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In this lecture, we will go beyond the basic Verilog syntax and examine how flipflops 
and other clocked circuits are specified.

I will also introduce the idea of a “testbench” as part of a design specification.
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Verilog is very much like C.  However, the declaration of a, b and sum in the module 
add32 specifies the data width (i.e. number of bits in each signal a, b or sum).  This 
is often known as a “vector” or a “bus”.  Here the data width is 32-bit, and it is 
ranging from bit 31 down to bit 0 (e.g. sum[31:0]).
You can refer to individual bits using the index value. For example, the least-
significant bit (LSB) of sum is sum[0] and the most-significant bit (MSB) is sum[31].  
sum[7:0] refers the the least-significant byte of sum.
The ‘+’ operator can be used for signals of any width.  Here a 32-bit add operation is 
specified.  sum is also 32-bit in width.  However, if a and b are 32-bit wide, the sum 
result could be 33-bit (including the carry out).  Therefore this operation could result 
in a wrong answer due to overflow into the carry bit. The 33th bit is truncated.
The second example module add32_carry shows the same adder but with carry 
input and carry output.  Note the LHS of the assign statement.  The {cout, sum} is a 
concatenation operator – the contents inside the brackets { } are concatenated 
together, with cout is assigned the MSB of the 33th bit of the result , and the 
remaining bits are formed by sum[31:0].
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There are three different types of Boolean operators: 

Bitwise operators perform what you would expect as if there are parallel gates used 
for each bit of the operands.  Therefore a&b means that each bit from a and b is 
passed through an AND-gate.

Logical operators only result in 0 or 1 (i.e. 1-bit result)  In this example !a (not a) 
where a = 0101, will result in first, a being evaluated as a logical value (i.e. logical ‘1’ 
or true).  Therefore the result ~a is logical 0 (or false).

Reduction operators is applied to a single operand (and sometimes known as unary 
operators).  It performs the operation one-bit at a time to the operand. 
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Assume that we want to specify a 3-to-1 multiplexer as shown on the left.  On the 
right is an attempt to specify this using the always + case construct in Verilog.
The case variable ‘sel’ is 2-bit wide, and therefore has 4 possibilities.  The case 
statement only specifies three of the four possible cases.  
This is known as an “incomplete specification”.  

In Verilog, there is this rule:
If something is not completely specified, the output must retain its previous value 
when the unspecified condition occurs. 
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The consequence of this is an unexpected extra latch being added to the hardware.
In order to cope with the unspecified condition of sel = 2’b11, the output of the 
MUX is fed to be latch.  
Noted that a latch is level-triggered; a flipflop is edge-triggered. A latch has the 
property that when the gate input G is high, Q = D (i.e. it is transparent: input goes 
straight to output).  If G is low, the latch become opaque, meaning that it retains the 
previous value.
The green shaded latch  in the diagram and the controlling NAND gate are the 
unintended consequences of this incompletely specified 3-to-1 multiplexer.
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There are two solutions to avoid the unintended latch being added.
Solution 1 is to put outside the case statement a “default” value for out.  Here 1’bx 
(i.e. ‘x’) means undefined.  
Solution 2 is better: inside the case statement block, always add the default line.  
This will catch ALL the unspecified cases and avoid the introduction of the spurious 
unintended latches.

Lesson:   always include a default assignment in any case statement to capture 
unintended incomplete specification.
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We have previously seen the 2-to-1 MUX being specified as combinational circuit in 
Verilog using the always construct with the sensitivity list.
The right hand diagram shows how a clocked sequential circuit is being specified 
using always block, but with a sensitivity list that includes the keyword posedge (or 
negedge).  Note that the clocking signal clk is an arbitrary name – you could call it 
“fred” or anything else!
The sensitivity list NO LONGER contains the input signals a, b or sel.  Instead the 
hardware is specified to be sensitive the positive edge of clk. When this happens, 
the output changes according to the specification inside the always block.  
Two assignments (“=“ and “<=“) are shown here. I will explain the difference 
between these later.
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Therefore in Verilog, you specify flipflops using always block in conjunction with the 
keyword posedge or negedge.
Here is a specification for a D-flipflop with synchronous clear which is low active (i.e. 
clear the FF when clearb is low).
You may have more than one always block in a module. But if this is the case, 
beware that the two always blocks will execute in parallel. Therefore they must 
NOT specify the same output, otherwise a race condition exists and the result is 
unpredictable.
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Here is a specification for asynchronous clear of the D-flipflop.  Either positive edge 
on clock or negative edge on clearb will cause the statements inside the always
block to take effect.

I must remind everyone that the code shown here is a specification.  They are 
synthesised into logic circuits – they are NOT executed as in a C programme.
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In Verilog ‘=‘ is known as blocking assignment.  They are executed in the order they 
appear within the Verilog simulation environment.  So the first ‘=‘ assignment blocks 
the second one.  This is very much like what happens in C codes.  
In the top left example, both a and b eventually have the value b.
In the top right example, each statement is evaluated in turn and assignment is 
performed immediately at the end of the statement.

Non-block assignment is ‘<=‘, and statements with this assignments are executed in 
parallel (i.e. order do not matter).
In the bottom left example, a and b are swapped over because you can view that 
the two assignments happen at the same time.
In the bottom right example, three evaluations are made, and the assignment to x, y 
and z happens at the same time on exiting from the always block.
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Understanding the difference between ‘=‘ and ‘<=‘ is important.  Suppose we want 
to specify a three-stage shift register (i.e. three D-FF in series as shown in the 
schematic).  
Here are two possible specification.  Which one do you think will create the correct 
circuit and which one is wrong?
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The left hand specification is wrong.  Since the three assignments are performed in 
sequence, out = q2 = q1 = in.  Therefore the resultant circuit is ONE D-flipflop.
The right hand side is correct. q1, q2 and out are updated simultaneously on exit 
from the always block.  Therefore their “original” values MUST be retained.  Hence 
this will result in three D-flipflops being synthesised (i.e. created). 

In general, you should always use ‘<=‘ inside an always block to specify your circuit.
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Now let us put all you have learned together in specifying (or designing) a 32-bit ALU 
in Verilog.  
There are five operators in this ALU.  We assume that there are three arithmetic 
blocks, and three multiplexers (two 2-to-1 MUX and one 3-to-1 MUX).
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Each hardware block is defined as a Verilog module. So we have the following 
modules:
mux32two – a 32-bit multiplexer that has TWO inputs
mux32three – a 32-bit multiplexer that has THREE inputs
mul16 – a 16-by-16 binary multiplier that produces a 32-bit product
add32 – a 32-bit binary adder
sub32 – a 32-bit binary subtractor
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Now let us put all these together.
Note that mxu32two is being used twice and therefore this is instantiated two 
times with two different instance names: adder_mux and sub_mux.
Connections between modules are implicit through the use of signal names.  For 
example, the 16-bit inputs to the multiplier are taken from the lower 16-bits of a
and b inputs (i.e. a[15:0] and b[15:0]).
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Instead of specifying the adder through the ‘+’ operator, here is an example of a 4-
bit adder specified as low level logic operations.
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To test this module, we can use the behavioural feature of Verilog and specify a test 
module known as testbench.
The first statement instantiates the full_adder_4bit module.  
The initial block and the #<time> keywords specify how the module would be 
exercised or tested. 
The idea is that once you have created this testbench, you could change the design 
of the full_adder_4bit modules and have it tested in exactly the same way without 
touching the testbench again.

18



19


