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Abstract 

The impact of the extent of testing infectious individuals on suppression of COVID-19 is illustrated 

from the early stages of outbreaks in Germany, the Hubei province of China, Italy, Spain and the UK. 

The predicted percentage of untested infected individuals depends on the specific outbreak but we 

found that they typically represent 50% to 80% of the infected individuals. Even when unreported 

cases are taken into account, we estimate that less than 8% of the population would have been 

exposed to SARS-CoV-2 by 09/04/2020 in the analysed outbreaks. These levels are far below the 70-

85% needed to ensure herd immunity and would predict a resurgence of infection if ongoing 

lockdowns in the outbreaks are fully lifted. We propose that partially lifted lockdowns together with 

early and thorough testing allowing for quick isolation of both symptomatic and asymptomatic cases 

could lead to suppression of secondary waves of COVID-19 epidemics. 

 

Introduction 
Daniel Defoe in “A Journal of the Plague Year” (1722) comments on the 1665 Great Plague of London 
that “. . . if all the infected persons were effectually shut in, no sound person could have been 
infected by them, because they could not have come near them. But the case was this (and I shall 
only touch it here): namely, that the infection was propagated insensibly, and by such persons as 
were not visibly infected, who neither knew whom they infected or who they were infected by.” ((1) 
COVID-19 is presenting similar problems today. 

 
COVID-19 produced by the SARS-CoV-2 virus emerged in Wuhan, China in December 2019 (2). The 

virus has spread at an unprecedented rate since then, leading to 1,521,252 confirmed cases and 

92,798 deaths distributed in 213 countries as of 10 April 2020 (3). The worldwide burden of the disease 

is still growing despite significant efforts in many countries to suppress the spread of the virus. So far, 

efforts have focused on non-pharmaceutical interventions which range from handwashing or social 

distancing to more stringent measures such as isolation of infected individuals, banning of large 

gatherings or severe lockdowns (4, 5).  

Optimising interventions to mitigate or suppress the burden of COVID-19 remains a pressing global 

challenge due to significant uncertainties regarding the transmissibility of SARS-CoV-2 and other 
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factors such as possibly a large proportion of undocumented infections as well as political, social and 

economic considerations (6, 7). Underreporting of infections may depend on the testing ability of 

different countries and the presence of asymptomatic infected individuals (8–10). There is no 

consensus on the proportion of unreported cases and their potential impact on the spread of SARS-

CoV-2. For instance, a World Health Organization report in February suggested that “the proportion 

of truly asymptomatic infections is unclear but appears to be relatively rare and does not appear to 

be a major driver of transmission” (11). Studies testing for SARS-CoV-2 infection in both symptomatic 

and asymptomatic individuals (8–10), however, suggest that asymptomatic carriers can represent 50% 

or more of the cases.  In many countries that mostly test individuals when they have symptoms, 

unreported infections are likely to include at least most of the asymptomatic individuals or those with 

mild symptoms. Such individuals can act as silent carriers for SARS-CoV-2 and have been suggested as 

a key factor promoting the rapid spread of the virus (12), similar to what has been observed in other 

infectious diseases (13). On the positive side, if recovery from infection leads to immunity, one could 

hope that untested positive individuals could significantly contribute to the build-up of herd immunity 

in the population (14, 15). It is not clear to what extent this could be the case. The importance of silent 

carriers on interventions for mitigation and suppression (16) of the infection is not clear either.  

Mathematical modelling has been very successful in epidemiology (17–19) and there is an ongoing 

effort to propose models to describe the dynamics of COVID-19 epidemics (4, 12, 15, 16, 20–26). 

Unreported infectious individuals have been included in some models (4, 12, 23, 27) but their 

influence on control strategies has not been analysed.   

Here, we use data from the outbreaks in Germany, Hubei (China), Italy, Spain and UK to calibrate a 

mathematical model that accounts for the force of infection associated with both tested (reported) 

and untested infectious individuals (see a brief description of the simplest version of the model in 

Figure 1 and more details in Methods). In order to compare outbreaks in different regions/countries, 

we fit the model independently to each outbreak. The calibrated model is used to study the effect of 

two suppression  strategies: Interventions aiming for a reduction of transmission at the population 

level (representing, e.g., social distancing or a lockdown) and local interventions consisting in isolation 

of both tested and untested infectious individuals.  
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(a) 

 

(b) (c) (d) 

   

 

Figure 1. Simplified version of the compartmental model used to simulate the SARS-CoV-2 epidemic. (a) Flow diagram of the 
model. During epidemics, susceptible individuals (compartment 𝑆) become exposed to the virus (compartment 𝐸) at a rate 
𝛽𝜆(𝑡). Here, 𝛽 is the rate at which an infected individual transmits infection to a susceptible individual and 𝜆(𝑡) is 
proportional to the number of infected individuals at time 𝑡. Exposed remain in this state during a latent period 𝜁−1 after 
which they become infectious. Of those that are infectious, a fraction 𝜌𝑡 are tested for infection and move to the tested 
infected compartment 𝐼𝑡. The remaining fraction of infectious individuals, 1 − 𝜌𝑡, are not tested for infection and move to 
the untested infected compartment, 𝐼𝑢, after the incubation period. A fraction 𝜌𝑑  of infected individuals that were tested 
for infection, i.e. a fraction 𝜌𝑑 of 𝐼𝑡, die at a rate 𝛾𝑡 and move to compartment, 𝐷. The rest of tested infected move to the 
recovered compartment 𝑅𝑡. Infected individuals in the untested compartment, 𝐼𝑢, move to a compartment 𝑍𝑢 which 
contains individuals that were not tested for infection and recovered or died. Assuming that recovered individuals are fully 
immune to infection, individuals in compartment 𝑍𝑢 are effectively removed from the epidemic. Panels (b)-(d) show a typical 
time evolution of model variables. As the epidemic progresses, (b) the number of susceptible individuals decreases. The 
number of exposed individuals initially increases, reaches a peak and decreases at later stages of the epidemic. (c) The 
progression of the number of both tested and untested infected individuals also exhibits a peak. The decay of  𝐼𝑡 and 𝐼𝑢 after 
the peak induces a gradual weakening of the chain of transmission that leads to the end of the epidemic. (d) The number of 
tested and untested individuals that recover from infection or die increase monotonically during the epidemic. 
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Model calibration, under-reporting and reporting delays 
The model was calibrated using time series for the number of tested infected individuals and reported 

