
Chapter 6

SOLUTION OF VISCOUS-FLOW PROBLEMS

6.1 Introduction

THE previous chapter contained derivations of the relationships for the con-
servation of mass and momentum—the equations of motion—in rectangular,

cylindrical, and spherical coordinates. All the experimental evidence indicates
that these are indeed the most fundamental equations of fluid mechanics, and that
in principle they govern any situation involving the flow of a Newtonian fluid.
Unfortunately, because of their all-embracing quality, their solution in analytical
terms is difficult or impossible except for relatively simple situations. However,
it is important to be aware of these “Navier-Stokes equations,” for the following
reasons:

1. They lead to the analytical and exact solution of some simple, yet important
problems, as will be demonstrated by examples in this chapter.

2. They form the basis for further work in other areas of chemical engineering.
3. If a few realistic simplifying assumptions are made, they can often lead to

approximate solutions that are eminently acceptable for many engineering
purposes. Representative examples occur in the study of boundary layers,
waves, lubrication, coating of substrates with films, and inviscid (irrotational)
flow.

4. With the aid of more sophisticated techniques, such as those involving power
series and asymptotic expansions, and particularly computer-implemented nu-
merical methods, they can lead to the solution of moderately or highly ad-
vanced problems, such as those involving injection-molding of polymers and
even the incredibly difficult problem of weather prediction.

The following sections present exact solutions of the equations of motion for
several relatively simple problems in rectangular, cylindrical, and spherical coor-
dinates. Throughout, unless otherwise stated, the flow is assumed to be steady ,
laminar and Newtonian, with constant density and viscosity. Although these as-
sumptions are necessary in order to obtain solutions, they are nevertheless realistic
in many cases.

All of the examples in this chapter are characterized by low Reynolds numbers.
That is, the viscous forces are much more important than the inertial forces, and
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are usually counterbalanced by pressure or gravitational effects. Typical applica-
tions occur at low flow rates and in the flow of high-viscosity polymers. Situations
in which viscous effects are relatively unimportant will be discussed in Chapter 7.

Solution procedure. The general procedure for solving each problem in-
volves the following steps:

1. Make reasonable simplifying assumptions. Almost all of the cases treated
here will involve steady incompressible flow of a Newtonian fluid in a single
coordinate direction. Further, gravity may or may not be important, and a
certain amount of symmetry may be apparent.

2. Write down the equations of motion—both mass (continuity) and momentum
balances—and simplify them according to the assumptions made previously,
striking out terms that are zero. Typically, only a very few terms—perhaps
only one in some cases—will remain in each differential equation. The simpli-
fied continuity equation usually yields information that can subsequently be
used to simplify the momentum equations.

3. Integrate the simplified equations in order to obtain expressions for the de-
pendent variables such as velocities and pressure. These expressions will usu-
ally contain some, as yet, arbitrary constants—typically two for the velocities
(since they appear in second-order derivatives in the momentum equations)
and one for the pressure (since it appears only in a first-order derivative).

4. Invoke the boundary conditions in order to evaluate the constants appearing
in the previous step. For pressure, such a condition usually amounts to a
specified pressure at a certain location—at the inlet of a pipe, or at a free
surface exposed to the atmosphere, for example. For the velocities, these
conditions fall into either of the following classifications:

(a) Continuity of the velocity, amounting to a no-slip condition. Thus, the
velocity of the fluid in contact with a solid surface typically equals the
velocity of that surface—zero if the surface is stationary.1 And, for the
few cases in which one fluid (A, say) is in contact with another immiscible
fluid (B), the velocity in fluid A equals the velocity in fluid B at the
common interface.

(b) Continuity of the shear stress, usually between two fluids A and B, leading
to the product of viscosity and a velocity gradient having the same value
at the common interface, whether in fluid A or B. If fluid A is a liquid, and
fluid B is a relatively stagnant gas, which—because of its low viscosity—
is incapable of sustaining any significant shear stress, then the common
shear stress is effectively zero.

5. At this stage, the problem is essentially solved for the pressure and velocities.
Finally, if desired, shear-stress distributions can be derived by differentiating

1 In a few exceptional situations there may be lack of adhesion between the fluid and surface, in which case
slip can occur.
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the velocities in order to obtain the velocity gradients; numerical predictions
of process variables can also be made.

Types of flow. Two broad classes of viscous flow will be illustrated in this
chapter:
1. Poiseuille flow, in which an applied pressure difference causes fluid motion

between stationary surfaces.
2. Couette flow, in which a moving surface drags adjacent fluid along with it and

thereby imparts a motion to the rest of the fluid.
Occasionally, it is possible to have both types of motion occurring simultaneously,
as in the screw extruder analyzed in Example 6.4.

6.2 Solution of the Equations of Motion in Rectangular Coordinates

The remainder of this chapter consists almost entirely of a series of worked
examples, illustrating the above steps for solving viscous-flow problems.

Example 6.1—Flow Between Parallel Plates

Fig. E6.1.1 shows the flow of a fluid of viscosity µ, which flows in the x direction
between two rectangular plates, whose width is very large in the z direction when
compared to their separation in the y direction. Such a situation could occur in a
die when a polymer is being extruded at the exit into a sheet, which is subsequently
cooled and solidified. Determine the relationship between the flow rate and the
pressure drop between the inlet and exit, together with several other quantities of
interest.
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Fig. E6.1.1 Geometry for flow through a rectangular duct. The
spacing between the plates is exaggerated in relation to their length.

Simplifying assumptions. The situation is analyzed by referring to a cross
section of the duct, shown in Fig. E6.1.2, taken at any fixed value of z. Let the
depth be 2d (±d above and below the centerline or axis of symmetry y = 0), and
the length L. Note that the motion is of the Poiseuille type, since it is caused by
the applied pressure difference (p1 − p2). Make the following realistic assumptions
about the flow:
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1. As already stated, it is steady and Newtonian, with constant density and
viscosity. (These assumptions will often be taken for granted, and not restated,
in later problems.)

2. There is only one nonzero velocity component—that in the direction of flow, vx.
Thus, vy = vz = 0.

3. Since, in comparison with their spacing, 2d, the plates extend for a very long
distance in the z direction, all locations in this direction appear essentially
identical to one another. In particular, there is no variation of the velocity in
the z direction, so that ∂vx/∂z = 0.

4. Gravity acts vertically downwards; hence, gy = −g and gx = gz = 0.
5. The velocity is zero in contact with the plates, so that vx = 0 at y = ±d.

Continuity. Start by examining the general continuity equation, (5.48):

∂ρ

∂t
+
∂(ρvx)
∂x

+
∂(ρvy)
∂y

+
∂(ρvz)
∂z

= 0, (5.48)

which, in view of the constant-density assumption, simplifies to Eqn. (5.52):

∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

= 0. (5.52)

But since vy = vz = 0:
∂vx
∂x

= 0, (E6.1.1)

so vx is independent of the distance from the inlet, and the velocity profile will
appear the same for all values of x. Since ∂vx/∂z = 0 (assumption 3), it follows
that vx = vx(y) is a function of y only.
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Fig. E6.1.2 Geometry for flow through a rectangular duct.
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Momentum balances. With the stated assumptions of a Newtonian fluid
with constant density and viscosity, Eqn. (5.73) gives the x, y, and z momentum
balances:

ρ

(
∂vx
∂t

+ vx
∂vx
∂x

+ vy
∂vx
∂y

+ vz
∂vx
∂z

)
= −∂p

∂x
+ µ

(
∂2vx
∂x2

+
∂2vx
∂y2

+
∂2vx
∂z2

)
+ ρgx,

ρ

(
∂vy
∂t

+ vx
∂vy
∂x

+ vy
∂vy
∂y

+ vz
∂vy
∂z

)
= −∂p

∂y
+ µ

(
∂2vy
∂x2

+
∂2vy
∂y2

+
∂2vy
∂z2

)
+ ρgy,

ρ

(
∂vz
∂t

+ vx
∂vz
∂x

+ vy
∂vz
∂y

+ vz
∂vz
∂z

)
= −∂p

∂z
+ µ

(
∂2vz
∂x2

+
∂2vz
∂y2

+
∂2vz
∂z2

)
+ ρgz.

With vy = vz = 0 (from assumption 2), ∂vx/∂x = 0 [from the simplified
continuity equation, (E6.1.1)], gy = −g, gx = gz = 0 (assumption 4), and steady
flow (assumption 1), these momentum balances simplify enormously, to:

µ
∂2vx
∂y2

=
∂p

∂x
, (E6.1.2)

∂p

∂y
= −ρg, (E6.1.3)

∂p

∂z
= 0. (E6.1.4)

Pressure distribution. The last of the simplified momentum balances,
Eqn. (E6.1.4), indicates no variation of the pressure across the width of the system
(in the z direction), which is hardly a surprising result. When integrated, the
second simplified momentum balance, Eqn. (E6.1.3), predicts that the pressure
varies according to:

p = −ρg
∫
dy + f(x) = −ρgy + f(x). (E6.1.5)

Observe carefully that since a partial differential equation is being integrated, we
obtain not a constant of integration, but a function of integration, f(x).

Assume—to be verified later—that ∂p/∂x is constant, so that the centerline
pressure (at y = 0) is given by a linear function of the form:

py=0 = a+ bx. (E6.1.6)

The constants a and b may be determined from the inlet and exit centerline pres-
sures:

x = 0 : p = p1 = a, (E6.1.7)

x = L : p = p2 = a+ bL, (E6.1.8)



6.2—Solution of the Equations of Motion in Rectangular Coordinates 277

leading to:

a = p1, b = − p1 − p2

L
. (E6.1.9)

Thus, the centerline pressure declines linearly from p1 at the inlet to p2 at the exit:

f(x) = p1 −
x

L
(p1 − p2), (E6.1.10)

so that the complete pressure distribution is

p = p1 −
x

L
(p1 − p2)− ρgy. (E6.1.11)

That is, the pressure declines linearly, both from the bottom plate to the top plate,
and also from the inlet to the exit. In the majority of applications, 2d ¿ L, and
the relatively small pressure variation in the y direction is usually ignored. Thus,
p1 and p2, although strictly the centerline values, are typically referred to as the
inlet and exit pressures, respectively.

Velocity profile. Since, from Eqn. (E6.1.1), vx does not depend on x,
∂2vx/∂y

2 appearing in Eqn. (E6.1.2) becomes a total derivative, so this equation
can be rewritten as:

µ
d2vx
dy2

=
∂p

∂x
, (E6.1.12)

which is a second-order ordinary differential equation, in which the pressure gra-
dient will be shown to be uniform between the inlet and exit, being given by:

−∂p
∂x

=
p1 − p2

L
. (E6.1.13)

[A minus sign is used on the left-hand side, since ∂p/∂x is negative, thus rendering
both sides of Eqn. (E6.1.13) as positive quantities.]

