 2 2
1

3
2

go
3

=
+

+ +
> H  (37)

The structure of Eq. 37 is significantly less complex than that given in Eq. 36 despite 
the fact that the cost function for both is identical (i.e., b is finite and c = 0).

If we take 
b"3

( )lim u t4 , we obtain the well-known “optimal” guidance law (OGL) 
referred to in many texts (see Refs. 7, 13, and 14 for examples):
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Figure  10. The feedback structure of the PN, APN, and OGL guidance laws is depicted here. The relative complexity of the different 
guidance laws is established as we add additional assumptions regarding the engagement and missile response characteristics. The 
diagram emphasizes the fact that a substantial increase in complexity arises when the assumptions move from an ideal to non-ideal 
interceptor response assumption.
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Referring back to the APN law presented in Eq. 27, a couple of important points are 
noted. First, we compare the APN ZEM estimate given by 

go go( ) ( ) ( )ZEM x t x t t t x tAPN 1 2 2
1 2

3= + +  

with that in Eq. 38 and see that the OGL ZEM estimate is 

– – ( )ZEM ZEM T e x t1– /
OGL APN T

t t T2
4

go
go= +` j . 

In addition, the effective navigation ratio for APN is given by 
APN

N 3=u . In contrast, 
from Eq. 38, 

OGL
Nu  is time-varying and can be expressed as shown below:
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For illustrative purposes, Fig. 10 depicts the feedback structure of the PN, APN, 
and OGL guidance laws discussed this far and thus helps to establish the relative 
complexity of the different guidance laws as we add additional assumptions regarding 
the engagement and missile response. From Fig. 10, it is obvious that a substantial 
increase in complexity arises when the assumptions move from an ideal to non-ideal 
interceptor response assumption.

Example Comparisons of PN, APN, and OGL
In this example, Fig. 11 illustrates the miss distance and called-for acceleration 

statistics for PN, APN, and OGL guidance laws versus a target pulling a 5-g hard turn. 
The Monte Carlo data are displayed in cumulative probability form. From Fig. 11, we 
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see a distinct trend considering PN versus APN versus OGL guidance laws. Given 
that PN is derived assuming the target is not maneuvering, we expect the perfor-
mance to degrade if the target does maneuver. It also is not surprising to see that, 
statistically, more acceleration is required versus APN or OGL. The improvement 
from APN to OGL is explained by the fact that APN assumes a perfect missile 
response to acceleration commands and OGL assumes that the missile responds as 
a first-order lag (refer back to Eq. 27 compared with Eq. 38).

TIME-TO-GO ESTIMATION
As shown in the previous section, Extensions to PN: Other Optimal Homing 

Guidance Laws, many modern guidance laws require an estimate of time-to-go (tgo), 
which is the time it will take the missile to intercept the target or to arrive at the 
closest point of approach (CPA). The tgo estimate also is a critical quantity for mis-
siles that carry a warhead that must detonate when the missile is close to the target. 
For example, recall the general optimal guidance law shown in Eq. 36. This guid-
ance law can be expressed as Ñ 3 ZEM, where

( ) ( ) ( ) – – ( )ZEM x t x t t t x t T e x t1– /
go go T

t t T
1 2 2

1 2
3

2
4

go
go= + + +` j8 B

and the effective navigation ratio, Ñ, is shown in Eq. 40, where b and T represent 
the terminal miss penalty and assumed missile time constant, respectively (see the 
section Non-Ideal Missile Response Assumption, wherein Eq. 36 was derived, for a 
further description):
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It is clear from Eq. 40 that Ñ is a function of tgo. Figure 12 illustrates the tgo 
dependence of the general optimal guidance law effective navigation ratio for three 
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APN OGL PN Figure  11. The cumulative prob-
ability performance of PN, APN, 
and OGL guidance laws versus a 5-g 
hard-turn target is shown. Both the 
cumulative probability of the maxi-
mum interceptor acceleration and 
CPA for 100-run Monte Carlo sets are 
plotted. With these graphs, it is easy 
to quickly ascertain the probability 
of achieving the x-axis parameter 
value (e.g., maximum acceleration). 
In both graphs, lines that are more 
vertical and farther to the left are 
considered more desirable. All noise 
and error sources are turned off, but 
the target maneuver start time is ran-
domized over the last second of ter-
minal homing. Note that the actual 
missile response model is non-ideal, 
and it varies with the flight condi-
tions of the missile trajectory.

