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On determining sample size in
experiments involving laboratory animals

Michael FW Festing

Abstract
Scientists using laboratory animals are under increasing pressure to justify their sample sizes using a ‘‘power
analysis’’. In this paper I review the three methods currently used to determine sample size: ‘‘tradition’’ or
‘‘common sense’’, the ‘‘resource equation’’ and the ‘‘power analysis’’. I explain how, using the ‘‘KISS’’ approach,
scientists can make a provisional choice of sample size using any method, and then easily estimate the effect
size likely to be detectable according to a power analysis. Should they want to be able to detect a smaller effect
they can increase their provisional sample size and recalculate the effect size. This is simple, does not need any
software and provides justification for the sample size in the terms used in a power analysis.
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Introduction

There is a crisis in pre-clinical biomedical research
involving laboratory animals. Too many papers publish
results which turn out to be irreproducible.1–3 One esti-
mate puts the cost at $28 billion being wasted per
annum in the United States alone.4

The causes of this irreproducibility crisis have not
been fully identified. But it has been known for many
years that experiments are often poorly designed, inad-
equately analysed, and misreported.5–7 A survey of
271 papers chosen at random involving rats, mice
and non-human primates8 showed that 87% did not
report random allocation of experimental subjects to
the treatments and 86% did not report ‘‘blinding’’
when measuring the results. None of the papers gave
any justification for their choice of sample size, and a
substantial number of papers failed even to state the
sex, age or weight of the animals. Such failures can
lead to too many false-positive results.9 It has also
been suggested,10 on somewhat debatable evidence,
that many animal experiments are under-powered,
leading to large numbers of false-negative results. If
these remain unpublished, the proportion of published
false-positive results due to the use of a 5% significance
level will be increased.

This note reviews the three methods of determining
sample size (‘‘tradition’’ or ‘‘common sense’’, the

‘‘resource equation’’ and the ‘‘power analysis’’) and
shows that they are related. A scientist can make a
provisional choice of a sample size using ‘‘common
sense’’ or the resource equation. Then, using the math-
ematics of the power analysis, he or she can easily
check the magnitude of the response likely to be detect-
able for a specified level of power, significance, and
sidedness. All that is needed is an estimate of the stand-
ard deviation (SD), Table 1 and some simple arith-
metic. Scientists can easily investigate the effect of
changing the provisional sample size should they wish
to do so.

Current methods of determining
sample size

It is assumed that a proposed experiment has two
groups, namely ‘‘control’’ and ‘‘treated’’, and the
dependent variable is, or can be made, suitable for stat-
istical analysis using a t-test or an analysis of variance.
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The determination of sample size for discrete data is
not discussed here.

It is also assumed that the aim is to design an experi-
ment which is both small and powerful.

1. ‘‘Tradition’’ or ‘‘common sense’’

Currently, most investigators choose sample sizes
which were used, apparently successfully, by other
investigators conducting similar work. Given the wide
range of types of experiment, independent and depend-
ent variables, experimental units, species, strains and
outcome variables in laboratory animal research, this
seems to be a sensible approach. Cox and Reid11 state
that ‘‘Except in rare instances. . ., a decision on the size
of the experiment is bound to be largely a matter of
judgement and some of the more formal approaches to
determining the size of the experiment have spurious
precision’’. They are probably referring to the ‘‘power
analysis’’. Sir David Cox is the author of two books on

experimental design11,12 and is the first winner of the
‘‘International Statistics Prize’’, so his views should be
taken seriously.

2. ‘‘The resource equation’’

This method13 is based on previous experience lar-
gely from agricultural and industrial research. The
equation is:

E ¼ the total number of experimental unitsð Þ

� the number of treatment groupsð Þ

E should be chosen to be between about 10 and 20,
although these are not rigid limits.

This method recognises that there is a slight ‘‘sweet
spot’’ within these two limits. If fewer animals were to
be used than the lower limit, then the chance of a type
II error (false-negative result) increases substantially. If
more animals were to be used than the upper limit, then
the cost and use of animals will increase for only a
modest gain. The method also shows that if there are
more than two treatments, the number of experimental
subjects per treatment can be reduced. The method is a
useful addition to ‘‘common sense’’. But funding organ-
isations and ethical review committees are increasingly
demanding the use of a power analysis to determine
sample size. Apparently they are under the (false)
impression that it provides an objective method of
determining sample size.