Equation (E6.1.12) can be integrated twice, in turn, to yield an expression for
the velocity. After multiplication through by dy, a first integration gives:∫

d2vx
dy2

dy =
∫

d

dy

(
dvx
dy

)
dy =

∫
1
µ

(
∂p

∂x

)
dy,

dvx
dy

=
1
µ

(
∂p

∂x

)
y + c1. (E6.1.14)

A second integration, of Eqn. (E6.1.14), yields:∫
dvx
dy

dy =
∫ [

1
µ

(
∂p

∂x

)
y + c1

]
dy,

vx =
1

2µ

(
∂p

∂x

)
y2 + c1y + c2. (E6.1.15)
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The two constants of integration, c1 and c2, are determined by invoking the bound-
ary conditions:

y = 0 :
dvx
dy

= 0, (E6.1.16)

y = d : vx = 0, (E6.1.17)

leading to:

c1 = 0, c2 = − 1
2µ

(
∂p

∂x

)
d2. (E6.1.18)

Eqns. (E6.1.15) and (E6.1.18) then furnish the velocity profile:

vx =
1

2µ

(
−∂p
∂x

)
(d2 − y2), (E6.1.19)

in which −∂p/∂x and (d2 − y2) are both positive quantities. The velocity profile
is parabolic in shape, and is shown in Fig. E6.1.2.

Alternative integration procedure. Observe that we have used indefinite
integrals in the above solution, and have employed the boundary conditions to
determine the constants of integration. An alternative approach would again be
to integrate Eqn. (E6.1.12) twice, but now to involve definite integrals by inserting
the boundary conditions as limits of integration.

Thus, by separating variables, integrating once, and noting from symmetry
about the centerline that dvx/dy = 0 at y = 0, we obtain:

µ

∫ dvx/dy

0

d

(
dvx
dy

)
=
∂p

∂x

∫ y

0

dy, (E6.1.20)

or:
dvx
dy

=
1
µ

(
∂p

∂x

)
y. (E6.1.21)

A second integration, noting that vx = 0 at y = d (zero velocity in contact with
the upper plate—the no-slip condition) yields:∫ vx

0

dvx =
1
µ

(
∂p

∂x

)∫ y

d

y dy. (E6.1.22)

That is:

vx =
1

2µ

(
−∂p
∂x

)
(d2 − y2), (E6.1.23)

in which two minus signs have been introduced into the right-hand side in order to
make quantities in both parentheses positive. This result is identical to the earlier
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Eqn. (E6.1.19). The student is urged to become familiar with both procedures,
before deciding on the one that is individually best suited.

Also, the reader who is troubled by the assumption of symmetry of vx about
the centerline (and by never using the fact that vx = 0 at y = −d), should be
reassured by an alternative approach, starting from Eqn. (E6.1.15):

vx =
1

2µ

(
∂p

∂x

)
y2 + c1y + c2. (E6.1.24)

Application of the two boundary conditions, vx = 0 at y = ±d, gives

c1 = 0, c2 = − 1
2µ

(
∂p

∂x

)
d2, (E6.1.25)

leading again to the velocity profile of Eqn. (E6.1.19) without the assumption of
symmetry.

Volumetric flow rate. Integration of the velocity profile yields an expres-
sion for the volumetric flow rate Q per unit width of the system. Observe first that
the differential flow rate through an element of depth dy is dQ = vxdy, so that:

Q =
∫ Q

0

dQ =
∫ d

−d
vx dy =

∫ d

−d

1
2µ

(
−∂p
∂x

)
(d2−y2) dy =

2d3

3µ

(
−∂p
∂x

)
. (E6.1.26)

Since from an overall macroscopic balance Q is constant, it follows that ∂p/∂x is
also constant, independent of distance x; the assumptions made in Eqns. (E6.1.6)
and (E6.1.13) are therefore verified. The mean velocity is the total flow rate per
unit depth:

vxm =
Q

2d
=
d2

3µ

(
−∂p
∂x

)
, (E6.1.27)

and is therefore two-thirds of the maximum velocity, vxmax, which occurs at the
centerline, y = 0.
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Fig. E6.1.3 Pressure and shear-stress distributions.
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Shear-stress distribution. Finally, the shear-stress distribution is ob-
tained by employing Eqn. (5.60):

τyx = µ

(
∂vx
∂y

+
∂vy
∂x

)
. (5.60)

By substituting for vx from Eqn. (E6.1.15) and recognizing that vy = 0, the shear
stress is:

τyx = −y
(
−∂p
∂x

)
. (E6.1.28)

Referring back to the sign convention expressed in Fig. 5.13, the first minus sign
in Eqn. (E6.1.28) indicates for positive y that the fluid in the region of greater y
is acting on the region of lesser y in the negative x direction, thus trying to retard
the fluid between it and the centerline, and acting against the pressure gradient.
Representative distributions of pressure and shear stress, from Eqns. (E6.1.11) and
(E6.1.28), are sketched in Fig. E6.1.3. More precisely, the arrows at the left and
right show the external pressure forces acting on the fluid contained between x = 0
and x = L.

6.3 Alternative Solution Using a Shell Balance

Because the flow between parallel plates was the first problem to be exam-
ined, the analysis in Example 6.1 was purposely very thorough, extracting the last
“ounce” of information. In many other applications, the velocity profile and the
flow rate may be the only quantities of prime importance. On the average, there-
fore, subsequent examples in this chapter will be shorter, concentrating on certain
features and ignoring others.

The problem of Example 6.1 was solved by starting with the completely general
equations of motion and then simplifying them. An alternative approach involves
a direct momentum balance on a differential element of fluid—a “shell”—as illus-
trated in Example 6.2.

Example 6.2—Shell Balance for Flow Between Parallel Plates

Employ the shell-balance approach to solve the same problem that was studied
in Example 6.1.

Assumptions. The necessary “shell” is in reality a differential element of
fluid, as shown in Fig. E6.2. The element, which has dimensions of dx and dy
in the plane of the diagram, extends for a depth of dz (any other length may be
taken) normal to the plane of the diagram.

If, for the present, the element is taken to be a system that is fixed in space,
there are three different types of rate of x-momentum transfer to it:
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1. A convective transfer of ρv2
x dy dz in through the left-hand face, and an iden-

tical amount out through the right-hand face. Note here that we have implic-
itly assumed the consequences of the continuity equation, expressed in Eqn.
(E6.1.1), that vx is constant along the duct.

2. Pressure forces on the left- and right-hand faces. The latter will be smaller,
because ∂p/∂x is negative in reality.

3. Shear stresses on the lower and upper faces. Observe that the directions of
the arrows conform strictly to the sign convention established in Section 5.6.

x

y

t yx

t yx +
¶ t yx

¶y
 dy

AA
AA

dy

A
Adx

p p +
¶ p
¶ x

dx

rvx
2r vx

2

Fig. E6.2 Momentum balance on a fluid element.

A momentum balance on the element, which is not accelerating, gives:

ρv2
x dy dz︸ ︷︷ ︸

In

− ρv2
x dy dz︸ ︷︷ ︸
Out︸ ︷︷ ︸

Net convective transfer

+ p dy dz︸ ︷︷ ︸
Left

−
(
p+

∂p

∂x
dx

)
dy dz︸ ︷︷ ︸

Right︸ ︷︷ ︸
Net pressure force

+
(
τyx +

∂τyx
∂y

dy

)
dx dz︸ ︷︷ ︸

Upper

− τyx dx dz︸ ︷︷ ︸
Lower︸ ︷︷ ︸

Net shear force

= 0. (E6.2.1)

The usual cancellations can be made, resulting in:
dτyx
dy

=
∂p

∂x
, (E6.2.2)

in which the total derivative recognizes that the shear stress depends only on y
and not on x. Substitution for τyx from Eqn. (5.60) with vy = 0 gives:

µ
d2vx
dy2

=
∂p

∂x
, (E6.2.3)

which is identical with Eqn. (E6.1.12) that was derived from the simplified Navier-
Stokes equations. The remainder of the development then proceeds as in the
previous example. Note that the convective terms can be sidestepped entirely if
the momentum balance is performed on an element that is chosen to be moving
with the fluid, in which case there is no flow either into or out of it.
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The choice of approach—simplifying the full equations of motion, or perform-
ing a shell balance—is very much a personal one, and we have generally opted for
the former. The application of the Navier-Stokes equations, which are admittedly
rather complicated, has the advantages of not “reinventing the (momentum bal-
ance) wheel” for each problem, and also of assuring us that no terms are omitted.
Conversely, a shell balance has the merits of relative simplicity, although it may be
quite difficult to perform convincingly for an element with curved sides, as would
occur for the problem in spherical coordinates discussed in Example 6.6.

This section concludes with another example problem, which illustrates the
application of two further boundary conditions for a liquid, one involving it in
contact with a moving surface, and the other at a gas/liquid interface where there
is a condition of zero shear.

Example 6.3—Film Flow on a Moving Substrate

Fig. E6.3.1 shows a coating experiment involving a flat photographic film that
is being pulled up from a processing bath by rollers with a steady velocity U at
an angle θ to the horizontal. As the film leaves the bath, it entrains some liquid,
and in this particular experiment it has reached the stage where: (a) the velocity
of the liquid in contact with the film is vx = U at y = 0, (b) the thickness of the
liquid is constant at a value δ, and (c) there is no net flow of liquid (as much is
being pulled up by the film as is falling back by gravity). (Clearly, if the film were
to retain a permanent coating, a net upwards flow of liquid would be needed.)

d
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A
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A
Ay

AAA
AAA
AAA

Liquid

coating
Air

Moving photo-
  graphic film

g

Fig. E6.3.1 Liquid coating on a photographic film.

Perform the following tasks:
1. Write down the differential mass balance and simplify it.
2. Write down the differential momentum balances in the x and y directions.

What are the values of gx and gy in terms of g and θ? Simplify the momentum
balances as much as possible.

3. From the simplified y momentum balance, derive an expression for the pressure
p as a function of y, ρ, δ, g, and θ, and hence demonstrate that ∂p/∂x = 0.
Assume that the pressure in the surrounding air is zero everywhere.

4. From the simplified x momentum balance, assuming that the air exerts a
negligible shear stress τyx on the surface of the liquid at y = δ, derive an
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expression for the liquid velocity vx as a function of U , y, δ, and α, where
α = ρg sin θ/µ.

5. Also derive an expression for the net liquid flow rate Q (per unit width, normal
to the plane of Fig. E6.3.1) in terms of U , δ, and α. Noting that Q = 0, obtain
an expression for the film thickness δ in terms of U and α.