values of terminal miss pen-
alty. The curves are normal-
ized with respect to the missile 
time constant T. Referring to 
Fig. 12, consider the b = 1000 
curve. As /t T 2go " , Ñ achieves 
its maximum value and then 
reduces as /t T 0go " . Clearly, 
this guidance law gain curve 
evolves in a way that places 
much greater emphasis on ZEM 
at certain times near intercept. 
Imagine that the actual (true) 
tgo is 2 s but that the estimate 
of tgo is in error and biased 
toward the positive direction 
by four missile time constants 
(4T). Then, from Fig. 12 we 
can see that the guidance gain 
would be about one-seventh of 
what it should be at /t T 2go = , 
thereby not placing optimal 
emphasis on ZEM at that time, 
and degrading overall guidance 
performance.

The simplest time-to-go 
estimation scheme uses mea-
surements (or estimates) of 
range and range rate. Consider 
the engagement geometry of 
Fig. 13, where vM  = missile 
velocity, vT  = target veloc-
ity, r  = target–missile relative 
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Figure  12. The normalized tgo dependence of the effective 
navigation ratio Ñ for the OGL is shown here for three terminal 
penalty values. Normalization is with respect to the missile time 
constant T. We note that, as tgo approaches infinity, the effective 
navigation ratio always approaches 3.

position, and v  = target–missile relative velocity. Refer-
ring to Fig. 13, we assume that the missile can measure 
or estimate relative range (R r= ) to the target and 
range rate (Ro ) along the LOS to the target. If we assume 
that the missile and target speeds are constant, then one 
can estimate time-to-go as

 .–t
R
R

go =t o  (41)

Another common approach to estimating time-to-go 
also assumes that the missile and target speeds are con-
stant. Define –t t t_D ) , where t is the current time and 
t) is a future time. Thus, given estimates of target–missile 
relative position and relative velocity at the current time 
t, the future target–missile relative position at time t) is 
given as

 ( ) ( ) ( ) .t t t tr r v D= +)  (42)

At the CPA, the following condition holds:

 ( ) ( ) .t tr v 0: =) )  (43)

This condition is illustrated in Fig. 13 by the perpendic-
ular line from the target to the relative velocity. Based 
on our assumptions, using Eq. 42 in Eq. 43, and recog-
nizing the constant velocity assumption, we obtain the 
following expression for t tgo/D :

 –
( ) ( )
( ) ( ) .t
t t
t t

v v
r v

go :
:=  (44)

Using this expression for tgo in Eq. 42, we obtain the 
target–missile relative separation at the CPA:
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Conceptually, the differences between time-to-
go estimation using Eq. 41 rather than Eq. 44 can be 
explained by using Fig. 13. For this discussion, and with-
out loss of generality, we assume that the missile velocity 
is constant and that the target is stationary. Referring to 
Fig. 13, we see that Eq. 41 estimates the flight time for 
the missile to reach point P. However, Eq. 44 estimates 
the time it takes for the missile to reach the CPA. If 
the missile and target have no acceleration (the up-front 
assumption during the derivation), then Eq. 44 is exact. 

CLOSING REMARKS
In this article, we have focused on developing 

homing guidance laws by using optimal control tech-
niques. To this end, a number of modern guidance laws 
(PN and beyond) were derived using LQ optimal con-
trol methods. We note that, regardless of the specific 
structure of the guidance law (e.g., PN versus OGL), we 
developed the relevant guidance law assuming that all 
of the states necessary to mechanize the implementa-
tion were (directly) available for feedback and uncor-
rupted by noise (recall we referred to this as the “perfect 
state information problem”). In a companion article in 

TargetMissile

R = ||r ||

CPA

LOS

vM

vT

v

P

�

Figure  13. The missile–target (planar) engagement geometry 
is shown here. This depiction places the LOS to the target along 
the x axis of the coordinate system. Missile and target velocity 
vectors are indicated as –vM and –vT, respectively. The relative veloc-
ity, –v, makes an angle  with the LOS and passes through the 
points indicated by CPA and P.
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this issue, “Guidance Filter Fundamentals,” we point 
to the separation theorem, which states that the opti-
mal solution to this problem separates into the optimal 
deterministic controller (i.e., the “perfect state informa-
tion solution”) driven by the output of an optimal state 
estimator. Thus, in that article, we discuss guidance 
filtering, which is the process of taking raw (targeting, 
inertial, and possibly other) sensor data as inputs and 
estimating the relevant signals (estimates of relative 
position, relative velocity, target acceleration, etc.) upon 
which the guidance law operates.
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