deaths (i.e. data for compartments 𝐼𝑡 and 𝐷 in the model of Figure 1). It is assumed that the number 

of deaths in the datasets originate from individuals that were tested for infection. Figure 2 shows that 

the model captures the trend of tested infected individuals and deaths at the early stages of the fitted 

outbreaks. Estimates for the parameters of each outbreak are given in Table 1.  

The obtained values for the percentage of infected individuals that were tested, 𝜌𝑡, reveal that during 

the early stage of outbreaks, Germany scored the highest in terms of testing for infection (median 

53%).  Hubei follows Germany in terms of testing, followed by Spain, Italy and the UK. Our prediction 

for Hubei is not far from the 65% reporting percentage estimated by Li et al. (12) for China in the 

period considered here. The high testing percentage predicted for Germany agrees with the known 

high testing capacity in this country (28). Taking the confidence intervals into account, we estimate 

that for each infected individual tested in the UK, there could have been between 2 and 10 untested 

infected individuals. At the other end of the testing spectrum, we estimate that for each infected 

individual tested in Germany, between 0.2 and 2 individuals might have not been tested at the 

beginning of the epidemic. A higher testing percentage for Germany is in qualitative agreement with 

estimates given elsewhere (23, 27). Our estimates for the reporting percentage, however, tend to be 

higher than those obtained by Jagodnik et al. (27) and the differences we found between countries 

are not as extreme as those given by Chicchi et al. (23)  

Assuming that the testing percentage for infection remains constant during the course of epidemics 

and no control interventions are implemented, our model predicts that the number of tested and 

untested infected individuals would evolve in parallel in all the studied outbreaks which would last for 

around 12 weeks in all cases (see Figure 3). We see, however, that the epidemic in Germany would be 

different in the sense that the number of untested infected individuals remains smaller than the 

number of tested individuals during the whole epidemic. Italy, Spain and UK exhibit the opposite 

behaviour with more untested than tested individuals. For Hubei, we predict similar levels of untested 

and tested percentages. Obviously, these predictions will not be fulfilled since control interventions 

are imposed in all these countries and testing strategies might change during the pandemic.  

From our estimates of 𝜌𝑡, we predict that 47% [90% CI:13% - 69%] of infected individuals were not 

tested for infection in Germany. Bearing in mind that 50% of infected individuals might be 

asymptomatic (8, 10), we conclude that most of those that were infected but not tested in Germany 

were asymptomatic. In contrast, the higher percentages of untested infected individuals predicted for 

other countries suggest that untested individuals in such countries might include a significant number 

of individuals with symptoms in addition to those that are asymptomatic. In particular, these may 

include infections of care home residents that are known to be underreported in many countries (29). 

The proportion of tested infected individuals that die, 𝜌𝑑, is smaller for the outbreak in Germany than 

for the other outbreaks. This might be a combined effect of the fact that infected individuals in this 

country were relatively young at the beginning of the outbreak (30) and the high testing rate. Indeed, 

the COVID-19 fatality rate is lower for the younger than for the elderly (31) and, the higher the testing 

rate, the more individuals with mild or no symptoms will be included in the tested infected 

compartment of our model. The lower death rate of individuals with mild symptoms will lead to an 

effectively lower death rate for the whole set of infected individuals in this compartment. Accordingly, 
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a lower value of 𝜌𝑑 does not necessarily mean a lower overall infection fatality rate (i.e. proportion of 

the population that dies). In fact, we found that the predicted fraction of deaths by the end of 

unmitigated epidemics is not too different for different countries (medians are as follows: 0.4% for 

Germany, 0.9% for Hubei, 0.5% for Italy, 0.8% for Spain and 0.3% for UK). We remark that these 

percentages correspond to deaths of infected individuals that were tested for infection since these 

are the deaths captured by our model (see Figure 1). Deaths of untested infected individuals such as 

unreported from care homes (29) are simulated by our model in terms of the compartment 𝑍𝑢 which 

does not explicitly separate deceased individuals from those that recovered from infection.  

The median of the recovery rate from infection, 𝛾𝑡, gives the following estimates for the time 𝛾𝑡
−1 

from reporting of infection to recovery or death: 3 days for Spain, 3.3 days for Italy, 3.6 days for the 

UK, 4.2 days for Hubei and 7 days for Germany. The time for Hubei is consistent with the 3.48 days 

reported by Li et al. (12) for China. In general, the values we obtained are smaller than the infectious 

period (time from infection to death or recovery) reported elsewhere for COVID-19 (4, 31, 32). Our 

estimates thus probably reflect a reporting delay in all the studied outbreaks, in agreement with data 

on the onset of symptoms and reporting (30, 33, 34). Our model predicts the smallest reporting delay 

for Germany. This is again in agreement with the high testing capacity of this country.   