6. Sketch the velocity profile vx, labeling all important features.

Assumptions and continuity. The following assumptions are reasonable:
1. The flow is steady and Newtonian, with constant density ρ and viscosity µ.
2. The z direction, normal to the plane of the diagram, may be disregarded

entirely. Thus, not only is vz zero, but all derivatives with respect to z, such
as ∂vx/∂z, are also zero.

3. There is only one nonzero velocity component, namely, that in the direction
of motion of the photographic film, vx. Thus, vy = vz = 0.

4. Gravity acts vertically downwards.

Because of the constant-density assumption, the continuity equation, (5.48),
simplifies, as before, to:

∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

= 0. (E6.3.1)

But since vy = vz = 0, it follows that

∂vx
∂x

= 0. (E6.3.2)

so vx is independent of distance x along the film. Further, vx does not depend on
z (assumption 2); thus, the velocity profile vx = vx(y) depends only on y and will
appear the same for all values of x.

Momentum balances. With the stated assumptions of a Newtonian fluid
with constant density and viscosity, Eqn. (5.73) gives the x and y momentum
balances:

ρ

(
∂vx
∂t

+ vx
∂vx
∂x

+ vy
∂vx
∂y

+ vz
∂vx
∂z

)
= −∂p

∂x
+ µ

(
∂2vx
∂x2

+
∂2vx
∂y2

+
∂2vx
∂z2

)
+ ρgx,

ρ

(
∂vy
∂t

+ vx
∂vy
∂x

+ vy
∂vy
∂y

+ vz
∂vy
∂z

)
= −∂p

∂y
+ µ

(
∂2vy
∂x2

+
∂2vy
∂y2

+
∂2vy
∂z2

)
+ ρgy,

Noting that gx = −g sin θ and gy = −g cos θ, these momentum balances simplify
to:

∂p

∂x
+ ρg sin θ = µ

∂2vx
∂y2

, (E6.3.3)

∂p

∂y
= −ρg cos θ. (E6.3.4)
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Integration of Eqn. (E6.3.4), between the free surface at y = δ (where the
gauge pressure is zero) and an arbitrary location y (where the pressure is p) gives:∫ p

0

dp = −ρg cos θ
∫ y

δ

dy + f(x), (E6.3.5)

so that:
p = ρg cos θ(δ − y) + f(x). (E6.3.6)

Note that since a partial differential equation is being integrated, a function of
integration, f(x), is again introduced. Another way of looking at it is to observe
that if Eqn. (E6.3.6) is differentiated with respect to y, we would recover the
original equation, (E6.3.4), because ∂f(x)/∂y = 0.

However, since p = 0 at y = δ (the air/liquid interface) for all values of x, the
function f(x) must be zero. Hence, the pressure distribution:

p = (δ − y)ρg cos θ, (E6.3.7)

shows that p is not a function of x.
In view of this last result, we may now substitute ∂p/∂x = 0 into the x-

momentum balance, Eqn. (E6.3.3), which becomes:

d2vx
dy2

=
ρg

µ
sin θ = α, (E6.3.8)

in which the constant α has been introduced to denote ρg sin θ/µ. Observe that
the second derivative of the velocity now appears as a total derivative, since vx
depends on y only.

A first integration of Eqn. (E6.3.8) with respect to y gives:

dvx
dy

= αy + c1. (E6.3.9)

The boundary condition of zero shear stress at the free surface is now invoked:

τyx = µ

(
∂vy
∂x

+
∂vx
∂y

)
= µ

dvx
dy

= 0. (E6.3.10)

Thus, from Eqns. (E6.3.9) and (E6.3.10) at y = δ, the first constant of integration
can be determined:

dvx
dy

= αδ + c1 = 0, or c1 = −αδ. (E6.3.11)

A second integration, of Eqn. (E6.3.9) with respect to y, gives:

vx = α

(
y2

2
− yδ

)
+ c2. (E6.3.12)
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The second constant of integration, c2, can be determined by using the boundary
condition that the liquid velocity at y = 0 equals that of the moving photographic
film. That is, vx = U at y = 0, yielding c2 = U ; thus, the final velocity profile is:

vx = U − αy
(
δ − y

2

)
. (E6.3.13)

Observe that the velocity profile, which is parabolic, consists of two parts:
1. A constant and positive part, arising from the film velocity, U .
2. A variable and negative part, which reduces vx at increasing distances y from

the film and eventually causes it to become negative.

q

d

x

y

Free surface:

Moving film
:

AAAAA
AAAAA
AAAAA

Forward flow

   (u
pwards)

AAAAA
AAAAA
AAAAA
AAAAA

Reverse flow

(downwards)

t x = 0 =
dv x

dy

v x
= U

y

Fig. E6.3.2 Velocity profile in thin liquid layer on moving
photographic film for the case of zero net liquid flow rate.

Exactly how much of the liquid is flowing upwards, and how much downwards,
depends on the values of the variables U , δ, and α. However, we are asked to
investigate the situation in which there is no net flow of liquid—that is, as much
is being pulled up by the film as is falling back by gravity. In this case:

Q =
∫ δ

0

vx dy =
∫ δ

0

[
U − αy

(
δ − y

2

)]
dy = Uδ − 1

3
αδ3 = 0, (E6.3.14)

giving the thickness of the liquid film as:

δ =

√
3U
α
. (E6.3.15)

The velocity profile for this case of Q = 0 is shown in Fig. E6.3.2.

6.4 Poiseuille and Couette Flows in Polymer Processing

The study of polymer processing falls into the realm of the chemical engineer.
First, the polymer, such as nylon, polystyrene, or polyethylene, is produced by
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a chemical reaction—either as a liquid or solid. (In the latter event, it would
subsequently have to be melted in order to be processed further.) Second, the
polymer must be formed by suitable equipment into the desired final shape, such
as a film, fiber, bottle, or other molded object. The procedures listed in Table 6.1
are typical of those occurring in polymer processing.

Table 6.1 Typical Polymer-Processing Operations

Operation Description

Extrusion and
die flow

The polymer is forced, either by an applied pres-
sure, or pump, or a rotating screw, through a narrow
opening—called a die—in order to form a continuous
sheet, filament, or tube.

Drawing or
“Spinning”

The polymer flows out through a narrow opening, ei-
ther as a sheet or a thread, and is pulled by a roller
in order to make a thinner sheet or thread.

Injection mol-
ding

The polymer is forced under high pressure into a
mold, in order to form a variety of objects, such as
telephones and automobile bumpers.

Blow molding A “balloon” of polymer is expanded by the pressure
of a gas in order to fill a mold. Bottles are typically
formed by blow molding.

Calendering The polymer is forced through two rotating rollers in
order to form a relatively thin sheet. The nature of
the surfaces of the rollers will strongly influence the
final appearance of the sheet, which may be smooth,
rough, or have a pattern embossed on it.

Coating The polymer is applied as a thin film by a blade or
rollers on to a substrate, such as paper or a sheet of
another polymer.

Since polymers are generally highly viscous, their flows can be obtained by
solving the equations of motion. In this chapter, we cover the rudiments of extru-
sion, die flow, and drawing or spinning. The analysis of calendering and coating
is considerably more complicated, but can be rendered tractable if reasonable
simplifications, known collectively as the lubrication approximation, are made, as
discussed in Chapter 8.

Example 6.4—The Screw Extruder

Because polymers are generally highly viscous, they often need very high pres-
sures to push them through dies. One such “pump” for achieving this is the screw
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extruder, shown in Fig. E6.4.1. The polymer typically enters the feed hopper as
pellets, and is pushed forward by the screw, which rotates at an angular velocity
ω, clockwise as seen by an observer looking along the axis from the inlet to the
exit. The heated barrel melts the pellets, which then become fluid as the metering
section of length L0 is encountered (where the screw radius is r and the gap be-
tween the screw and barrel is h, with h¿ r). The screw increases the pressure of
the polymer melt, which ultimately passes to a die at the exit of the extruder. The
preliminary analysis given here neglects any heat-transfer effects in the metering
section, and also assumes that the polymer has a constant Newtonian viscosity µ.

q  h

  w

r
Axis of
rotation

Metering section
Feed hopper

Barrel

Flights

 Exit
to die

Screw

Primary heating region

AA

W

L0

Fig. E6.4.1 Screw extruder.

The investigation is facilitated by taking the viewpoint of a hypothetical ob-
server located on the screw, in which case the screw surface and the flights appear
to be stationary, with the barrel moving with velocity V = rω at an angle θ to the
flight axis, as shown in Fig. E6.4.2. The alternative viewpoint of an observer on
the inside surface of the barrel is not very fruitful, because not only are the flights
seen as moving boundaries, but the observations would be periodically blocked as
the flights passed over the observer!

Solution

Motion in two principal directions is considered:

1. Flow parallel to the flight axis, caused by a barrel velocity of Vy = V cos θ =
rω cos θ relative to the (now effectively stationary) flights and screw.

2. Flow normal to the flight axis, caused by a barrel velocity of Vx = −V sin θ =
−rω sin θ relative to the (stationary) flights and screw.

In each case, the flow is considered one-dimensional, with “end-effects” caused
by the presence of the flights being unimportant. A glance at Fig. E6.4.3(b) will
give the general idea. Although the flow in the x-direction must reverse itself as it
nears the flights, it is reasonable to assume for h¿ W that there is a substantial
central region in which the flow is essentially in the positive or negative x-direction.



288 Chapter 6—Solution of Viscous-Flow Problems

1. Motion parallel to the flight axis. The reader may wish to investigate the
additional simplifying assumptions that give the y-momentum balance as:

∂p

∂y
= µ

d2vy
dz2

. (E6.4.1)

Integration twice yields the velocity profile as:

vy =
1

2µ

(
∂p

∂y

)
z2 + c1z + c2 =

1
2µ

(
−∂p
∂y

)
(hz − z2)︸ ︷︷ ︸

Poiseuille flow

+
z

h
rω cos θ︸ ︷︷ ︸

Couette flow

. (E6.4.2)

Here, the integration constants c1 and c2 have been determined in the usual way
by applying the boundary conditions:

z = 0 : vy = 0; z = h : vy = Vy = V cos θ = rω cos θ. (E6.4.3)
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Fig. E6.4.2 Diagonal motion of barrel relative to flights.

Note that the negative of the pressure gradient is given in terms of the inlet
pressure p1, the exit pressure p2, and the total length L (= L0/ sin θ) measured
along the screw flight axis by:

−∂p
∂y

= −p2 − p1

L
=
p1 − p2

L
, (E6.4.4)

and is a negative quantity since the screw action builds up pressure and p2 > p1.
Thus, Eqn. (E6.4.2) predicts a Poiseuille-type backflow (caused by the adverse
pressure gradient) and a Couette-type forward flow (caused by the relative motion
of the barrel to the screw). The combination is shown in Fig. E6.4.3(a).
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Fig. E6.4.3 Fluid motion (a) along and (b) normal to
the flight axis, as seen by an observer on the screw.