3. ‘‘Power analysis’’

Introduced by Jacob Cohen in in the 1960s,14 this
method depends on a mathematical relationship
between six variables. If five of these are specified, the
sixth one (usually sample size) can be estimated, using
dedicated software.

The six variables and some of the factors which
influence them are shown in Figure 1.

1. The SD

An estimate of the SD of the character of interest
should be obtained from previous experiments invol-
ving animals of the same species, strain, age, gender
and health status as the animals which are to be used.
If it is not available a pilot study using small numbers
of untreated animals of the same strain etc. will
be needed.

Powerful small experiments require tight control of
the inter-individual variation. This depends on several
factors, shown in Figure 1. The animals (or other
experimental subjects) should be as uniform as possible.
Within-subject and randomised block designs15 are

Table 1. Cohen’s d (SESs) for sample sizes of 4–34 sub-
jects per group assuming 80% and 90% power, a 5% sig-
nificance level and a one-sided or two-sided test.

Sample
size

80%
one-sided

90%
one-sided

80%
two-sided

90%
two-sided

4 2.00 2.35 2.38 2.77

5 1.72 2.03 2.02 2.35

6 1.54 1.82 1.80 2.08

7 1.41 1.66 1.63 1.89

8 1.31 1.54 1.51 1.74

9 1.23 1.44 1.41 1.63

10 1.16 1.36 1.32 1.53

11 1.10 1.29 1.26 1.45

12 1.05 1.23 1.20 1.39

13 1.00 1.18 1.15 1.33

14 0.97 1.14 1.10 1.27

15 0.93 1.10 1.06 1.23

16 0.90 1.06 1.02 1.18

17 0.87 1.03 0.99 1.15

18 0.85 1.00 0.96 1.11

19 0.82 0.97 0.93 1.08

20 0.80 0.94 0.91 1.05

21 0.78 0.92 0.89 1.03

22 0.76 0.90 0.86 1.00

24 0.73 0.86 0.83 0.96

26 0.70 0.82 0.79 0.92

28 0.67 0.79 0.76 0.88

30 0.65 0.76 0.74 0.85

32 0.63 0.74 0.71 0.82

34 0.61 0.72 0.69 0.80
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likely to give better control of variation than between-
subject designs.16 Variation will be minimised if the
experimental animals are free of clinical or sub-clinical
infection and have been raised in a good environment.
They should be of uniform age and weight. Genetic
variation can be controlled by using inbred or F1
hybrid strains of mice and rats.17

Measurement error needs to be minimised.
Duplicate or repeat determinations of the outcome
variable can sometimes be used to reduce such vari-
ation.18 The experimental data need to be of high qual-
ity and collected using ‘‘Good Laboratory Practice’’
standards, and staff should be well trained in hus-
bandry and the collection of the data.

2. The effect size (ES)

This is the difference between the means of the two
groups which are being compared. Large ESs are easier
to detect than small ones. So, when planning an experi-
ment the aim should be to give as high a dose (or
equivalent) as possible, but not so high as to cause
unwanted side effects.

Where possible choose sensitive strains and spe-
cies of animals, or avoid insensitive ones. For example,
Sprague-Dawley rats from one commercial supplier are
not suitable for studies of the endocrine disruptor bis-
phenol A as they are insensitive to steroid substances.19

Some variables are more sensitive than others, so more
sensitive ones should be chosen where possible.

3. The power

This is the probability that the experiment will
reject the null hypothesis when it is false. A power
of 80% or 90% is usually specified. For any given
sample size there is a complete range of levels of
power and an associated ES that the experiment is
likely to be able to detect. This is explained in more
detail below.

Note that if a completed experiment has rejected
the null hypothesis it was clearly powerful (although
it could be a false-positive result). However, the con-
verse is not true. If an experiment fails to reject the
null hypothesis it could be either because it lacked
power or because there was no treatment effect of
sufficient size to be worth trying to detect. In a
power analysis the aim is only to design experiments
to be able to detect ESs which are sufficiently large to
be of scientific interest.