The removal period for untested infected individuals, 𝛾𝑢
−1, takes values of around 3 days for all the 

studied outbreaks. Comparing with the reporting-to-recovery period 𝛾𝑡
−1 and bearing in mind the 

reporting delays in all outbreaks, our estimates of 𝛾𝑢
−1 suggest that untested individuals remain 

infectious for a shorter time than tested individuals. This is in line with the lower infectivity of untested 

individuals proposed in a recent study that, instead of assuming different recovery rates for tested 

and untested individuals, assumed a lower transmission rate for unreported infectious individuals 

(12).    

We predict that the number of exposed individuals at the beginning of our simulations, 𝐸(0), is of the 

order of several thousand for all the countries, in qualitative agreement with estimates of a previous 

study for China (12).  

We obtained similar values of the reproduction number ℛ0 for all the studied outbreaks. To some 

extent this reflects our prior assumption that transmission of SARS-CoV-2 is intrinsically similar in 

different regions. The transmission rate, 𝛽, was derived from the estimates of 𝜌𝑡, 𝛾𝑡, 𝛾𝑢 and ℛ0, using 

Eq. (4)  (see Methods). Values of 𝛽 are statistically similar for all countries except Germany which 

features a smaller value. Bearing in mind that ℛ0 and 𝛾𝑢 take similar values for all the countries, we 

conclude that a lower value of 𝛽 is a consequence of the higher testing rate and smaller recovery rate 

𝛾𝑡 for this country. Indeed, according to Eq. (4), 𝛽 decreases with increasing 𝜌𝑡 and decreasing 𝛾𝑡 (or 

increasing period 𝛾𝑡
−1).   
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(a) Germany (b) Hubei (c) Italy 

   
(d) Spain (e) UK  

  

 

Figure 2. Number of tested infected (𝐼𝑡, red) and dead (𝐷𝑡 black/grey) individuals registered in (a) Germany, (b) Hubei, (c) 
Italy, (d) Spain and (e) UK. Symbols show the data and shaded regions show the 90% confidence interval of model predictions 
at any given time. Time given in days since the first day with a positive number of deaths in the datasets (see Table 2). 
Logarithmic scale is used in the vertical axis of each plot.  

Table 1. Estimates of the model parameters given in terms of the 5% percentile, median and 95% percentile. 𝛽 is the 
transmission rate, 𝜌𝑡 is the proportion of tested infectious (in percentage), 𝜌𝑑 is the proportion of tested infectious that die 
(in percentage), 𝛾𝑡 is the rate of recovery of tested infectious individuals, 𝛾𝑢 is the rate of recovery of untested infectious 
individuals, 𝐸(0) is the initial number of exposed individuals and ℛ0 is the reproduction number. 

 𝜷 (day-1) 𝝆𝒕 (%) 𝝆𝒅 (%) 𝜸𝒕 (day-1) 𝜸𝒖 (day-1) 𝑬(𝟎) 𝓡𝟎 

Germany (0.6,0.8,1.0) (31,53,87) (0.4,1.7,3.1) (0.05,0.15,0.24) (0.12,0.27,0.42) (544,3976,6939) (2.0,3.2,6.4) 

Hubei (1.0,1.2,1.4) (22,40,57) (2.0,3.3,5.0) (0.14,0.24,0.36) (0.18,0.31,0.39) (1626,3101,6526) (3.2,3.9,5.8) 

Italy (0.9,1.2,1.4) (10,25,50) (2.7,3.7,4.9) (0.21,0.30,0.38) (0.17,0.31,0.38) (1165,2271,5302) (3.2,3.9,5.9) 

Spain (1.0,1.3,1.4) (19,33,62) (2.7,3.7,4.8) (0.23,0.32,0.38) (0.18,0.30,0.38) (1207,2620,5590) (3.6,4.2,6.2) 

UK (0.8,1.0,1.3) (9,16,31) (2.2,3.2,4.9) (0.17,0.28,0.39) (0.13,0.26,0.38) (1031,2452,5179) (3.2,4.2,5.8) 

 

(a) Germany (b) Hubei (c) Italy 

   
(c) Spain (d) UK  

  

 

Figure 3. Fraction of the susceptible population in (a) Germany, (b) Hubei, (c) Italy, (d) Spain and (e) UK of tested (𝐼𝑡, red) and 

untested (𝐼𝑢, purple) that are infected (assuming that no control interventions are implemented during the course of 

epidemics). Lines give the median of the model predictions and shaded areas give the 90% confidence interval of predictions 

at any given time. Time given in weeks since the first day considered for each country/region (see Table 2 in Methods). 
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Interventions focusing on the reduction of the transmission rate at the 

population level 
Interventions such as lockdowns or social distancing can be effectively studied by reducing the 

transmission rate 𝛽 in our model. As illustrated in Figure 4(a), the outbreak can be significantly delayed 

if the transmission rate is reduced from early stages in the epidemic, in agreement with other works 

(16). In spite of that, the predicted number of deaths by the end of the epidemic only reduces 

significantly when 𝛽 is reduced by a factor close to 𝑟 = 1 − 1/ℛ0 to ensure an early eradication of 

the infection (17). Based on our estimated values for ℛ0, this requires reducing the transmission rate 

by more than 70% in all of the studied outbreaks. This is illustrated in Figure 4(b) for the UK. As can be 

seen, the number of deaths would only reduce significantly if the number of contacts were reduced 

by approximately 80%.  

