University of Northern lowa

UNI ScholarWorks

Honors Program Theses Student Work

2013

Developing crochet patterns for surfaces of non-constant
curvature

Katherine Lea Pearce
University of Northern lowa

Let us know how access to this document benefits you

Copyright ©2013 Katherine Lea Pearce
Follow this and additional works at: https://scholarworks.uni.edu/hpt

Cf Part of the Mathematics Commons

Recommended Citation

Pearce, Katherine Lea, "Developing crochet patterns for surfaces of non-constant curvature" (2013).
Honors Program Theses. 576.

https://scholarworks.uni.edu/hpt/576

This Open Access Honors Program Thesis is brought to you for free and open access by the Student Work at UNI
ScholarWorks. It has been accepted for inclusion in Honors Program Theses by an authorized administrator of UNI
ScholarWorks. For more information, please contact scholarworks@uni.edu.

Offensive Materials Statement: Materials located in UNI ScholarWorks come from a broad range of sources and
time periods. Some of these materials may contain offensive stereotypes, ideas, visuals, or language.


https://scholarworks.uni.edu/
https://scholarworks.uni.edu/hpt
https://scholarworks.uni.edu/sw_uhp
https://scholarworks.uni.edu/feedback_form.html
https://scholarworks.uni.edu/hpt?utm_source=scholarworks.uni.edu%2Fhpt%2F576&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.uni.edu%2Fhpt%2F576&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uni.edu/hpt/576?utm_source=scholarworks.uni.edu%2Fhpt%2F576&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uni.edu
https://scholarworks.uni.edu/offensivematerials.html

DEVELOPING CROCHET PATTERNS FOR SURFACES OF NON-CONSTANT

CURVATURE

A Thesis Submitted

in Partial Fulfillment

of the Requirements for the Designation

University Honors

Katherine Lea Pearce

University of Northern lowa

May 2013



This Study by: Katherine Lea Pearce
Entitled: Developing Crochet Patterns for Surfaces of Non-Constant Curvature
has been approved as meeting the thesis or project requirement for the Designation

University Honors

'Z/{ // S Dr. Bill Wood, Mathematics Department |

Date Honors Thesis Advisor

Dr. ‘JA'és’s,i"c:éy Moon, Director, University Honors Program
f L



Abstract

The purpose of this project is to develop an algorithm to create crochet patterns lor a variety
of surfaces. T start with surfaces of constant curvature: the Euclidean surface and the sphere.
Then, I generate patterns for surfaces of revolution by calculating the change in circumference
for each row of stitches. My methods suggest an approach to crochet more surfaces such
as surfaces whose cross section is not a circle. This research demonstrates how crochet can
act as a discrete model of differential geometry. Producing these patterns allows for further
research into the surfaces themselves by providing accurate models as well as continues the
study of the relationship between crochet and mathematics. By studying this relationship I can
increase the amount of understanding of mathematics (a subject often found difficult) for those
who understand crafts, such as crochet, by describing mathematics in terms they can better
understand. This is a veryv important part of researching mathematics; not only researching
advanced topics in mathematics but also how to teach and demonstrate mathematics to non-

mathematical people.



1 Introduction

This project came about after reading the book written by Daina Taimina titled Crocheting Ad-
nentures with Hyperbolic Planes. This book outlines the history of crochet, defines the hyperbolic
surface, and most importantly for this project, shows how to create a crochet pattern for the hy-
perbolic surface. After reading this book, I wondered how to crochet other surfaces, specifically a
sphere. By using the example from Crocheting Adventures with Iyperbolic Planes it was possible
to develop a pattern for a sphere as well as other surfaces. (4)

I started working on this project with the idea that I would work with the three basic surfaces
of constant curvature (Euclidean surface, sphere, and hyperbolic surface) to crate surfaces of non-
constant curvature. T started with reading the Taimina book and studving the process she used
to develop the pattern in order to repeat it for the Euclidean and spherical surfaces. Since the
hyperbolic surface has constant negative curvature, the Euclidean surface has constant 0 curvature,
and the spherical surface has constant positive curvature I believed that T would be able to construct
patterns for surfaces of non-constant curvature based on the patterns for these surfaces.