The total flow rate Qy of polymer melt in the direction of the flight axis is
obtained by integrating the velocity between the screw and barrel, and recognizing
that the width between flights is W :

Qy = W

∫ h

0

vy dz =
Wh3

12µ

(
p1 − p2

L

)
︸ ︷︷ ︸

Poiseuille

+
1
2
Whrω cos θ︸ ︷︷ ︸

Couette

. (E6.4.5)

The actual value of Qy will depend on the resistance of the die located at the
extruder exit. In a hypothetical case, in which the die offers no resistance, there
would be no pressure increase in the extruder (p2 = p1), leaving only the Couette
term in Eqn. (E6.4.5). For the practical situation in which the die offers significant
resistance, the Poiseuille term would serve to diminish the flow rate given by the
Couette term.

2. Motion normal to the flight axis. By a development very similar to that
for flow parallel to the flight axis, we obtain:

∂p

∂x
= µ

d2vx
dz2

, (E6.4.6)

vx =
1

2µ

(
−∂p
∂x

)
(hz − z2)︸ ︷︷ ︸

Poiseuille flow

− z

h
rω sin θ︸ ︷︷ ︸

Couette flow

, (E6.4.7)

Qx =
∫ h

0

vx dz =
h3

12µ

(
−∂p
∂x

)
︸ ︷︷ ︸

Poiseuille

− 1
2
hrω sin θ︸ ︷︷ ︸
Couette

= 0. (E6.4.8)
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Here, Qx is the flow rate in the x-direction, per unit depth along the flight axis,
and must equal zero, because the flights at either end of the path act as barriers.
The negative of the pressure gradient is therefore:

−∂p
∂x

=
6µrω sin θ

h2
, (E6.4.9)

so that the velocity profile is given by:

vx =
z

h
rω
(

2− 3
z

h

)
sin θ. (E6.4.10)

Note from Eqn. (E6.4.10) that vx is zero when either z = 0 (on the screw surface)
or z/h = 2/3. The reader may wish to sketch the general appearance of vz(z).

6.5 Solution of the Equations of Motion in Cylindrical Coordinates

Several chemical engineering operations exhibit symmetry about an axis z and
involve one or more surfaces that can be described by having a constant radius for
a given value of z. Examples are flow in pipes, extrusion of fibers, and viscometers
that involve flow between concentric cylinders, one of which is rotating. Such cases
lend themselves naturally to solution in cylindrical coordinates, and two examples
will now be given.

Example 6.5—Flow Through an Annular Die

Following the discussion of polymer processing in the previous section, now
consider flow through a die that could be located at the exit of the screw extruder
of Example 6.4. Consider a die that forms a tube of polymer (other shapes being
sheets and filaments). In the die of length D shown in Fig. E6.5, a pressure
difference p2 − p3 causes a liquid of viscosity µ to flow steadily from left to right
in the annular area between two fixed concentric cylinders. Note that p2 is chosen
for the inlet pressure in order to correspond to the extruder exit pressure from
Example 6.4. The inner cylinder is solid, whereas the outer one is hollow; their
radii are r1 and r2, respectively. The problem, which could occur in the extrusion
of plastic tubes, is to find the velocity profile in the annular space and the total
volumetric flow rate Q. Note that cylindrical coordinates are now involved.

Assumptions and continuity equation. The following assumptions are
realistic:

1. There is only one nonzero velocity component, namely that in the direction of
flow, vz. Thus, vr = vθ = 0.

2. Gravity acts vertically downwards, so that gz = 0.
3. The axial velocity is independent of the angular location; that is, ∂vz/∂θ = 0.
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To analyze the situation, again start from the continuity equation, (5.49):

∂ρ

∂t
+

1
r

∂(ρrvr)
∂r

+
1
r

∂(ρvθ)
∂θ

+
∂(ρvz)
∂z

= 0, (5.49)

which, for constant density and vr = vθ = 0, reduces to:

∂vz
∂z

= 0, (E6.5.1)

verifying that vz is independent of distance from the inlet, and that the velocity
profile vz = vz(r) appears the same for all values of z.
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Fig. E6.5 Geometry for flow through an annular die.

Momentum balances. There are again three momentum balances, one
for each of the r, θ, and z directions. If explored, the first two of these would
ultimately lead to the pressure variation with r and θ at any cross section, which
is of little interest in this problem. Therefore, we extract from Eqn. (5.75) only
the z momentum balance:

ρ
(∂vz
∂t

+ vr
∂vz
∂r

+
vθ
r

∂vz
∂θ

+ vz
∂vz
∂z

)
= −∂p

∂z
+ µ

[
1
r

∂

∂r

(
r
∂vz
∂r

)
+

1
r2

∂2vz
∂θ2

+
∂2vz
∂z2

]
+ ρgz. (E6.5.2)

With vr = vθ = 0 (from assumption 1), ∂vz/∂z = 0 [from Eqn. (E6.5.1)],
∂vz/∂θ = 0 (assumption 3), and gz = 0 (assumption 2), this momentum balance
simplifies to:

µ

[
1
r

d

dr

(
r
dvz
dr

)]
=
∂p

∂z
, (E6.5.3)
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in which total derivatives are used because vz depends only on r.
Shortly, we shall prove that the pressure gradient is uniform between the die

inlet and exit, being given by:

−∂p
∂z

=
p2 − p3

D
, (E6.5.4)

in which both sides of the equation are positive quantities. Two successive inte-
grations of Eqn. (E6.5.3) may then be performed, yielding:

vz = − 1
4µ

(
−∂p
∂z

)
r2 + c1 ln r + c2. (E6.5.5)

The two constants may be evaluated by applying the boundary conditions of zero
velocity at the inner and outer walls,

r = r1: vz = 0, r = r2: vz = 0, (E6.5.6)

giving:

c1 =
1

4µ

(
−∂p
∂z

)
r2

2 − r2
1

ln(r2/r1)
, c2 =

1
4µ

(
−∂p
∂z

)
r2

2 − c1 ln r2. (E6.5.7)

Substitution of these values for the constants of integration into Eqn. (E6.5.5)
yields the final expression for the velocity profile:

vz =
1

4µ

(
−∂p
∂z

)[
ln(r/r1)
ln(r2/r1)

(r2
2 − r2

1)− (r2 − r2
1)
]
, (E6.5.8)

which is sketched in Fig. E6.5. Note that the maximum velocity occurs some-
what before the halfway point in progressing from the inner cylinder to the outer
cylinder.

Volumetric flow rate. The final quantity of interest is the volumetric flow
rate Q. Observing first that the flow rate through an annulus of internal radius r
and external radius r + dr is dQ = vz2πr dr, integration yields:

Q =
∫ Q

0

dQ =
∫ r2

r1

vz2πr dr. (E6.5.9)

Since r ln r is involved in the expression for vz, the following indefinite integral is
needed: ∫

r ln r dr =
r2

2
ln r − r2

4
, (E6.5.10)

giving the final result:

Q =
π(r2

2 − r2
1)

8µ

(
−∂p
∂z

)[
r2

2 + r2
1 −

r2
2 − r2

1

ln(r2/r1)

]
. (E6.5.11)
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Since Q, µ, r1, and r2 are constant throughout the die, ∂p/∂z is also constant,
thus verifying the hypothesis previously made. Observe that in the limiting case
of r1 → 0, Eqn. (E6.5.11) simplifies to the Hagen-Poiseuille law, already stated in
Eqn. (3.12).

This problem may also be solved by performing a momentum balance on a
shell that consists of an annulus of internal radius r, external radius r + dr, and
length dz.

Example 6.6—Spinning a Polymeric Fiber

A Newtonian polymeric liquid of viscosity µ is being “spun” (drawn into a fiber
or filament of small diameter before solidifying by pulling it through a chemical
setting bath) in the apparatus shown in Fig. E6.6.

The liquid volumetric flow rate is Q, and the filament diameters at z = 0 and
z = L are D0 and DL, respectively. To a first approximation, the effects of gravity,
inertia, and surface tension are negligible. Derive an expression for the tensile
force F needed to pull the filament downwards. Assume that the axial velocity
profile is “flat” at any vertical location, so that vz depends only on z, which is
here most conveniently taken as positive in the downwards direction. Also derive
an expression for the downwards velocity vz as a function of z. The inset of Fig.
E6.6 shows further details of the notation concerning the filament.
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Fig. E6.6 “Spinning” a polymer filament, whose diameter
in relation to its length is exaggerated in the diagram.
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Solution
It is first necessary to determine the radial velocity and hence the pressure

inside the filament. From continuity:

1
r

∂(rvr)
∂r

+
∂vz
∂z

= 0. (E6.6.1)

Since vz depends only on z, its axial derivative is a function of z only, or dvz/dz =
f(z), so that Eqn. (E6.6.1) may be rearranged and integrated at constant z to
give:

∂(rvr)
∂r

= −rf(z), rvr = −r
2f(z)

2
+ g(z). (E6.6.2)

But to avoid an infinite value of vr at the centerline, g(z) must be zero, giving:

vr = −rf(z)
2

,
∂vr
∂r

= −f(z)
2
. (E6.6.3)

To proceed with reasonable expediency, it is necessary to make some simplifi-
cation. After accounting for a primary effect (the difference between the pressure
in the filament and the surrounding atmosphere), we assume that a secondary ef-
fect (variation of pressure across the filament) is negligible; that is, the pressure
does not depend on the radial location. Noting that the external (gauge) pressure
is zero everywhere, and applying the first part of Eqn. (5.64) at the free surface:

σrr = −p+ 2µ
∂vr
∂r

= −p− µf(z) = 0, or p = −µdvz
dz

. (E6.6.4)

The axial stress is therefore:

σzz = −p+ 2µ
dvz
dz

= 3µ
dvz
dz

. (E6.6.5)

It is interesting to note that the same result can be obtained with an alternative
assumption.2 The axial tension in the fiber equals the product of the cross-sectional
area and the local axial stress:

F = Aσzz = 3µA
dvz
dz

. (E6.6.6)

Since the effect of gravity is stated to be insignificant, F is a constant, regardless
of the vertical location.