4. The significance level

This is the probability that the experiment will pro-
duce a false-positive result (a type I or a error). It is
usually set at p¼ 0.05. So in a well-designed and
unbiased experiment there is a 5% chance of making
a type I (false-positive) error. Occasionally a case can
be made for using a different level. But specifying a 1%
significance level, for example, would increase the
required sample size or decrease the power.

2.Power (specify 80-90%?)

3.Significance level
(Specify 0.05?)

4.Sidedness
(Specify) 

6 .Es�mated minimum 
detectable effect size

Gene�c varia�on 
(inbred/outbred)

5.Variability (SD)

1.Provisional Sample 
size(from previous 
experience)

Environmental 
varia�on/infec�on

Standardised effect 
size. SES

Experimental unit
(e.g. within/ between

Character 
sensi�vity

Dose level

Availability  

Experimental design
(completely randomised, 
randomised block, other)

Figure 1. The six factors directly used in a power analysis (labelled 1–6), and factors which may influence them. Usually a
power analysis is used to determine sample size (6) for specified levels of the other five variables. However, here the aim
is to determine the effect size (2), for a given sample size, for reasons which are explained in the text.
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5. The sidedness of the test

A two-sided test, in which the mean of the treated
group could be either larger or smaller than the mean of
the control group, is usually used. But if the response
can only go, or would only be of interest, in one direc-
tion then a one-sided test should be used. A one-sided
test leads to a more powerful experiment or requires a
smaller sample size.

6. The sample size

This is the number of experimental subjects in each
group. Usually, a power analysis is used to estimate a
suitable sample size for a proposed experiment.
However, the alternative, used here, is for the investi-
gator first to choose a sample size based on ‘‘common
sense’’, previous studies and/or the ‘‘resource equation’’
and then calculate the ES likely to be detectable using
the mathematics of a power analysis, as incorporated in
Table 1. This is explained below. This approach is easy
to understand and is less prone to error than the more
conventional approach.

The ‘‘standardised effect size’’
(SES or Cohen’s d)

The SES or Cohen’s d is a useful statistic. It is the ES
divided by the pooled SD (SDpooled). So it is the mag-
nitude of the difference between the means of two
groups in units of SDs. The SES is widely used when
combing the results of several studies in a meta-analy-
sis.20 It can also be used when comparing the treatment
response for different variables because they are all
expressed in the same units (SDs). In toxicity tests,
for example, measurements of haematology, clinical
biochemistry, organ weights and other factors can be
combined to give an over-all response to a test chemical
in SD units.21 Moreover, the SES is directly related to
sample size if the power, sidedness and significance level
in a proposed experiment are fixed.

Based on human studies Cohen (who was a
psychologist) suggested that responses to a treatment
resulting in SESs of 0.2, 0.5 and 0.8 SDs would repre-
sent small, moderate and large treatment responses
requiring sample sizes of 394, 64, or 26 subjects per
group, respectively, to detect the effect. This is assum-
ing an 80% power, a 5% significance level and a two-
sided t-test.

However, laboratory animals are intrinsically much
more uniform than humans, so the SDs are lower.
Groups of animals can be obtained of similar age and
weight, free of clinical or sub-clinical infection, fed the
same diet and housed in the same environment. Inbred
strains of mice and rats can also be used in which all

animals are genetically identical. All these factors lead
to lower SDs. Higher responses may also be obtained.
Higher dose levels of test substances can be given and
sensitive species and strains can often be chosen or
insensitive ones avoided.

As a result, much higher SESs are observed in
laboratory animal experiments than in clinical trials.
Here it is suggested that SES of 1.1 ‘‘extra-large’’, 1.5
‘‘gigantic’’ and 2.0 SDs ‘‘awesome’’ are added to take
account of laboratory animal experiments, including
in vitro studies using animal cells or extracts.
Detecting SES of these magnitudes would require
sample sizes of 17, 8, and 5 subjects per group, respect-
ively, with an 80% power, a 5% significance level and a
two-sided t-test.