Tn order to begin developing the patterns for the Euclidean and spherical surfaces T had to
understand what made them different from other surfaces. such as a torus that is shapes like a
donut with a single hole in the middle. To understand this, I read about spherical geometry and
curvature in Ezxperiencing Geometry: Fuclidean and Non-Fuclidean with History the Third Edition
by David W. Henderson and Daina Taimina. This book talked about what geometry looks like on
a sphere, including the geodesics of spherical geometry and triangles on a sphere. I also learned
about curvature from this book, especially extrinsic curvature or Gaussian curvature. (3)

I also learned about curvature from Modern Differential Geometry of Curves and Surfaces by
Alfred Gray. This textbook also gave a very good description of extrinsic curvature that helped me
to learn how to calculate curvature that was to be verv important to me process. (2)

I proceeded to develop the patterns for the Euclidean and spherical surfaces based on what T had
learned from Crocheting Adventures with Hyperbolic Planes, Experiencing Geometry: Euclidean and

Non-Euclidean with Ilistory and Modern Differential Geometry of Curves and Surfaces by Alfred



Gray.

The next step to developing the patterns for surfaces of non-constant curvature did not go as
well. T attempted to develop the pattern for a paraboloid based on the fact that a paraboloid has
positive curvature, but not constant curvature. | was unable to figure out how to take parts of
the patterns for different spheres (each of which has different curvature based on the radius of the
sphere) since I was unable to figure out how to combine the different spherical patterns together in
a way that resulted in a paraboloid.

After being unable to develop acecurate patterns using curvature I turned to using arc length. T
determined that one stitch equals one unit of arc length. The paraboloid pattern was much casier
to develop using arc length after I recalled that the paraboloid is a surface of revolution and can be
treated as circles rotating about an axis. The arc length gives the radius of the circle that is each
row. In order to calculate the radius I used a mathematical program called Wolfram Mathematica.
I had never used this program before and so used The Student’s Introduction to Mathematica: A
Handbook for Precalculus, Calculus, and Linear Algebra the second edition by Bruce F. Torrence and
Eve AL Torrence to learn what the syntax is and what kinds of calculations Wolfram Mathematica
can do. (5)

After determining to use arc length and how to generate the patterns using arc length T was
able 10 generate patterns for the paraboloid, hyperboloid (of 1 and 2 sheets), and ellipsoid. These
surfaces are all surfaces of revolution. Lastly, T experimented with rotating the surfaces about the
axis in a square rather than a circle, finding that the curvature remains the same whether or not the

change in stitches is evenly distributed or concentrated at four corners, as with the square rotations.

2  Crochet

To crochet these surfaces T have been crocheting each row as a circle. Each row will be one time
around, making a complete circle. This means that each row could also be referred to as a “round.”
In Figure 1 below the circle could be a cross section of any of the patterns. Each block in Figure 1

represents a stitch. The number of stitches will change from one row to another as the surfaces






3 Surfaces of Constant Curvature

3.1 Curvature

The best way to think of curvature for this project is to think of it as the best-fit sphere. The
best-fit sphere is the sphere that has the same curvature value as the surface at a given region. So,
it is possible to think of curvature as the sphere that best fits in that section of the surface because
they have the same curvature. Curvature can be measured in Gaussian Curvature which will be
discussed later in this report. For example, the Gaussian curvature of a sphere is calculated by
taking gz.

A Euclidean surface is what is usually thought of when one starts thinking about geometry as it
is what is taught in grade school. Euclidean surfaces are geometrically flat and are what we usually
work with when working with geometry. Euclidean geometry is used on a Euclidean surface. An
example of a Euclidean surface that may not seem obvious is a cylinder. The cylinder is a Euclidean
surface because it can be unrolled onto a flat plane without tearing.

A Euclidean surface has zero curvature, see Figure 3 for an example of a Euclidean surface. A
spherical surface is one that appears to curve outward like on an egg or an apple and has positive
curvature, see Figure 4 for an example of a spherical surface. A hyperbolic surface is one that
appears to curve inward like on coral or kale leaves and has negative curvature, see Figure 5 for an

example of a hyperbolic surface.

Figure 3: Cylinder with zero curvature (9)



Figure 4: Sphere with positive curvature (8)

Figure 5: Crocheted hyperbolic surface with negative curvature (12)

3.2 Gaussian Curvature

Gaussian curvature is the intrinsic curvature of a surface; this is the curvature a bug on the surface
would be able to calculate. Gaussian curvature is defined as k; x ko where k; and k, are the
principal curvatures. The principal curvatures are the curvature in two different directions from
one point on the surface. Figure 3.2 is an example of the principal curvatures marked off on a
surface. However, there are many ways to calculate Gaussian curvature; I will talk more on this
later.