Our model can be readily used to predict the effect of lockdowns of arbitrary duration and different 

exit strategies from such lockdowns.  

Figure 5 shows predictions for the lockdowns in Hubei, Italy and Spain. Predictions for Germany and 

the UK are also possible but a comparison with observed effects is uncertain at present since 

lockdowns were implemented more recently in these countries.  

For Hubei, the model reproduces well the observed daily deaths assuming a 90% reduction of the 

transmission rate from 6 February 2020 (see Figure 5(a)). The later is an effective date between the 

23 January when the lockdown was implemented in Wuhan, the capital of the province, and 13 

February when it was implemented in the whole province. Despite the spectacular reduction of daily 

deaths induced by the lockdown in Hubei, our model predicts that fully removing the lockdown after 

60 days (i.e. approximately at the time of writing) would lead to a rapid resurge of the epidemic (see 

the marked increase predicted after week 12 in Figure 5(a)). In contrast, an exit strategy in which the 

transmission is kept reduced by a 75% is predicted to keep the number of daily deaths below 100 for 

many weeks (see Figure 5(a)).  

We estimate that the lockdown ordered in Italy reduced the transmission by around 80%. Our 

prediction suggests that this will lead to a significant decrease of the number of deaths if it is kept for 

a long enough time. In particular,  Figure 5(b) shows a scenario in which the lockdown is kept at the 

same level for 90 days since its implementation on 11 March 2020. In this case, we predict around 69 

[90% CI: (16,568)] daily deaths at the end of the lockdown. As for Hubei, a full removal of the lockdown 

leads to a fast resurge of the epidemic (Figure 5(b)). For Italy, we estimate that an exit strategy from 

this lockdown should still keep the transmission at low values (~70% reduction) for the daily deaths to 

remain at a moderate value of around 100 (see Figure 5(b)).  

The effectiveness of the lockdown imposed in Spain is predicted to be similar to the one in Italy (Figure 

5(c)): The current lockdown managed to reduce the transmission by ~80% and resurge of infection is 

predicted to occur if the lockdown is completely removed after 90 days. At the end of the initial 90 

days lockdown, we predict around 99 [90% CI: (22,501)] daily deaths. The number of daily deaths is 

predicted to remain at this level if the lockdown is partially lifted to a situation in which transmission 

is kept to a 72% reduced level.  

Irrespective of the effectiveness of the lockdown, our model predicts that epidemics will resurge after 

relatively extended lockdowns in Hubei, Italy and Spain. The same is likely to occur in other countries. 

In fact, resurgence of the disease is predicted even for much longer lockdowns. This is due to the fact 

that an early lockdown delays the spread but does not lead to herd immunity. Assuming that 
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recovered individuals are immune to SARS-CoV-2, herd immunity is only achieved when a proportion 

1 − 1/ℛ0 of the susceptible population has been infected and died or recovered. Even if the number 

of untested individuals that may have recovered are taken into account, we estimate that, as of 

09/04/2020, the proportion of the susceptible population that has been exposed to the virus (i.e. the 

attack rate, see Methods) is 0.65% [90% CI: 0.5%-1.2%] for Germany, 0.5% [0.3%-1.0%] for Hubei, 4.6% 

[3.3%-7.2%] for Italy, 3.7% [2.0%-6.4%] for Spain and 4.4% [2.7%-6.9%] for the UK. These proportions 

are small compared to the 70-85% needed to ensure herd immunity for these epidemics. Our 

conclusion is in qualitative agreement with the results by Flaxman et al. (4) despite the fact that their 

estimates for the attack rate tend to be higher than ours. Our conclusions, however, disagree with 

Lourenço et al. (15) that predicted much higher attack rates that would be close to herd immunity. 
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(a)  (b)  

  
Figure 4. Predicted effect of reducing the transmission rate 𝛽 on the outbreak in the UK in a hypothetical scenario in which 
the intervention was applied from the beginning of the epidemic and kept active until the end. (a) Proportion of tested 
infectious individuals, 𝐼𝑡, as a function of time if no interventions are implemented (red) or if the transmission rate is reduced 
by 30% (green) or 60% (brown). (b) Effect of transmission reduction on the fraction of the susceptible population that die, 
𝐷𝑡, during the epidemic. The line gives the median and the shaded regions give the 90% confidence interval of predictions 
at any value of the reduction of the transmission rate. 

(a) Hubei, China (b) Italy (c) Spain 

   
   

   
 

Figure 5. Prediction for the daily deaths,𝐷𝑡, during and after lockdowns in Hubei, Italy and Spain. (a) Upper panel: Predicted 
effect of a lockdown in Hubei with a 90% reduction of transmission for 60 days (~8.5 weeks) and return to full transmission 
after the lockdown. Lower panel: A 60 days lockdown as in the upper panel followed by a weaker lockdown with 75% 
reduction of transmission. (b) Upper panel: Predicted effect of a lockdown in Italy with transmission reduced by 80% for 90 
days  (~13 weeks) and return to full transmission after the lockdown. Lower panel: A 90 days lockdown as in the upper panel 
followed by a weaker lockdown with 70% reduction of transmission. (c) Upper panel: Predicted effect of a lockdown in Spain 
with transmission reduced by 80% for 90 days and return to full transmission after the lockdown. Lower panel: A 90 days 
lockdown as in the upper panel followed by a weaker lockdown with 72% reduction of transmission. Symbols represent data, 
the thick grey line gives the median of the predictions and shaded areas give the 90% confidence interval. Logarithmic scale 
is used in the vertical axis of all the plots. 
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Isolation of infected individuals  
Prompt isolation of infected individuals is regarded as an effective strategy to reduce the transmission 

of infection and significantly reduce the size of epidemics (35). The presence of silent infectious 

carriers, however, makes the implementation of this strategy challenging for SARS-CoV-2.  