Figure 2 (a)–(d) shows the estimated SESs from an
experiment on the effect of chloramphenicol on four
haematological outcomes in mice of four inbred strains
and one outbred stock at six dose levels. The raw data
for these figures is included in the original publica-
tion.22 There are clear dose-related differences in
response. Many SESs are ‘‘gigantic’’, or ‘‘awesome’’,
being well over two SDs. There are clear strain differ-
ences in sensitivity. For example, the outbred CD-1
stock was relatively more resistant to chloramphenicol
for all four characters than the four inbred strains,
and the white blood cell count (WBC) response to
chloramphenicol in strain C3H was much higher than
in other strains.

It is not necessary to know how to calculate the SESs
when using them in estimating sample size as discussed
below. But investigators are encouraged to quote the
observed SESs from their completed experiments.
Details are given in the Appendix.

The relationship between the SESs and
sample size.

Figure 3 shows the relationship between sample
size and SESs, over the range of 4–34 animals
(or other experimental units) per group for a signifi-
cance level of 0.05 and a two-sided test, for power
levels of 60%–90%.

Note that for any given sample size there is a range
of SESs and power levels likely to be detectable. For
example, with six animals per group there will be a
90% chance of detecting an SES of about 2.1 SDs, an
80% chance of detecting an SES of 1.8 SDs, a 70%
chance of detecting an SES of 1.6 SDs and a 60%
chance of detecting an SES of 1.4 SDs and so on
down to a 5% chance of detecting a non-existent
response (a type I error). As a consequence, an investi-
gator will sometimes be ‘‘lucky’’ and detect an effect
which is smaller than the experiment was designed to
be able to detect. Anyone wanting to repeat an
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experiment should use a larger sample size than was used
in the original experiment.

Table 1 gives the corresponding SES for sample sizes
ranging from 4–34 subjects per group for 80% and 90%
power and a 5% significance level, one sided or two
sided. A more extensive table is given by Ellis.20

The ‘‘Keep It Simple, Stupid’’ (KISS)
approach to the determination
of sample size

Most investigators base sample sizes on past experi-
ments which appear to have given satisfactory
results. Given the wide range of variables shown in
Figure 1, this makes sense.11 However, funding organ-
isations and ethical review committees often require
scientists to justify their sample sizes using a power
analysis.

The KISS approach combines these two methods.
Scientists make a provisional estimate of the sample
size using ‘‘common sense’’ and/or the resource equa-
tion, then use a table and some simple arithmetic to
estimate the ES that the experiment is likely to be
able to detect for a given power, etc. Optionally, they
may express this ES as a percentage change. If, on
reflection, they want to be able to detect a smaller ES
they can increase the provisional sample size and re-do
the calculations. They can then legitimately explain
their choice in terms of the power analysis.

The procedure is as follows:

1. Plan the experiment.

Specify the purpose of the experiment and consider
whether comparable results could be obtained from
using methods which do not involve live animals.
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Figure 2. Observed standardised effect sizes (SES) for four haematological parameters in mice treated with chloram-
phenicol at six dose levels (mg/kg). Note important strain and dose level effects.
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Assuming that the use of animals is essential, specify
the species, strain, age/weight and gender of the ani-
mals to be used. Identify the ‘‘experimental unit’’ (this
is the unit of randomisation and of statistical analysis.
Any two experimental units must be able to receive
different treatments). Specify treatments (doses, meth-
ods of administration), number of treatment groups,
outcome variables to be measured, timeline, and experi-
mental design (e.g. completely randomised, randomised
block, factorial, other).

2. From previous studies, obtain one or more esti-
mates of the mean and SD of the variable of inter-
est in control subjects. It may be best to choose a
high and a low SD.

3. Choose a provisional sample size based on previous
studies, the literature, the resource equation and
‘‘common sense’’.

4. Find the SES for the provisional sample size
in Table 1, with the desired power level and sided-
ness of the test. Multiply the SES by the SD to
give the ‘‘predicted detectable ES’’ for the chosen
levels of power, etc. This can be expressed as a

percentage change if it would make it easier to
understand.

5. Decide whether the ‘‘predicted detectable ES’’ is
acceptable (i.e. whether it will detect a sufficiently
small effect, should it be present). If not then
choose a larger provisional sample size and re-do
the calculations.