Mean curvature is the average of k; and ky; however, I will use Gaussian curvature for the
following reason. To determine the correct way to measure curvature. I will calculate the curvature
of a cylinder. A cylinder is a Euclidean surface, and so, by the design of this project, it must

have constant 0 curvature. Note that the one of the principal curvatures is 0 and the other is






for each row by using C = 27r. The next step is to calculate the circumference in stitches. This is
done by dividing the circumference in inches by the size of one stitch.

C(inches) = 2nr(inches)

C(stitch) = Zﬂ'ﬁLlh“)

Then it is simple to calculate the increase or decrease from one row to another by subtracting the
circumference (in stitches) of the previous row from the circumference (in stitches) of the current
row. It is interesting to note that the increase is the same for all rows, 6 stitches. This is because
when calculating the circumference in stitches, the equation becomes C = 27n with n representing
the row number. This means that the circumference is increasing by 27 from one row to another
and when this is rounded, as I had to do since stitches must be whole numbers, 27 ronnds to 6.

See Figure 7 below for the pattern for the basic Euclidean surface. See Figure 8 below for a

picture of the resulting crochet surface.

stitch size | 0.75jinches
Hine R C (inches} C {stitches) Inrease/Decrease
1 0.75 5 6 6
2 15 9 13 6
3 2.25 14 19 6
4 3 19 25 6
5 3.75 24 31 6
6 4.5 28 38 6
7] 525 33 44 6
8 6 38 50 6
9 6.75 42 57 6
10 7.5 47 63 [
11 8.25 52 69 6
12 9 57 75 6
13 9.75 61 82 6
14 10.5 66 88 6
15 11.25 71 94 6
16 12 75 101 6
17 12.75 80 107 6

Figure 7: Euclidean surface pattern









relate the circumference of a circle to elements of the sphere when dealing with a great circle. The
circumference of a great circle on a sphere is C = 27w R since the radius of the great circle equals
the radius of the sphere, R.

In order to find how many radians a stitch equals, I will use the equation of circumference of a
great circle. We know that a circle equals 27 radians around, so it is possible to relate radians to
stitch size as follows.

27 (radians) = -Zi;—}jstitches

1(radians) = %stitches

%(radia.ns) = 1(stitch)

Now, note that 8 increases each row by the size of one stitch in radians. ¢ is equal to the row

number, n, multiplied by the size of a stitch in radians: 6 = nl.

So,

9]
1

27 R sin(f)stitches

= 2nRsin(nl)stitches

This is the equation to use to determine the number of stitches in each row of the pattern.

An example of the pattern for a sphere of 6 inches with crochet stitch size of 0.75 inch is below
in Figure 11. For an example of a sphere crocheted using this pattern see Figure 12 below.

Below in Figure 13 you can see a crocheted sphere with radius 6 inches (in blue) and with radius

2 inches (green). You can see the difference in the size of the spheres, as the spheres should be.

3.4.2 Calculating Error

After creating this pattern | verified that the pattern maintains the characteristics of the surface.
I verified the spherical pattern by measuring out a circle on the surface and counting the number
of stitches that form the area of that circle. T then compared that count to the calculated area of
that circle. given that radius, and then caleulated the error.

For example, on the 6 inch radius sphere I have crocheted based on my pattern (see Figure 12

11



R 6jinches
stitch size 0.75]inches
stitch size 0.125]radians
C eudid 38jinches
C euclid 50]stitches
Total Rowd 25
line theta C {r}{inches) C{r)({stitchas) |Inrease/Decrease
1 0.125] 5 6 6
2 0.25 9 12 6
3 0.375] 14 18 [
4 a.s i8 24 6
5 0.625 22 29 S
[ 0.75 26 34 S!
7 0.875 29 39 4
8 1 32 42 4
9 1.125] 34 45 3
10| 1.25] 36 48 2
11 1.375 37 49 2
12 15 38 S0 1
13 1.625) 38 50 0
14 175 37 49 -1
15 1.879] 36 48 -2
i6 2 34 46 -2
17 2.125 32 43 -3
18 225 29 39 -4
19| 2.375 26 35 -4
20 2.5 23 30 -5
21 2625 i 25 -5
22 2.75 14 19 -6
23 2875 10 13 -6
24 3 5 7 -6
25 3.125 1 1 -6

Figure 11: Sphere pattern example

above), a circle of radius 6 stitches on the sphere has an error of 1.8 %. I counted 111 stitches
in the area of the circle when there should have been 113 stitches. This error is verv small when
considering that the pattern must be rounded to whole numbers for each row because it is not
possible to crochet a fraction of a stitch. This helps to justify that the patterns I have produced

follow the curvature and geodesic that the surface has and to validate my results.