At any location, the volumetric flow rate equals the product of the cross-
sectional area and the axial velocity:

Q = Avz. (E6.6.7)

2 See page 235 of S. Middleman’s Fundamentals of Polymer Processing, McGraw-Hill, New York, 1977.
There, the author assumes σrr = σθθ = 0, followed by the identity: p = −(σzz + σrr + σθθ)/3.
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A differential equation for the velocity is next obtained by dividing one of the last
two equations by the other, and rearranging:

1
vz

dvz
dz

=
F

3µQ
. (E6.6.8)

Integration, noting that the inlet velocity at z = 0 is vz0 = Q/(πD2
0/4), gives:∫ vz

vz0

dvz
vz

=
F

3µQ

∫ z

0

dz, where vz0 =
4Q
πD2

0

, (E6.6.9)

so that the axial velocity obeys:

vz = vz0e
Fz/3µQ. (E6.6.10)

The tension is obtained by applying Eqns. (E6.6.7) and (E6.6.10) just before
the filament is taken up by the rollers:

vzL =
4Q
πD2

L

= vz0e
FL/3µQ. (E6.6.11)

Rearrangement yields:

F =
3µQ
L

ln
vzL
vz0

, (E6.6.12)

which predicts a force that increases with higher viscosities, flow rates, and draw-
down ratios (vzL/vz0), and that decreases with longer filaments.

Elimination of F from Eqns. (E6.6.10) and (E6.6.12) gives an expression for
the velocity that depends only on the variables specified originally:

vz = vz0

(
vzL
vz0

)z/L
= vz0

(
D0

DL

)2z/L

, (E6.6.13)

a result that is independent of the viscosity.

6.6 Solution of the Equations of Motion in Spherical Coordinates

Most of the introductory viscous-flow problems will lend themselves to solution
in either rectangular or cylindrical coordinates. Occasionally, as in Example 6.7,
a problem will arise in which spherical coordinates should be used. It is a fairly
advanced problem! Try first to appreciate the broad steps involved, and then
peruse the fine detail at a second reading.
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Example 6.7—Analysis of a Cone-and-Plate Rheometer

The problem concerns the analysis of a cone-and-plate rheometer, an in-
strument developed and perfected in the 1950s and 1960s by Prof. Karl Weis-
senberg, for measuring the viscosity of liquids, and also known as the “Weissenberg
rheogoniometer.”3 A cross section of the essential features is shown in Fig. E6.7, in
which the liquid sample is held by surface tension in the narrow opening between
a rotating lower circular plate, of radius R, and an upper cone, making an angle
of β with the vertical axis. The plate is rotated steadily in the φ direction with
an angular velocity ω, causing the liquid in the gap to move in concentric circles
with a velocity vφ. (In practice, the tip of the cone is slightly truncated, to avoid
friction with the plate.) Observe that the flow is of the Couette type.
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The torque T  needed
     to hold the cone 
stationary is measured

  q
rLiquid

R

H

  w

The plate is rotated
with a steady angu-
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  q  =  p / 2
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Transducer
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(torsion bar)

Rigid clamp

q b=

a

Fig. E6.7 Geometry for a Weissenberg rheogoniometer.
(The angle between the cone and plate is exaggerated.)

The top of the upper shaft—which acts like a torsion bar—is clamped rigidly.
However, viscous friction will twist the cone and the lower portions of the upper
shaft very slightly; the amount of motion can be detected by a light arm at the
extremity of which is a transducer, consisting of a small piece of steel, attached to
the arm, and surrounded by a coil of wire; by monitoring the inductance of the coil,

3 Professor Weissenberg once related to the author that he (Prof. W.) was attending an instrument trade
show in London. There, the rheogoniometer was being demonstrated by a young salesman who was unaware
of Prof. W’s identity. Upon inquiring how the instrument worked, the salesman replied: “I’m sorry, sir, but
it’s quite complicated, and I don’t think you will be able to understand it.”
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the small angle of twist can be obtained; a knowledge of the elastic properties of the
shaft then enables the restraining torque T to be obtained. From the analysis given
below, it is then possible to deduce the viscosity of the sample. The instrument is
so sensitive that if no liquid is present, it is capable of determining the viscosity
of the air in the gap!

The problem is best solved using spherical coordinates, because the surfaces
of the cone and plate are then described by constant values of the angle θ, namely
β and π/2, respectively.

Assumptions and the continuity equation. The following realistic as-
sumptions are made:
1. There is only one nonzero velocity component, namely that in the φ direction,
vφ. Thus, vr = vθ = 0.

2. Gravity acts vertically downwards, so that gφ = 0.
3. We do not need to know how the pressure varies in the liquid. Therefore, the
r and θ momentum balances, which would supply this information, are not
required.
The analysis starts once more from the continuity equation, (5.50):

∂ρ

∂t
+

1
r2

∂(ρr2vr)
∂r

+
1

r sin θ
∂(ρvθ sin θ)

∂θ
+

1
r sin θ

∂(ρvφ)
∂φ

= 0, (5.50)

which, for constant density and vr = vθ = 0 reduces to:

∂vφ
∂φ

= 0, (E6.7.1)

verifying that vφ is independent of the angular location φ, so we are correct in
examining just one representative cross section, as shown in Fig. E6.7.

Momentum balances. There are again three momentum balances, one for
each of the r, θ, and φ directions. From the third assumption above, the first two
such balances are of no significant interest, leaving, from Eqn. (5.77), just that in
the φ direction:

ρ

(
∂vφ
∂t

+ vr
∂vφ
∂r

+
vθ
r

∂vφ
∂θ

+
vφ

r sin θ
∂vφ
∂φ

+
vφvr
r

+
vθvφ cot θ

r

)
=− 1

r sin θ
∂p

∂φ
+ µ

[
1
r2

∂

∂r

(
r2∂vφ
∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂vφ
∂θ

)
(E6.7.2)

+
1

r2 sin2 θ

∂2vφ
∂φ2

− vφ

r2 sin2 θ
+

2
r2 sin θ

∂vr
∂φ

+
2 cos θ
r2 sin2 θ

∂vθ
∂φ

]
+ ρgφ.

With vr = vθ = 0 (assumption 1), ∂vφ/∂φ = 0 [from Eqn. (E6.7.1)], and
gφ = 0 (assumption 2), the momentum balance simplifies to:

∂

∂r

(
r2∂vφ
∂r

)
+

1
sin θ

∂

∂θ

(
sin θ

∂vφ
∂θ

)
− vφ

sin2 θ
= 0. (E6.7.3)
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Determination of the velocity profile. First, seek an expression for the
velocity in the φ direction, which is expected to be proportional to both the dis-
tance r from the origin and the angular velocity ω of the lower plate. However, its
variation with the coordinate θ is something that has to be discovered. Therefore,
postulate a solution of the form:

vφ = rωf(θ), (E6.7.4)

in which the function f(θ) is to be determined. Substitution of vφ from Eqn.
(E6.7.4) into Eqn. (E6.7.3), and using f ′and f ′′ to denote the first and second
total derivatives of f with respect to θ, gives:

f ′′ + f ′ cot θ + f(1− cot2 θ)

≡ 1
sin2 θ

d

dθ
(f ′ sin2 θ − f sin θ cos θ)

=
1

sin2 θ

d

dθ

[
sin3 θ

d

dθ

(
f

sin θ

)]
= 0. (E6.7.5)

The reader is encouraged, as always, to check the missing algebraic and trigono-
metric steps, although they are rather tricky here!4

By multiplying Eqn. (E6.7.5) through by sin2 θ, it follows after integration
that the quantity in brackets is a constant, here represented as −2c1, the reason
for the “−2” being that it will cancel with a similar factor later on:

sin3 θ
d

dθ

(
f

sin θ

)
= −2c1. (E6.7.6)

Separation of variables and indefinite integration (without specified limits) yields:∫
d

(
f

sin θ

)
=

f

sin θ
= −2c1

∫
dθ

sin3 θ
. (E6.7.7)

To proceed further, we need the following two standard indefinite integrals
and one trigonometric identity:5∫

dθ

sin3 θ
= −1

2
cot θ
sin θ

+
1
2

∫
dθ

sin θ
, (E6.7.8)∫

dθ

sin θ
= ln

(
tan

θ

2

)
=

1
2

ln
(

tan2 θ

2

)
, (E6.7.9)

tan2 θ

2
=

1− cos θ
1 + cos θ

. (E6.7.10)

4 Although our approach is significantly different from that given on page 98 et seq. of Bird, R.B., Stewart,
W.E., and Lightfoot, E.N., Transport Phenomena, Wiley, New York (1960), we are indebted to these
authors for the helpful hint they gave in establishing the equivalency expressed in our Eqn. (E6.7.5).

5 From pages 87 (integrals) and 72 (trigonometric identity) of Perry, J.H., ed., Chemical Engineers’ Hand-
book, 3rd ed., McGraw-Hill, New York (1950).
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Armed with these, Eqn. (E6.7.7) leads to the following expression for f :

f = c1

[
cot θ +

1
2

(
ln

1 + cos θ
1− cos θ

)
sin θ

]
+ c2, (E6.7.11)

in which c2 is a second constant of integration.

Implementation of the boundary conditions. The constants c1 and c2

are found by imposing the two boundary conditions:

1. At the lower plate, where θ = π/2 and the expression in parentheses in
Eqn. (E6.7.11) is zero, so that f = c2, the velocity is simply the radius times the
angular velocity:

vφ ≡ rωf = rωc2 = rω, or c2 = 1. (E6.7.12)

2. At the surface of the cone, where θ = β, the velocity vφ = rωf is zero.
Hence f = 0, and Eqn. (E6.7.11) leads to:

c1 = −c2g(β) = −g(β), where
1

g(β)
= cotβ +

1
2

(
ln

1 + cosβ
1− cosβ

)
sinβ. (E6.7.13)

Substitution of these expressions for c1 and c2 into Eqn. (E6.7.11), and noting
that vφ = rωf , gives the final (!) expression for the velocity:

vφ = rω

1−
cot θ +

1
2

(
ln

1 + cos θ
1− cos θ

)
sin θ

cotβ +
1
2

(
ln

1 + cosβ
1− cosβ

)
sinβ

 . (E6.7.14)

As a partial check on the result, note that Eqn. (E6.7.14) reduces to vφ = rω when
θ = π/2 and to vφ = 0 when θ = β.

Shear stress and torque. Recall that the primary goal of this investigation
is to determine the torque T needed to hold the cone stationary. The relevant
shear stress exerted by the liquid on the surface of the cone is τθφ—that exerted on
the under surface of the cone (of constant first subscript, θ = β) in the positive φ
direction (refer again to Fig. 5.13 for the sign convention and notation for stresses).
Since this direction is the same as that of the rotation of the lower plate, we expect
that τθφ will prove to be positive, thus indicating that the liquid is trying to turn
the cone in the same direction in which the lower plate is rotated.