6. In the Materials and methods section of the result-
ing publication, and in accordance with the Animal
Research: Reporting of In Vivo Experiments
(ARRIVE) guidelines,23 a statement such as the
following could be included:

‘‘A power analysis shows that the sample size of

XX has a XX% power to detect an effect size of

XX (units or %) assuming a 5% significance level

and an XX-sided test.’’

Where the XXs are replaced by the appropriate values.

In order to avoid publication bias, the results of the
experiment should be written up and submitted for
publication whether or not the observed differences
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Figure 3. Standardised effect size (SES or Cohen’s d) as a function of sample size (per group) for four levels of power
(60%–90%) assuming a two-sided t-test with a 5% significance level and a quantitative dependent variable. The vertical
dotted lines show the range of sample sizes using the ‘‘resource equation’’ method of determining sample size
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were ‘‘statistically significant’’. Negative results are of
extra value when backed up by a power analysis as
shown because they help to preclude a large undetected
effect.

Example 1

Question: ‘‘Does a potential new drug alter red blood
cell (RBC) count in mice?’’

From a published study, C57BL/6 female mice had a
mean RBC count of 9.19 with an SD of �0.70 (n/ml).
(Make sure that it is the SD not the SEM.)

Suppose a provisional sample size of n¼ 12 mice/
group is chosen, based on previous studies.

From Table 1 for a sample size of 12 with a 90%
power and a two-sided test, SES¼ 1.39.

Therefore the ‘‘predicted detectable ES’’ (SES*SD) is
1.39� 0.70¼ 0.97 (n/ml).

Or as a percentage¼ (0.97/9.19)� 100¼ 11%.
Assuming that this ‘‘predicted detectable ES’’ is

judged to be acceptable, a sample size of 12 mice per
group can be used.

Following the ARRIVE guidelines,24 a statement
such as the following should be written in the
Materials and methods section

‘‘A power analysis shows that the sample size of 12

mice/group has a 90% power to detect an ES of 0.97

n/ml or an 11% change, assuming a 5% significance

level and a two-sided test.’’

Example 2

An investigator plans to study the effect of a drug on
chosen haematological and biochemical characters in
Sprague-Dawley rats. Means and SDs are taken from
a published paper.25 A sample size of 12 rats per group
is proposed.

The calculations are shown in Table 2. Quite small
changes of the order of 4% to 5% in RBC and haemo-
globin (HGB) are likely to be detectable, but only large
changes will be detectable in WBCs and clinical
biochemistry. Note that the power analysis does not
predict the actual magnitude of the response, only
how large the response would need to be to be detect-
able. So, for example, if the ES as a percentage of the
mean for WBC is 36% or greater, then it will probably
be detected assuming the SDs are about the same as
those published in the original paper.

Having performed the calculations, the investiga-
tor has still to decide whether the sample size is
appropriate.

More than two groups

The KISS method estimates the ES that a comparison
between any two groups is likely to be able to detect for
the specified sample size, power, significance level and
sidedness of the test. If another group (say an inter-
mediate dose or a qualitatively different treatment) of
the same size is added then the same calculations apply

Table 2. Estimated detectable effect size (ES) and % change in some haematological and clinical biochemistry characters
in outbred Sprague-Dawley rats assuming two treatment groups (‘‘Treated’’ and ‘‘Control’’) for sample size N¼ 12
(SES¼ 1.39, Table 1).

Biomarker Units Sex Mean SD
Estimated detectable
ESa in SDs

Estimated
% change

RBC (106/ll) Male 8.61 0.27 0.38 4

HGB (g/dl) Male 15.80 0.40 0.56 4

WBC (103/ll) Male 9.71 2.50 3.48 36

RBC (�106/ll) Female 8.29 0.32 0.44 5

HGB (g/dl) Female 15.70 0.60 0.83 5

WBC (103/ll) Female 5.69 1.48 2.06 36

AST (U/l) Male 105.00 23.00 31.97 31

ALT (U/l) Male 36.00 8.00 11.12 31

SDH (U/l) Male 7.30 4.60 6.39 88

AST (U/l) Female 117.00 33.00 45.87 39

ALT (U/l) Female 42.00 18.00 25.02 60

SDH (U/l) Female 13.20 5.50 7.65 58

aThis assumes a 90% power a 5% significance level and a two-sided test. It is the SD�SES (1.39 for a sample size of 12 in Table 1).
RBC: red blood cell count; HGB: haemoglobin; WBC: white blood cell count; AST: aspartate aminotransferase; ALT: alanine aminotrans-
ferase; SDH: sorbitol dehydrogenase; SES: standardised effect size.
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to it. However, with more than two groups there will
be a better estimate of the SD so sample size can be
slightly reduced. The resource equation method should
give some guidance on this, but the dangers of ‘‘spuri-
ous precision’’ and the importance of ‘‘common sense’’
should not be forgotten.