In order to study the effect of isolating tested and untested individuals, we extended the model shown 

in Figure 1 to include compartments for isolated tested and untested infected individuals (see Model 

2 in Methods). Interventions are parametrised by the fraction of tested (untested) infected individuals 

that are randomly selected to be isolated, 𝜌𝑄𝑡 (𝜌𝑄𝑢), and the rate 𝛿 at which they are isolated after 

testing/reporting. Isolation strategies leading to eradication of infection satisfy the condition ℛ0𝑄 <

1, where ℛ0𝑄 is the reproduction number for Model 2 (see Eq. (7) in Methods). Given the significant 

reporting delays we found, isolation has to be fast after testing positive for eradication of infection to 

be possible. In particular, we found that isolation after an average time of 𝛿−1= 1 day could only lead 

to eradication in Germany; for other countries, ℛ0𝑄 remains larger than 1 for any value of 𝜌𝑄𝑡 and 

𝜌𝑄𝑢. Following this, in Figure 6 we show results for a scenario in which individuals are isolated after 

an average time of 𝛿−1= 0.5 days. In this case, eradication is possible in all the studied countries if 

both  𝜌𝑄𝑡 and 𝜌𝑄𝑢 are large enough, i.e. if enough tested and untested cases are isolated. The 

estimated boundaries separating the eradication region (ℛ0𝑄 < 1) from the epidemic region (ℛ0𝑄 >

1) are different for different countries but differences are statistically less marked if confidence 

intervals are taken into account.  

Interventions that only isolate tested infected individuals (i.e. with 𝜌𝑄𝑢 = 0) are predicted to have a 

minor effect on the final fraction of deaths even if they manage to isolate all tested individuals (see 

Figure 6(b)). Isolation of tested individuals is not effective due to the underlying transmission 

associated with silent carriers that are not isolated and keep ℛ0𝑄 > 1. 

Successful eradication of infection requires isolating both tested and untested infected individuals. 

For instance, an intervention in the UK in which 70% of tested infected individuals were isolated in  𝛿 

= 0.5 days could drastically reduce the number of deaths if 40% of untested infected were isolated at 

the same rate. For Germany, the percentage of untested individuals that should be isolated to ensure 

eradication in this situation is around 15% since testing seems to be already faster and more effective 

than in other countries. 

Isolating infected individuals within half a day of being sampled is likely to be difficult to implement in 

practice. In order to allow for a longer time between reporting of infection and isolation, carriers of 

the virus should be identified earlier than currently done in most countries. This highlights the 

importance of fast identification of infected individuals. Identification of asymptomatic cases is 

expected to be challenging. However, we believe that efficient tracing of the contacts of symptomatic 

individuals and early testing of such contacts could facilitate the identification of asymptomatic cases.  
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(a)       (b) 

 

 

      (c) 

 
Figure 6. Interventions in which a fraction 𝜌𝑄𝑡 of tested infected individuals and a fraction 𝜌𝑄𝑢 of untested infected 

individuals are isolated in an average time of 𝛿−1 = 0.5 days after testing. (a) Lines separating the regions in the space 
(𝜌𝑄𝑡, 𝜌𝑄𝑢) where eradication occurs (above the line for a given country) from the regions where the epidemic grows (below 

the line). The lines are based on the median of ℛ0𝑄; confidence intervals are not shown for clarity. (b) Interventions that 

isolate a fraction 𝜌𝑄𝑡 of tested infected individuals but do not isolate any untested infectious individual (i.e. interventions 

with 𝜌𝑄𝑢 = 0). Parameters for the outbreak in the UK are used as an example. The line gives the median of the predicted 

fraction of susceptible individuals that die, 𝐷𝑡, at the end of epidemics as a function of 𝜌𝑄𝑡. (c) Interventions in which 70% of 

tested infected individuals are isolated (𝜌𝑄𝑡 = 0.7). The line gives the median of the predicted fraction of susceptible 

individuals that die at the end of epidemics as a function of the proportion 𝜌𝑄𝑢 of untested individuals isolated. The shaded 

regions in (a) and (b) give the 90% confidence interval for the predicted fraction of deaths.  

 

Implications for policy and conclusions 
The main aim of our models is to contribute to the understanding of the epidemiological patterns of 

SARS-Cov-2 rather than to provide exact predictions. Hence the models should be viewed as a general 

guide of how the outbreak and interventions may play out rather than as an exact representation of 

COVID-19 epidemics. In spite of our simplifying assumptions, there are two main implications from 

the models which are directly relevant for policy in dealing with the outbreak.  

The first, involves the existence of a significant proportion of cases that are not tested and may act as 

silent carriers of the infection. We found that the predicted percentage of untested infected 

individuals may represent 50% to 80% of the cases in Germany, Hubei, Italy, Spain and the UK. The 

specific percentage depends on the country and we found the lowest proportion of unreported cases 

in Germany. Based on studies in Iceland (10) and the Diamond Princess cruise (8), we conclude that 

asymptomatic infected individuals are likely to be the main contribution to the untested cases in all 

analysed outbreaks but a fraction of cases with mild symptoms are also likely to be untested. Even 

when unreported cases are taken into account, we estimate that less than 8% of the population would 

have been exposed to SARS-CoV-2 by 09/04/2020 in the analysed outbreaks. In policy terms, our 

results demonstrate that the current suppression strategies being employed in Germany, Hubei, Italy, 

Spain and the UK will not facilitate sufficient levels of herd immunity in the population that would 

control and eventually eradicate the virus. This leaves the risk of re-emergence of the virus once 

suppression strategies are lifted, similar to second waves of infection observed in the 1918 influenza 

ℛ0𝑄 > 1 

ℛ0𝑄 < 1 
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epidemics (36). We predict, however, that partial relaxation of ongoing lockdowns could keep the 

number of daily deaths to less than 100.   