From the second of Eqn. (5.65), the relation for this shear stress is:

τθφ = µ

[
sin θ
r

∂

∂θ

( vφ
sin θ

)
+

1
r sin θ

∂vθ
∂φ

]
. (E6.7.15)
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Since vθ = 0, and recalling Eqns. (E6.7.4), (E6.7.6), and (E6.7.13), the shear stress
on the cone becomes:

(τθφ)θ=β = µ

[
sin θ
r

∂

∂θ

(
rωf

sin θ

)]
θ=β

= −
(

2c1ωµ

sin2 θ

)
θ=β

=
2ωµg(β)

sin2 β
. (E6.7.16)

One importance of this result is that it is independent of r, giving a constant stress
and strain throughout the liquid, a significant simplification when deciphering the
experimental results for non-Newtonian fluids (see Chapter 11). In effect, the
increased velocity differences between the plate and cone at the greater values of
r are offset in exact proportion by the larger distances separating them.

The torque exerted by the liquid on the cone (in the positive φ direction) is
obtained as follows. The surface area of the cone between radii r and r + dr is
2πr sinβ dr, and is located at a lever arm of r sinβ from the axis of symmetry.
Multiplication by the shear stress and integration gives:

T =
∫ R/ sin β

0

(2πr sinβ dr)︸ ︷︷ ︸
Area

r sinβ︸ ︷︷ ︸
Lever
arm

(τθφ)θ=β︸ ︷︷ ︸
Stress

, (E6.7.17)

Substitution of (τθφ)θ=β from Eqn. (E6.7.16) and integration gives the torque as:

T =
4πωµg(β)R3

3 sin3 β
. (E6.7.18)

The torque for holding the cone stationary has the same value, but is, of course,
in the negative φ direction.

Since R and g(β) can be determined from the radius and the angle β of the
cone in conjunction with Eqn. (E6.7.13), the viscosity µ of the liquid can finally
be determined.

Problems for Chapter 6

Unless otherwise stated, all flows are steady state, for
a Newtonian fluid with constant density and viscosity.

1. Stretching of a liquid film—M. In broad terms, explain the meanings of the
following two equations, paying attention to any sign convention:

σxx = −p+ 2µ
∂vx
∂x

, σyy = −p+ 2µ
∂vy
∂y

.
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F
F

L

Bar Bar

x

y

z

Viscous liquid film

Fig. P6.1 Stretching of liquid film between two bars.

Fig. P6.1 shows a film of a viscous liquid held between two bars spaced a distance
L apart. If the film thickness is uniform, and the total volume of liquid is V , show
that the force necessary to separate the bars with a relative velocity dL/dt is:

F =
4µV
L2

dL

dt
.

2. Wire coating—M. Fig. P6.2 shows a rodlike wire of radius r1 that is being
pulled steadily with velocity V through a horizontal die of length L and internal
radius r2. The wire and the die are coaxial, and the space between them is filled
with a liquid of viscosity µ. The pressure at both ends of the die is atmospheric.
The wire is coated with the liquid as it leaves the die, and the thickness of the
coating eventually settles down to a uniform value, δ.

Wire
V

Velocity
r2

r1

L
d

Film thickness

Die

Fig. P6.2 Coating of wire drawn through a die.

Neglecting end effects, use the equations of motion in cylindrical coordinates to
derive expressions for:

(a) The velocity profile within the annular space. Assume that there is only one
nonzero velocity component, vz, and that this depends only on radial position.

(b) The total volumetric flow rate Q through the annulus.
(c) The limiting value for Q if r1 approaches zero.
(d) The final thickness, δ, of the coating on the wire.
(e) The force F needed to pull the wire.
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3. Off-center annular flow—D (C). A liquid flows under a pressure gradient
∂p/∂z through the narrow annular space of a die, a cross section of which is shown
in Fig. P6.3(a). The coordinate z is in the axial direction, normal to the plane of
the diagram. The die consists of a solid inner cylinder with center P and radius
b inside a hollow outer cylinder with center O and radius a. The points O and P
were intended to coincide, but due to an imperfection of assembly are separated
by a small distance δ.

O
d

q

D

  Inner
cylinder

 Outer
cylinder

a
b

Q

P q

dq b dq

D

b

P

(a) (b)

Fig. P6.3 Off-center cylinder inside a die (gap width exagger-
ated): (a) complete cross section; (b) effect of incrementing θ.

By a simple geometrical argument based on the triangle OPQ, show that the
gap width ∆ between the two cylinders is given approximately by:

∆ .= a− b− δ cos θ,

where the angle θ is defined in the diagram.
Now consider the radius arm b swung through an angle dθ, so that it traces an

arc of length bdθ. The flow rate dQ through the shaded element in Fig. P6.3(b) is
approximately that between parallel plates of width bdθ and separation ∆. Hence
prove that the flow rate through the die is given approximately by:

Q = πbc(2α3 + 3αδ2),

in which:

c =
1

12µ

(
−∂p
∂z

)
, and α = a− b.

Assume from Eqn. (E6.1.26) that the flow rate per unit width between two flat
plates separated by a distance h is:

h3

12µ

(
−∂p
∂z

)
.

What is the ratio of the flow rate if the two cylinders are touching at one point
to the flow rate if they are concentric?
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4. Compression molding—M. Fig. P6.4 shows the (a) beginning, (b) interme-
diate, and (c) final stages in the compression molding of a material that behaves
as a liquid of high viscosity µ, from an initial cylinder of height H0 and radius R0

to a final disk of height H1 and radius R1.

A

B R

H
H 0

H 1

R0 R1

V

(a) (b) (c)

Fig. P6.4 Compression molding between two disks.

In the molding operation, the upper disk A is squeezed with a uniform velocity V
towards the stationary lower disk B.

Ignoring small variations of pressure in the z direction, prove that the total
compressive force F that must be exerted downwards on the upper disk is:

F =
3πµV R4

2H3
.

Assume that the liquid flow is radially outwards everywhere, with a parabolic
velocity profile. Also assume from Eqn. (E6.1.26) that per unit width of a channel
of depth H, the volumetric flow rate is:

Q =
H3

12µ

(
−∂p
∂r

)
.

Give expressions for H and R as functions of time t, and draw a sketch that
shows how F varies with time.

5. Film draining—M. Fig. P6.5 shows an idealized view of a liquid film of
viscosity µ that is draining under gravity down the side of a flat vertical wall.
Such a situation would be approximated by the film left on the wall of a tank that
was suddenly drained through a large hole in its base.

What are the justifications for assuming that the velocity profile at any dis-
tance x below the top of the wall is given by:

vx =
ρg

2µ
y(2h− y),

where h = h(x) is the local film thickness? Derive an expression for the corre-
sponding downwards mass flow rate m per unit wall width (normal to the plane
of the diagram).
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Perform a transient mass balance on a differential element of the film and
prove that h varies with time and position according to:

∂h

∂t
= −1

ρ

∂m

∂x
.

y

x

h

Wall
Liquid
 film

vx

Fig. P6.5 Liquid draining from a vertical wall.

Now substitute your expression for m, to obtain a partial differential equation
for h. Try a solution of the form:

h = c tpxq,

and determine the unknowns c, p, and q. Discuss the limitations of your solution.
Note that a similar situation occurs when a substrate is suddenly lifted from

a bath of coating fluid.

6. Sheet “spinning”—M. A Newtonian polymeric liquid of viscosity µ is be-
ing “spun” (drawn into a sheet of small thickness before solidifying by pulling it
through a chemical setting bath) in the apparatus shown in Fig. P6.6.

The liquid volumetric flow rate is Q, and the sheet thicknesses at z = 0 and
z = L are ∆ and δ, respectively. The effects of gravity, inertia, and surface
tension are negligible. Derive an expression for the tensile force needed to pull
the filament downwards. Hint : start by assuming that the vertically downwards
velocity vz depends only on z and that the lateral velocity vy is zero. Also derive
an expression for the downwards velocity vz as a function of z.
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AA
AA
AA
AA
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AA

AA
AA
AA
AA
AA
AA
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  tank

Roller
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   sheet

D

d
A
A
A
A
A
A

z = 0

z = L

W
vz

x

y

z

Fig. P6.6 “Spinning” a polymer sheet.

7. Details of pipe flow—M. A fluid of density ρ and viscosity µ flows from left
to right through the horizontal pipe of radius a and length L shown in Fig. P6.7.
The pressures at the centers of the inlet and exit are p1 and p2, respectively. You
may assume that the only nonzero velocity component is vz, and that this is not
a function of the angular coordinate, θ.

L

 Axis of
symmetry

Wall

Inlet Exit

z

r a

p1 p2

Fig. P6.7 Flow of a liquid in a horizontal pipe.

Stating any further necessary assumptions, derive expressions for the following,
in terms of any or all of a, L, p1, p2, ρ, µ, and the coordinates r, z, and θ:

(a) The velocity profile, vz = vz(r).
(b) The total volumetric flow rate Q through the pipe.
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(c) The pressure p at any point (r, θ, z).
(d) The shear stress, τrz.

8. Natural convection—M. Fig. P6.8 shows two infinite parallel vertical walls
that are separated by a distance 2d. A fluid of viscosity µ and volume coefficient of
expansion β fills the intervening space. The two walls are maintained at uniform
temperatures T1 (cold) and T2 (hot), and you may assume (to be proved in a heat-
transfer course) that there is a linear variation of temperature in the x direction.
That is:

T = T +
x

d

(
T2 − T1

2

)
, where T =

T1 + T2

2
.

The density is not constant, but varies according to:

ρ = ρ
[
1− β

(
T − T

)]
,

where ρ is the density at the mean temperature T , which occurs at x = 0.

T1 T2

Hot
wall

Cold
wall

x = - d x = d

x

y

vy

Fig. P6.8 Natural convection between vertical walls.

If the resulting natural-convection flow is steady, use the equations of motion
to derive an expression for the velocity profile vy = vy(x) between the plates. Your
expression for vy should be in terms of any or all of x, d, T1, T2, ρ, µ, β, and g.

Hints: in the y momentum balance, you should find yourself facing the follow-
ing combination:

−∂p
∂y

+ ρgy,

in which gy = −g. These two terms are almost in balance, but not quite, leading
to a small—but important—buoyancy effect that “drives” the natural convection.
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The variation of pressure in the y direction may be taken as the normal hydrostatic
variation:

∂p

∂y
= −gρ.

We then have:

−∂p
∂y

+ ρgy = gρ+ ρ
[
1− β

(
T − T

)]
(−g) = βg

(
T − T

)
,

and this will be found to be a vital contribution to the y momentum balance.

9. Square duct velocity profile—M. A certain flow in rectangular Cartesian
coordinates has only one nonzero velocity component, vz, and this does not vary
with z. If there is no body force, write down the Navier-Stokes equation for the z
momentum balance.

y = - a

y = a

x = - a x = a

y

x

Fig. P6.9 Square cross section of a duct.