If an additional factor such as gender is added in
a factorial design so that there are four groups
(male and female control and treated), then sample
size is the number of males plus females in the treated
and control group.

Formal power analysis is available for experiments
with several treatment groups, but it is subject to even
more ‘‘spurious precision’’ than if just two groups are
involved.

Discussion

No one method of determining sample size is entirely
satisfactory. ‘‘Common sense’’ may work well with an
experienced investigator who is thoroughly familiar
with his or her material and has already performed a
number of experiments similar to the one proposed.
But it is less satisfactory for those starting a new
research topic. The resource equation method provides
a useful rule of thumb method for avoiding experiments
which are probably either too small, so likely to lead
to false-negative results, or unnecessarily large
leading to a waste of resources. But it doesn’t have
the (possibly spurious) mathematical justification of
the power analysis.

The power analysis is complex and it involves a
subjective element because the investigator must
decide the minimum ES likely to be of scientific inter-
est. It also suffers from spurious precision because
there are several important variables, such as the sen-
sitivity of the chosen experimental material, which are
not taken into account. Normally, it also requires
access to specialised software which, although readily
available, requires an additional level of understand-
ing. If scientists are required to use unfamiliar soft-
ware and unfamiliar variables, there is a danger that
their calculations will be incorrect. The KISS
approach of choosing sample size using ‘‘common
sense’’, and/ or the resource equation and combining
it with the power analysis provides a simplified solu-
tion to the problem of determining sample size in
laboratory animal experiments.
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Appendix

Calculating SESs following an experiment

It is not necessary to know how to calculate the SESs
in order to use them to assess sample size as outlined
above. However, investigators are encouraged to quote
the SESs which they have found in their experiments.
It would certainly help in designing future experiments
and in showing that, with proper control of the varia-
tion, ‘‘extra-large’’, ‘‘gigantic’’ and ‘‘awesome’’ SES can
sometimes be observed.

The SES is ES/SDp, where SDp is the pooled SD
and the ES is the difference between the means of the
two groups being compared.

If an analysis of variance has been used to analyse
the results, then the SDp is the square root of the error
mean square in the analysis of variance table.
Alternatively, if only means and observe SDs are avail-
able, and group sizes are equal it can be estimated as
the square root of the mean of the two variances:

SDp¼ Sqrt ((S21þS22)/2), where the ‘‘Ss’’ are the SD
for the two groups, respectively.

If the group sizes are unequal, then a weighted mean
is used. Pooled SDp¼ Sqrt ((n1–1) S21þ (n2–1) S22)/
{(n1–1)þ (n2–1)}.

The SES can also be calculated as t/sqrt (N), where
‘‘t’’ is Student’s t.

These SESs are biased estimates of the population
SES. To correct for this, the SESs is multiplied by the
factor shown below. However, this can be ignored if the
pooled sample sizes are greater than 10.

SESunb ¼ 1� 3= 4df� 1ð Þ½ �
� �

� SES

where ‘‘df’’ is the number of degrees of freedom in a
t-test using this number of animals.

Table A1 shows the above adjustment factors for
multiplying with the estimates of the SES.

Example

Effect of diet accessibility on sleep in mice26. Mice
and rats sleep in short bouts throughout the 24-hour
period. In a study of diet and energy balance in

Table A2. Estimation of the observed standardised effect size (SES) from the results of an experiment
on bouts of sleep in mice (Perron et al.26). The SES is the difference in means divided by the pooled SD.