The second implication involves the finding that unreported cases play an important role in the control 

of COVID-19 epidemics. In particular, unreported cases act as silent carriers and control strategies 

would need to account for them or be prone to the risk of re-emergence or ineffective suppression of 

spread. For instance, we predict that isolation of infected individuals can have a limited impact on the 

suppression of spread unless it includes silent carriers that are currently missed by most countries. In 

line with previous suggestions (15, 37), we suggest that thorough testing combined with contact 

tracing (21, 22), isolation of infected individuals and social distancing can be more effective to 

suppress SARS-CoV-2 spread than severe lockdowns. An option that was not available in the time of 

Daniel Defoe.  However, in “A Journal of the Plague Year” (1722), Daniel Defoe wrote “…the shutting 

up of houses was a subject of great discontent, […] and the complaints of the people so confined were 

very grievous.” in relation to the lockdown imposed to combat the 1665 Great Plague of London (1). 

Similar feelings may apply to lockdowns ordered to combat COVID-19. At present, however, 

lockdowns are probably the most effective way to delay epidemics until effective pharmaceutical (e.g.  

vaccine, antivirals) or non-pharmaceutical interventions (e.g. early and thorough testing) become 

feasible.   

 

Materials and Methods 

Data 
Data on numbers of infected and deceased individuals by country or region were obtained from the 

Wolfram Data Repository (38). Models were calibrated by considering data from the first available 

day in which the number of deaths is non-zero, as listed in Table 2. The date when lockdowns were 

ordered in each of the countries/regions is also given in Table 2.  

Table 2. Details on the first day used to calibrate the models, number of deaths by that day, date when a lockdown was 
ordered in each of the countries/region analysed, and population of each country/region. 

Country/Region First day 
considered 

Number of deaths 
on first day 
considered  

Date when lockdown 
ordered(4, 5) 

Population, N 

Germany 9/3/2020 2 22/03/2020 82,114,224 

Hubei 22/1/2020 17 Wuhan 23/1/2020, 
Hubei province 

13/2/2020 

58,160,000 

Italy 21/2/2020 1 11/3/2020 59,359,900 

Spain 3/3/2020 1 14/3/2020 46,354,321 

United Kingdom (UK) 5/3/2020 1 24/3/2020 66,181,585 

 

 

Models 

We used extensions of the SEIR model (18) to include two types of infected individuals described by 

the compartments 𝐼𝑡 and 𝐼𝑢 (see Figure 1). The SEIR model with a single compartment for infectious 

individuals has already been used to describe the COVID-19 outbreak in China (20, 24) and a model 

with two compartments for infected individuals analogous to those proposed here was used by Li et 

al. (12) 
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Model 1 

The model shown in Figure 1 is run with deterministic, continuous-time dynamics given by the 

following differential equations: 

 

�̇� = −𝛽𝜆𝑆, 

�̇� = 𝛽𝜆𝑆 − 𝜁𝐸, 

𝐼�̇� = 𝜁𝜌𝑡𝐸 − 𝛾𝑡𝐼𝑡 , 

𝐼�̇� = 𝜁(1 − 𝜌𝑡)𝐸 − 𝛾𝑢𝐼𝑢, 

𝑅�̇� = (1 − 𝜌𝑑)𝛾𝑡𝐼𝑡, 

𝑍�̇� = 𝛾𝑢𝐼𝑢, 

�̇� = 𝛾𝑡𝐼𝑡. 

(1) 

 

The force of infection in this model is 𝛽𝜆, where 𝛽 is the transmission rate and  

 𝜆 =
𝐼𝑡 + 𝐼𝑢

𝑁 − 𝐷
 . (2) 

Here, 𝑁 is the population size.  

The attack rate at a given time 𝑡 is defined as the fraction of individuals in a population of size 𝑁 that 

have been exposed to the disease by that time. For the model described by Eqs. (1), we calculate the 

attack rate as follows: 

 Attack rate(𝑡) =  
𝐸(𝑡) + 𝐼𝑡(𝑡) + 𝐼𝑢(𝑡) + 𝑅𝑡(𝑡) + 𝑍𝑢(𝑡) + 𝐷(𝑡)

𝑁
 . (3) 

 

The reproductive number corresponding to this model can be analytically calculated using the next 

generation method (19) and is given by 

 ℛ0 = 𝛽 [
𝜌𝑡

𝛾𝑡
+

1 − 𝜌𝑡

𝛾𝑢
] . (4) 
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Model 2 – Isolation of infectious individuals 

Isolation of infectious individuals is modelled by adding two more compartments, 𝑄𝑡and 𝑄𝑢, which 

contain isolated tested and untested infectious individuals, respectively (see Figure 7). The fraction of 

tested and untested infectious individuals are denoted as 𝜌𝑄𝑡 and 𝜌𝑄𝑢, respectively. Both types of 

infectious individuals are assumed to become isolated at the same rate, 𝛿. The number of individuals 

in each compartment evolve according to the following differential equation: 

 