One-dimensional, fully developed steady flow occurs under a pressure gradient
∂p/∂z in the z direction, parallel to the axis of a square duct of side 2a, whose
cross section is shown in Fig. P6.9. The following equation has been proposed for
the velocity profile:

vz =
1

2µ

(
−∂p
∂z

)
a2

[
1−

(x
a

)2
] [

1−
(y
a

)2
]
.

Without attempting to integrate the momentum balance, investigate the possible
merits of this proposed solution for vz. Explain whether or not it is correct.

y = - a

y = a

x = - a x = a

y

x

Fig. P6.10 Square cross section of a duct.
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10. Poisson’s equation for a square duct—E. A polymeric fluid of uniform
viscosity µ is to be extruded after pumping it through a long duct whose cross
section is a square of side 2a, shown in Fig. P6.10. The flow is parallel everywhere
to the axis of the duct, which is in the z direction, normal to the plane of the
diagram.

If ∂p/∂z, µ, and a are specified, show that the problem of obtaining the
axial velocity distribution vz = vz(x, y), amounts to solving Poisson’s equation—
of the form ∇2φ = f(x, y), where f is specified and φ is the unknown. Also note
that Poisson’s equation can be solved numerically by the Matlab PDE (partial
differential equation) Toolbox, as outlined in Chapter 12.

(a)

Wall

A

B

Centerline

(b)

Wall

A

B

x

y

(d)

Wall

A

B

Centerline

(c)

Wall

A

B

x

y

Fig. P6.11 Proposed velocity profiles for immiscible liquids.

11. Permissible velocity profiles—E. Consider the shear stress τyx; why must it
be continuous—in the y direction, for example—and not undergo a sudden step-
change in its value? Two immiscible Newtonian liquids A and B are in steady
laminar flow between two parallel plates. Profile A meets the centerline normally
in (b), but at an angle in (c); the maximum velocity in (d) does not coincide with
the centerline. Which—if any—of the velocity profiles shown in Fig. P6.11 are
impossible? Explain your answers carefully.

12. “Creeping” flow past a sphere—D. Figure P6.12 shows the steady, “creep-
ing” (very slow) flow of a fluid of viscosity µ past a sphere of radius a. Far away
from the sphere, the pressure is p∞ and the undisturbed fluid velocity is U in the
positive z direction. The following velocity components and pressure have been
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proposed in spherical coordinates:

p = p∞ −
3µUa
2r2

cos θ,

vr = U

(
1− 3a

2r
+

a3

2r3

)
cos θ,

vθ = −U
(

1− 3a
4r
− a3

4r3

)
sin θ,

vφ = 0.

Assuming the velocities are sufficiently small so that terms such as vr(∂vr/∂r)
can be neglected, and that gravity is unimportant, prove that these equations
do indeed satisfy the following conditions, and therefore are the solution to the
problem:

(a) The continuity equation.
(b) The r and θ momentum balances.
(c) A pressure of p∞ and a z velocity of U far away from the sphere.
(d) Zero velocity components on the surface of the sphere.

r

  U ,  p¥

a
z

  qO

Fig. P6.12 Viscous flow past a sphere.

Also derive an expression for the net force exerted in the z direction by the
fluid on the sphere, and compare it with that given by Stokes’ law in Eqn. (4.11).

Note that the problem is one in spherical coordinates, in which the z axis has
no formal place, except to serve as a reference direction from which the angle θ
is measured. There is also symmetry about this axis, such that any derivatives in
the φ direction are zero. Note: the actual derivation of these velocities, starting
from the equations of motion, is fairly difficult!
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13. Torque in a Couette viscometer—M. Fig. P6.13 shows the horizontal cross
section of a concentric cylinder or “Couette” viscometer, which is an apparatus
for determining the viscosity µ of the fluid that is placed between the two vertical
cylinders. The inner and outer cylinders have radii of r1 and r2, respectively. If the
inner cylinder is rotated with a steady angular velocity ω, and the outer cylinder
is stationary, derive an expression for vθ (the θ velocity component) as a function
of radial location r.

w
q

r1
r2

O  Outer
cylinder

  Inner
cylinder

r

Fig. P6.13 Section of a Couette viscometer.

If, further, the torque required to rotate the inner cylinder is found to be T per
unit length of the cylinder, derive an expression whereby the unknown viscosity µ
can be determined, in terms of T , ω, r1, and r2. Hint : you will need to consider
one of the shear stresses given in Table 5.8.

Wall Liquid
  film

y

x

Flow rate
Q

d

Fig. P6.14 Wetted-wall column.

14. Wetted-wall column—M. Fig. P6.14 shows a “wetted-wall” column, in
which a thin film of a reacting liquid of viscosity µ flows steadily down a plane
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wall, possibly for a gas-absorption study. The volumetric flow rate of liquid is
specified as Q per unit width of the wall (normal to the plane of the diagram).

Assume that there is only one nonzero velocity component, vx, and that this
does not vary in the x direction, and that the gas exerts negligible shear stress on
the liquid film. Starting from the equations of motion, derive an expression for
the “profile” of the velocity vx (as a function of ρ, µ, g, y, and δ), and also for the
film thickness, δ (as a function of ρ, µ, g, and Q).

15. Simplified view of a Weissenberg rheogoniometer—M. Consider the Weis-
senberg rheogoniometer with a very shallow cone; thus, referring to Fig. E6.7,
β = π/2− α, where α is a small angle.

(a) Without going through the complicated analysis presented in Example 6.7,
outline your reasons for supposing that the shear stress at any location on the
cone is:

(τθφ)θ=β =
ωµ

α
.

(b) Hence, prove that the torque required to hold the cone stationary (or to rotate
the lower plate) is:

T =
2
3
πωµR4

H
.

(c) By substituting β = π/2 − α into Eqn. (E6.7.13) and expanding the various
functions in power series (only a very few terms are needed), prove that g(β) =
1/(2α), and that Eqn. (E6.7.18) again leads to the expression just obtained
for the torque in part (b) above.

Circular
  disk

  q

Liquid

R

H

direction

Axis of
rotation

Rigid clamp
Circular
  disk

r
z

  w

The lower disk is
   rotated with a
  steady angular
    velocity

Fig. P6.16 Cross section of parallel-disk rheometer.
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16. Parallel-disk rheometer—M. Fig. P6.16 shows the diametral cross section
of a viscometer, which consists of two opposed circular horizontal disks, each of
radius R, spaced by a vertical distance H; the intervening gap is filled by a liquid
of constant viscosity µ and constant density. The upper disk is stationary, and the
lower disk is rotated at a steady angular velocity ω in the θ direction.

There is only one nonzero velocity component, vθ, so the liquid everywhere
moves in circles. Simplify the general continuity equation in cylindrical coordi-
nates, and hence deduce those coordinates (r?, θ?, z?) on which vθ may depend.

Now consider the θ-momentum equation, and simplify it by eliminating all
zero terms. Explain briefly: (a) why you would expect ∂p/∂θ to be zero, and (b)
why you cannot neglect the term ∂2vθ/∂z

2.
Also explain briefly the logic of supposing that the velocity in the θ direction

is of the form vθ = rωf(z), where the function f(z) is yet to be determined. Now
substitute this into the simplified θ-momentum balance and determine f(z), using
the boundary conditions that vθ is zero on the upper disk and rω on the lower
disk.

Why would you designate the shear stress exerted by the liquid on the lower
disk as τzθ? Evaluate this stress as a function of radius.

17. Screw extruder optimum angle—M. Note that the flow rate through the
die of Example 6.5, given in Eqn. (E6.5.10), can be expressed as:

Q =
c(p2 − p3)

µD
,

in which c is a factor that accounts for the geometry.
Suppose that this die is now connected to the exit of the extruder studied in

Example 6.4, and that p1 = p3 = 0, both pressures being atmospheric. Derive
an expression for the optimum flight angle θopt that will maximize the flow rate
Qy through the extruder and die. Give your answer in terms of any or all of the
constants c, D, h, L0, r, W , µ, and ω.

Under what conditions would the pressure at the exit of the extruder have its
largest possible value p2max? Derive an expression for p2max.

18. Annular flow in a die—E. Referring to Example 6.5, concerning annular
flow in a die, answer the following questions, giving your explanation in both cases:
(a) What form does the velocity profile, vz = vz(r), assume as the radius r1 of the

inner cylinder becomes vanishingly small?
(b) Does the maximum velocity occur halfway between the inner and outer cylin-

ders, or at some other location?

19. Rotating rod in a fluid—M. Fig. P6.19(a) shows a horizontal cross section
of a long vertical cylinder of radius a that is rotated steadily counterclockwise with
an angular velocity ω in a very large volume of liquid of viscosity µ. The liquid
extends effectively to infinity, where it may be considered at rest. The axis of the
cylinder coincides with the z axis.
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Fig. P6.19 Rotating cylinder in (a) a single
liquid, and (b) two immiscible liquids.

(a) What type of flow is involved? What coordinate system is appropriate?
(b) Write down the differential equation of mass and that one of the three

general momentum balances that is most applicable to the determination of the
velocity vθ.

(c) Clearly stating your assumptions, simplify the situation so that you obtain
an ordinary differential equation with vθ as the dependent variable and r as the
independent variable.

(d) Integrate this differential equation, and introduce any boundary condi-
tion(s), and prove that vθ = ωa2/r.

(e) Derive an expression for the shear stress τrθ at the surface of the cylinder.
Carefully explain the plus or minus sign in this expression.

(f) Derive an expression that gives the torque T needed to rotate the cylinder,
per unit length of the cylinder.

(g) Derive an expression for the vorticity component (∇× v)z. Comment on
your result.

(h) Fig. P6.19(b) shows the initial condition of a mixing experiment in which
the cylinder is in the middle of two immiscible liquids, A and B, of identical den-
sities and viscosities. After the cylinder has made one complete rotation, draw a
diagram that shows a representative location of the interface between A and B.

20. Two-phase immiscible flow—M. Fig. P6.20 shows an apparatus for mea-
suring the pressure drop of two immiscible liquids as they flow horizontally between
two parallel plates that extend indefinitely normal to the plane of the diagram. The
liquids, A and B, have viscosities µA and µB, densities ρA and ρB, and volumetric
flow rates QA and QB (per unit depth normal to the plane of the figure), respec-
tively. Gravity may be considered unimportant, so that the pressure is essentially
only a function of the horizontal distance, x.
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Fig. P6.20 Two-phase flow between parallel plates.

(a) What type of flow is involved?
(b) Considering layer A, start from the differential equations of mass and

momentum, and, clearly stating your assumptions, simplify the situation so that
you obtain a differential equation that relates the horizontal velocity vxA to the
vertical distance y.

(c) Integrate this differential equation so that you obtain vxA in terms of y and
any or all of d, dp/dx, µA, ρA, and (assuming the pressure gradient is uniform)
two arbitrary constants of integration, say, c1A and c2A. Assume that a similar
relationship holds for vxB.