Treatment Mean SEM N/group
SD (SEM�
Sqrt (N))

Variance
(SD2)

Pooled
SD

Control 297.5 14.5 13 52.28 2733.25

Treated 408.4 19.3 13 69.59 4842.37

110.9a 3787.81b 61.55

SES 110.9/61.55¼ 1.80

aDifference between means. bMean of the variances

Table A1. Correction to obtain an
unbiased estimate of a standar-
dised effect size (see text for
details).

Degree of
freedom Multiplier

3 0.73

4 0.80

5 0.84

6 0.87

7 0.89

8 0.90

9 0.91

10 0.92
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C57BL/6 mice, the control mice had an average of
297.5� 14.5 (mean� SEM, N¼ 13) bouts of sleep per
24 hours, whereas the treated mice had 408� 19.3 bouts
(mean� SEM, N¼ 13).

That represents a change of 37%, and it was found
to be statistically highly significant. The calculations to

obtain the observed SES following the experiment are
shown in Table A2. The SEMs need to be converted to
SDs then to variances, then averaged and the square
roots calculated. The observed SES was a ‘‘gigantic’’1.8
SDs. No correction for bias is necessary with these
sample sizes.

Résumé

Il est de plus en plus instamment demandé aux scientifiques utilisant des animaux de laboratoire de justifier
la taille de leur échantillon à l’aide d’une « analyse de puissance ». Dans cet article, je passe en revue les trois
méthodes actuellement utilisées pour déterminer la taille de l’échantillon : « Tradition » ou « bon sens »,
« l’équation des ressources » et « l’analyse de puissance ». J’explique comment, en utilisant l’approche
« KISS », un scientifique peut choisir de manière provisoire la taille de l’échantillon à l’aide de n’importe
quelle méthode, puis facilement estimer la taille susceptible d’être détectable selon une analyse de puis-
sance. S’ils veulent être en mesure de détecter un effet moindre ils peuvent augmenter la taille de leur
échantillon provisoire et recalculer la taille susceptible de produire un effet. Cette méthode simple, sans
qu’aucun logiciel ne soit nécessaire, permet de justifier la taille de l’échantillon selon les termes utilisés dans
une analyse de puissance.

Abstract

Wissenschaftler, die Labortiere verwenden, stehen unter zunehmendem Druck, ihre Versuchsgröße mittels
einer ÐPoweranalyse‘‘ zu rechtfertigen. In diesem Artikel bespreche ich drei Methoden, die derzeit zur
Bestimmung von Stichprobengrößen dienen: ÐTradition‘‘ oder Ðgesunder Menschenverstand‘‘, die
ÐRessourcengleichung‘‘ und die ÐPoweranalyse‘‘. Ich erläutere, wie Wissenschaftler auf Basis des ÐKISS‘‘-
Konzepts eine vorläufige Wahl der Stichprobengröße mittels einer beliebigen Methode treffen und
anschließend einfach die voraussichtlich nachweisbare Behandlungseffektgröße gemäß einer Poweranalyse
schätzen können. Wenn sie eine geringere Effektgröße aufdecken wollen, können sie ihre vorläufige
Probengröße erhöhen und die Effektgröße neu berechnen. Dies ist einfach, kann ohne Einsatz von
Software erfolgen und liefert die Rechtfertigung für die Stichprobengröße gemäß den bei einer
Poweranalyse zur Anwendung kommenden Werten.

Resumen

Los cientı́ficos que utilizan animales de laboratorio están sometidos cada vez a más presión para justificar sus
tamaños de muestra utilizando un ‘‘análisis de poder". En este estudio se analizan los tres métodos utilizados
actualmente para determinar el tamaño de las muestras: ‘‘Tradición’’ o ‘‘Sentido común", la ‘‘Ecuación de
recursos’’ y el ‘‘Análisis de poder". Explico cómo utilizando el método ‘‘KISS’’ los cientı́ficos pueden tomar una
decisión profesional sobre el tamaño de las muestras a través de cualquier método, y luego estimar fácil-
mente el tamaño en concreto más detectable según un análisis de poder. Si desean detectar un efecto inferior
pueden incrementar su tamaño de muestra provisional y recalcular el tamaño del efecto. Esto es simple, no
se requiere ningún software y justifica el tamaño de la muestra en los términos utilizados en un análisis
de poder.
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