�̇� = −𝛽𝜆𝑆, 

�̇� = 𝛽𝜆𝑆 − 𝜁𝐸, 

𝐼�̇� = 𝜁𝜌𝑡𝐸 − (1 − 𝜌𝑄𝑡)𝛾𝑡𝐼𝑡 − 𝜌𝑄𝑡𝛿 𝐼𝑡 , 

𝐼�̇� = 𝜁(1 − 𝜌𝑡)𝐸 − (1 − 𝜌𝑄𝑢)𝛾𝑢𝐼𝑢 − 𝜌𝑄𝑢𝛿 𝐼𝑢, 

𝑄�̇� = 𝜌𝑄𝑡𝛿 𝐼𝑡 − 𝛾𝑄𝑄𝑡 , 

𝑄�̇� = 𝜌𝑄𝑢𝛿 𝐼𝑢 − 𝛾𝑄𝑄𝑢, 

𝑅�̇� = (1 − 𝜌𝑑)(1 − 𝜌𝑄𝑡)𝛾𝑡𝐼𝑡 + (1 − 𝜌𝑑)𝛾𝑄𝑄𝑡 , 

𝑍�̇� = (1 − 𝜌𝑄𝑢)𝛾𝑢𝐼𝑢 + 𝛾𝑄𝑄𝑢, 

�̇� = 𝜌𝑑(1 − 𝜌𝑄𝑡)𝛾𝑡𝐼𝑡 + 𝜌𝑑𝛾𝑄𝑄𝑡. 

(5) 

Here,  

 𝜆 =
𝐼𝑡 + 𝐼𝑢

𝑁 − 𝐷 − 𝑄𝑡 − 𝑄𝑢
 . (6) 

One can again use the next generation method (19) to obtain the following expression for the 

reproduction number: 

 ℛ0𝑄 = 𝛽 [
𝜌𝑡

𝛾𝑡(1 − 𝜌𝑄𝑡) + 𝜌𝑄𝑡  𝛿
+

1 − 𝜌𝑡

𝛾𝑢(1 − 𝜌𝑄𝑢) + 𝜌𝑄𝑢 𝛿
] . (7) 
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Figure 7. Extension of the basic epidemic model of Figure 1 to incorporate a compartment 𝑄𝑡 for isolation of a tested 
infectious individual and a compartment 𝑄𝑢 for isolation of untested infectious individuals.  

Main assumptions of the models 
Several simplifying assumptions were made to keep a reasonable level of transparency in our models 

to enhance understanding of the analysed epidemics.  

Homogeneous populations. The total number of individuals in each compartment of our models 

represent average values for the whole country. More precise descriptions at smaller scales such as 

geographical regions within countries or at the level of individuals would require accounting for spatial 

heterogeneity within the populations (26, 39) (e.g. cities and rural areas) as well as differences in both 

susceptibility and mortality across different age and vulnerability groups (31, 40) or topological 

heterogeneity of the network of contacts between individuals (41). 

Ignoring heterogeneities limits the ability of our models to identify specific ways to make interventions 

operational. For instance, reductions in transmission are treated at a generic level without specifying 

if they could be achieved by enhanced social distancing, school closure, etc. Accounting for such 

details would require using individual-based simulations (16). 

Deterministic dynamics. We focused on stages of epidemics in which the number of infectious 

individuals is large enough as for stochastic effects to be relatively unimportant on average (22). Our 

models can be extended to incorporate stochasticity (42, 43). This would give a more accurate 

description of epidemics when SARS-CoV-2 has just invaded or at later stages when the number of 

infected individuals becomes very low. 

Imported cases.  We focused on epidemics that are at a stage in which imported cases are expected 

to play a secondary role relative to internal transmission. Accounting for imported cases is crucial, 

however, to prevent re-emergence of infection once an area has reached a low numbers of infected 

individuals (44, 45). Imported cases could be included in our model in terms of an influx of infected 

individuals. In scenarios in which imported cases represent an important fraction of new infections, 

however, a stochastic version of the model would be more appropriate than the deterministic 

dynamics used here. 

The transition times between compartments are exponentially distributed. This memory-less 

assumption is usual for classical compartmental models (18). For COVID-19, however, transitions 
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between compartments are better described in terms of gamma distributions (4, 31) and using models 

with memory would provide a more precise description of the dynamics (4, 18, 46).  

Immunity follows after recovery from infection. Whether or not this is the case, and if it is the duration 

of the immunity is still unclear (47). Our model could easily be extended to account for re-infections, 

should such data become available, and predictions might significantly change.  

The latent and incubation periods coincide. We adopted a parsimonious approach which assumes that 

the latent period (i.e. the time between exposure to communicability) coincides with the incubation 

period (time between exposure and the appearance of symptoms) (20). There is, however, a growing 

body of evidence for pre-symptomatic transmission (48–52). There is the potential to incorporate this 

in our models by varying the incubation rate parameter, 𝜁, or including a new compartment for pre-

symptomatic infectious individuals (26). We expect our predictions to be qualitatively independent of 

these details.  

All of the population at the start of the epidemic are susceptible. However, it may be that a proportion 

are not for genetic reasons (53) or due to cross immunity (54). 