(d) Clearly state the four boundary and interfacial conditions, and hence derive
expressions for the four constants, thus giving the velocity profiles in the two layers.

(e) Sketch the velocity profiles and the shear-stress distribution for τyx between
the upper and lower plates.

(f) Until now, we have assumed that the interface level y = d is known. In
reality, however, it will depend on the relative flow rates QA and QB. Show clearly
how this dependency could be obtained, but do not actually carry the calculations
through to completion.

Impeller

Drops
Film

  wz

r

Axis of
rotation

Fig. P6.21 Rotating-impeller humidifier.

21. Room humidifier—M. Fig. P6.21 shows a room humidifier, in which a
circular impeller rotates about its axis with angular velocity ω. A conical exten-
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sion dips into a water-bath, sucking up the liquid (of density ρ and viscosity µ),
which then spreads out over the impeller as a thin laminar film that rotates ev-
erywhere with an angular velocity ω, eventually breaking into drops after leaving
the periphery.

(a) Assuming incompressible steady flow, with symmetry about the vertical
(z) axis, and a relatively small value of vz, what can you say from the continuity
equation about the term:

∂(rvr)
∂r

?

(b) If the pressure in the film is everywhere atmospheric, the only significant
inertial term is v2

θ/r, and information from (a) can be used to neglect one particular
term, to what two terms does the r momentum balance simplify?

(c) Hence prove that the velocity vr in the radial direction is a half-parabola
in the z direction.

(d) Derive an expression for the total volumetric flow rate Q, and hence prove
that the film thickness at any radial location is given by:

δ =
(

3Qν
2πr2ω2

)1/3

,

where ν is the kinematic viscosity.

Q

Gap width is exaggerated here

arc

vc

Fig. P6.22 Transport of inner cylinder.

22. Transport of inner cylinder—M (C). As shown in Fig. P6.22, a long solid
cylinder of radius rc and length L is being transported by a viscous liquid of the
same density down a pipe of radius a, which is much smaller than L. The annular
gap, of extent a − rc, is much smaller than a. Assume: (a) the cylinder remains
concentric within the pipe, (b) the flow in the annular gap is laminar, (c) the shear
stress is essentially constant across the gap, and (d) entry and exit effects can be
neglected. Prove that the velocity of the cylinder is given fairly accurately by:

vc =
2Q

π(a2 + r2
c)
,

where Q is the volumetric flow rate of the liquid upstream and downstream of the
cylinder. Hint : concentrate first on understanding the physical situation. Don’t
rush headlong into a lengthy analysis with the Navier-Stokes equations!
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Fig. P6.23 Flow between inclined planes.

23. Flow between inclined planes—M (C). A viscous liquid flows between two
infinite planes inclined at an angle 2α to each other. Prove that the liquid velocity,
which is everywhere parallel to the line of intersection of the planes, is given by:

vz =
r2

4µ

(
cos 2θ
cos 2α

− 1
)(
−∂p
∂z

)
,

where z, r, θ are cylindrical coordinates. The z-axis is the line of intersection of
the planes and the r-axis (θ = 0) bisects the angle between the planes. Assume
laminar flow, with:

∂p

∂z
= µ∇2vz = µ

[
1
r

∂

∂r

(
r
∂vz
∂r

)
+

1
r2

∂2vz
∂θ2

]
,

and start by proposing a solution of the form vz = rng(θ)(−∂p/∂z)/µ, where the
exponent n and function g(θ) are to be determined.

24. Immiscible flow inside a tube—D (C). A film of liquid of viscosity µ1

flows down the inside wall of a circular tube of radius (λ + ∆). The central core
is occupied by a second immiscible liquid of viscosity µ2, in which there is no net
vertical flow. End effects may be neglected, and steady-state circulation in the
core liquid has been reached. If the flow in both liquids is laminar, so that the
velocity profiles are parabolic as shown in Fig. P6.24, prove that:

α =
2µ2∆2 + λµ1∆

4µ2∆ + λµ1

,

where ∆ is the thickness of the liquid film, and α is the distance from the wall
to the point of maximum velocity in the film. Fig. P6.24 suggests notation for
solving the problem. To save time, assume parabolic velocity profiles without
proof: u = a+ bx+ cx2 and v = d+ ey + fy2.
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Fig. P6.24 Flow of two immiscible liquids in a pipe.
The thickness ∆ of the film next to the wall is exaggerated.

Discuss what happens when λ/∆→∞; and also when µ2/µ1 → 0; and when
µ1/µ2 → 0.

25. Blowing a polyethylene bubble—D. For an incompressible fluid in cylindri-
cal coordinates, write down:
(a) The continuity equation, and simplify it.
(b) Expressions for the viscous normal stresses σrr and σθθ, in terms of pressure,

viscosity, and strain rates.

O

a

q

sqq
P + D p

sq q

t

P

Fig. P6.25 Cross section of half of a cylindrical bubble.

A polyethylene sheet is made by inflating a cylindrical bubble of molten poly-
mer effectively at constant length, a half cross section of which is shown in Fig.
P6.25. The excess pressure inside the bubble is small compared with the external
pressure P , so that ∆p¿ P and σrr

.= −P .
By means of a suitable force balance on the indicated control volume, prove

that the circumferential stress is given by σθθ = −P + a∆p/t. Assume pseudo-
steady state—that is, the circumferential stress just balances the excess pressure,
neglecting any acceleration effects.
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Hence, prove that the expansion velocity vr of the bubble (at r = a) is given
by:

vr =
a2∆p
4µt

,

and evaluate it for a bubble of radius 1.0 m and film thickness 1 mm when subjected
to an internal gauge pressure of ∆p = 40 N/m2. The viscosity of polyethylene at
the appropriate temperature is 105 N s/m2.

26. Surface-tension effect in spinning—M. Example 6.6 ignored surface-
tension effects, which would increase the pressure in a filament of radius R ap-
proximately by an amount σ/R, where σ is the surface tension. Compare this
quantity with the reduction of pressure, µdvz/dz, caused by viscous effects, for a
polymer with µ = 104 P, σ = 0.030 kg/s2, L = 1 m, RL (exit radius) = 0.0002 m,
vz0 = 0.02 m/s, and vzL = 2 m/s. Consider conditions both at the beginning and
end of the filament. Comment briefly on your findings.

27. Radial pressure variations in spinning—M. Example 6.6 assumed that the
variation of pressure across the filament was negligible. Investigate the validity of
this assumption by starting with the suitably simplified momentum balance:

∂p

∂r
= µ

[
∂

∂r

(
1
r

∂(rvr)
∂r

)
+
∂2vr
∂z2

]
.

If vz is the local axial velocity, prove that the corresponding increase of pressure
from just inside the free surface (pR) to the centerline (p0) is:

p0 − pR =
µvz(lnβ)3R2

4L3
,

where β = vzL/vz0. Obtain an expression for the ratio ξ = (pR−p0)/(µdvz/dz), in
which the denominator is the pressure decrease due to viscosity when crossing the
interface from the air into the filament, and which was accounted for in Example
6.6.

Estimate ξ at the beginning of the filament for the situation in which µ = 104

P, L = 1 m, RL (exit radius) = 0.0002 m, vz0 = 0.02 m/s, and vzL = 2 m/s.
Comment briefly on your findings.

28. Condenser with varying viscosity—M. In a condenser, a viscous liquid
flows steadily under gravity as a uniform laminar film down a vertical cooled flat
plate. Due to conduction, the liquid temperature T varies linearly across the film,
from T0 at the cooled plate to T1 at the hotter liquid/vapor interface, according
to T = T0 + y(T1 − T0)/h. The viscosity of the liquid is given approximately by
µ = µ∗(1− αT ), where µ∗ and α are constants.

Prove that the viscosity at any location can be reexpressed as:

µ = µ0 + cy, in which c =
µ1 − µ0

h
,
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where µ0 and µ1 are the viscosities at temperatures T0 and T1, respectively.
What is the expression for the shear stress τyx for a liquid for steady flow in

the x-direction? Derive an expression for the velocity vx as a function of y. Make
sure that you do not base your answer on any equations that assume constant
viscosity.

Sketch the velocity profile for both a small and a large value of α.

29. True/false. Check true or false, as appropriate:

(a) For horizontal flow of a liquid in a rectangular duct
between parallel plates, the pressure varies linearly
both in the direction of flow and in the direction nor-
mal to the plates.

T F

(b) For horizontal flow of a liquid in a rectangular duct
between parallel plates, the boundary conditions can
be taken as zero velocity at one of the plates and
either zero velocity at the other plate or zero velocity
gradient at the centerline.

T F

(c) For horizontal flow of a liquid in a rectangular duct
between parallel plates, the shear stress varies from
zero at the plates to a maximum at the centerline.

T F

(d) For horizontal flow of a liquid in a rectangular duct
between parallel plates, a measurement of the pres-
sure gradient enables the shear-stress distribution to
be found.

T F

(e) In fluid mechanics, when integrating a partial differ-
ential equation, you get one or more constants of in-
tegration, whose values can be determined from the
boundary condition(s).

T F

(f) For flows occurring between r = 0 and r = a in cylin-
drical coordinates, the term ln r may appear in the
final expression for one of the velocity components.

T F

(g) For flows in ducts and pipes, the volumetric flow rate
can be obtained by differentiating the velocity profile.

T F

(h) Natural convection is a situation whose analysis de-
pends on not taking the density as constant every-
where.

T F

(i) A key feature of the Weissenberg rheogoniometer is
the fact that a conical upper surface results in a uni-
form velocity gradient between the cone and the plate,
for all values of radial distance.

T F
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(j) If, in three dimensions, the pressure obeys the equa-
tion ∂p/∂y = −ρg, and both ∂p/∂x and ∂p/∂z are
nonzero, then integration of this equation gives the
pressure as p = −ρgy + c, where c is a constant.

T F

(k) If two immiscible liquids A and B are flowing in the x
direction between two parallel plates, both the veloc-
ity vx and the shear stress τyx are continuous at the
interface between A and B, where the coordinate y is
normal to the plates.

T F

(l) In compression molding of a disk between two plates,
the force required to squeeze the plates together de-
creases as time increases.

T F

(m) For flow in a wetted-wall column, the pressure in-
creases from atmospheric pressure at the gas/liquid
interface to a maximum at the wall.

T F

(n) For one-dimensional flow in a pipe—either laminar
or turbulent—the shear stress τrz varies linearly from
zero at the wall to a maximum at the centerline.

T F

(o) In Example 6.1, for flow between two parallel plates,
the shear stress τyx is negative in the upper half
(where y > 0), meaning that physically it acts in
the opposite direction to that indicated by the con-
vention.

T F