 

Parameter estimation 
We fitted the Model 1 to data. Values for the incubation rate was set to (40) 𝜁 = 1/5.2 days-1. The free 

parameters in our fits were the rate of transmission, 𝛽, proportion of infectious that were tested, 𝜌𝑡, 

proportion of tested infectious that die, 𝜌𝑑, rate to recovery of tested infectious individuals, 𝛾𝑡 , rate 

of recovery of untested infectious individuals, 𝛾𝑢, and  initial number of exposed individuals, 𝐸(0). We 

denote the free parameters by a vector 𝜽 = {𝛽, 𝜌𝑡 , 𝜌𝑑 , 𝛾𝑡 , 𝛾𝑢, 𝐸(0)}.  The model was fit to the time 

series for the number of daily reported infected individuals and cumulative deaths, 𝒟obs =

  {𝑖𝜏, 𝑑𝜏}𝜏=1
𝑚 , in a period of 𝑚 days in the early stages of epidemics (here, 𝜏 is used to denote discrete 

time in days). In particular, we used 𝑚 = 15 days since the first data point with a positive number of 

deaths (see Table 2). We used data at early stage of each outbreak to minimise the influence of 

suppression strategies on our parameter estimates.  

Using data on deaths is important to obtain reliable descriptions of COVID-19 epidemics since data on 

deaths is likely to be more accurately recorded than data on infected and recovered individuals (4, 15, 

27, 55). In addition to deaths, we can use data on infected individuals which is represented by the 

tested infectious compartment, 𝐼𝑡, in our models.   

Our fitting procedure aims at calculating the posterior probability density function for the parameters 

given the data, 𝜋(𝜽|𝒟obs). To this end, we use an approximate Bayesian algorithm which follows the 

same steps as the minimum distance method proposed by Perez-Reche et al. (43); the only difference 

being that here we use a likelihood function to quantify the similarity of simulated and observed time 

series instead of a quadratic distance.  

The posterior 𝜋(𝜽|𝒟obs) is approximated by the empirical distribution of a set of 500 point estimates  

�̂�  of the model parameters. A point estimate �̂� is obtained by simulating 𝑛𝑒 = 3000 epidemics with 

parameters sampled from a prior probability density �̂�(𝜽). In each realization, a simulation of Model 

1 produces deterministic evolution functions  𝐼𝑡(𝑡) and 𝐷(𝑡) for the number of tested cases and 

cumulative deaths. The functions 𝐼𝑡(𝑡) and 𝐷(𝑡) are used to build a random daily time series 

𝒟sim(𝜽) =   {𝑖𝜏
sim(𝜽), 𝑑𝜏

sim(𝜽)}
𝜏=1

𝑚
,  where 𝑖𝜏

sim and 𝑑𝜏
sim are, respectively, the number of tested 

infected and deaths predicted at day 𝜏. We assume that 𝑖𝜏
sim(𝜽)~ Pois(𝐼𝑡(𝜏)) and  

𝑑𝜏
sim(𝜽)~ Pois(𝐷(𝜏)), i.e. the predicted number of tested infected and deaths are described as 
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random variables obeying a Poisson distribution with mean 𝐼𝑡(𝜏) and 𝐷(𝜏), respectively. The point 

estimate �̂� is defined as the parameter vector corresponding to the realization that gives the closest 

prediction, 𝒟sim, to the observations, 𝒟obs. More explicitly,  the point estimate for the model 

parameters is given by 

 �̂� = argmax𝜽{ ℒ(𝒟obs|𝒟sim(𝜽))} , (8) 

where ℒ(𝒟obs|𝒟sim(𝜽)) is a log-likelihood function defined as 

 ℒ(𝒟obs|𝒟sim(𝜽)) = ∑ ln(pois(𝑖𝜏|𝑖𝜏
sim(𝜽)) pois(𝑑𝜏|𝑑𝜏

sim(𝜽)))

𝑚

𝜏=1

. (9) 

Here, 

 pois(𝑘|𝜆) = 𝑒−𝜆
𝜆𝑘

𝑘!
 (10) 

 is the Poisson probability mass function. 

The prior probability density is defined as the product of priors for each parameter:  

 �̂�(𝜽) = �̂�(𝛽)�̂�(𝜌𝑡)�̂�(𝜌𝑑)�̂�(𝛾𝑢)�̂�(𝐸(0)) (11) 

The priors used in our fits are summarized in  

Table 3. Normally distributed informative priors were used when prior information on the parameter 

was available. In particular, since the reproductive number has been more thoroughly studied in 

previous works than the transmission rate, we set an informative prior for ℛ0 and derive 𝛽 from Eq. 

(4) using the priors of ℛ0, 𝜌𝑡 , 𝛾𝑡  and 𝛾𝑢.   

 

Table 3. Assumptions for the prior probability distribution of the estimated parameters. 𝒩(𝜇, 𝜎2) denotes a normal 
distribution with mean 𝜇 and variance 𝜎2. 𝒰(𝑎, 𝑏) denotes a uniform distribution in the interval (𝑎, 𝑏). 

Parameter Prior Support 

Fraction tested infected, 𝜌𝑡 𝒰(0,1) Uninformative for 𝜌𝑡 ∈ [0,1] 

Fraction of tested infected that die, 𝜌𝑑  𝒩(0.034,0.012) Mean set to the global estimate of WHO (56) 

Recovery rate for untested infected, 𝛾𝑡 𝒰(0,0.4) Range assumed from manual fit exploration 
(contains typical values for recovery rate (20, 
31)) 

Recovery rate for untested infected, 𝛾𝑢 𝒰(0,0.4) Similar assumptions as for 𝛾𝑡 

Reproduction number, ℛ0 𝒩(4,12) Estimates from Ref. (4) 

Transmission rate, 𝛽 Derived from other 
parameters using Eq. (4) 

 

Number of exposed at the first data 
point, 𝐸(0) 

ln 𝐸(0) ~ 𝒩(8,0.52) Refs. (12, 20) and manual fit exploration 
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