3.4.3 Gaussian Curvature of a Sphere

The Gaussian curvature of a sphere is K = ﬁ%. This is not calculated by the product of the two

. ‘ i . . Fup % Fyy—(Fey)? o
principal curvatures, but it is possible to calculate Gaussian curvature by K Ry Zuy LY if

the surface is given by a formula z = f(z,y). F, and F, are single derivatives and F,,, F,,, and






Here T will list the derivatives of f(x,y):

Fp = —2(R? + 22 + y?)~1/2

Fro = —(R2 + 2% + 4?)"1/2 + —22(R2 4 22 4+ ¢2)~3/2
Foy = —zy(R? + 2% + )/

F, = —y(R? + 2% + y?) " 1/2

Fyy = —(R? + 22 + y2) Y24 —y2(R? + 1% 4+ y?) 3/

For the sake of readability I am going to use w = R? 4+ 22 + y2. So,

(—w 12 4 —22032) x (—w Y2 4 —yPw3/2) — (—zyan—3/2)?
A+ (=zw=Y2)2) + (—yw~1/2)2))?
w4 y211,"2 + 222
14 222wt 4 2y2w—1 + zhw—2 + 2229202 + yhw—2
w4 yzw‘2 + 22 ?
1+ 222w 4 2%~ + %2 + 2229202 + yhe 2
w1+ Pt 4 22!
1+ 22%w ) + 292wt + 2w 2 + 2x2y2w—? + yrtw 2
14 y%uw 4+ 220t
w+ 222 + 2Y? + ztw) + 2222w 4 gt

At this time I will replace w for R? + 12 4 y? once again.

2 2
y T
K - 't mrore t e
= PR > 2 e 21222 e
R z Yo+ 2r% + Qy + RZI_g7 5,2 + Ri—vl‘i‘y7 + [ —
2
- RZ4x74y?
- (R2+I2+y2)gﬂ2—127g12)+1'4+212y2+y4
T 5?42
R?
_ R —x?y?
R — 22 — 42
B RZ 8 R2 _ 12 . yZ
RZ — 42 _ R4
1
- R?

That concludes showing that the Gaussian curvature of a sphere is indeed calculated by 5.
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This will be used below to compare the positive curvature of a sphere to other surfaces with positive

curvature, like a paraboloid.

4 Attempting Surfaces of Non-Constant Curvature

Originally when T started working on this project T had helieved that it would he possible to
construct patterns for surfaces of non-constant curvature by using parts of patterns for the three
surfaces of constant curvature. I started with working on a paraboloid. T started by calculating the
curvature of a paraboloid.

For a paraboloid, the surface is give by z = 22 + y%. So, f(z,y) = 2% + 2.

Then,

foe =2z
fy=2y
for =

Jyy =2
Jey =0
And so,

s FaexFyy—(Fey)® .
K= TFI)%,TF?J)%FE with F_T_T. F‘yy

_ 2x2—02
K = tyaarr@oe
- _ 1
K= (14+4r2+4y?)2

This means that each point on the paraboloid has positive curvature and different for each point.
This means that technically, each point should be related to a different sphere pattern since the
sphere has constant positive curvature. It is possible to get different curvatures on a sphere by
changing the radius of the sphere.

When I tried to work on pattern for the paraboloid, T had trouble determining how many stitches
on the paraboloid should come from the same sphere pattern. I also had trouble in determining
what part of the pattern for the sphere to use for the paraboloid. While it is true that the sphere

has constant curvature, the pattern for the sphere changes from one row to another.

15



The incorrect pattern for a paraboloid can be seen in Figure 14. The result of my attempt to

use curvature to crochet a paraboloid can be seen in Figure 15. A correct crocheted paraboloid can

be seen in Figure 24.

2 X y Ik - curvature [Radius of Gosest Sphere number of stitches in each row increase
1 0 1 0.16 2.5 16/
2 0] 1.414213562| 0.049382716 45 28 13
3 0} 1.732050808} 0.023668639 6.5 41 13
4 0 21 0.01384083 8.5 53 13
5 0] 2.236067977] 0.009070295 10.5 66 13
6| 21 1.414213562 0.0064 125 79 13
7 O} 2.645751311} 0.004756243 145 91 13
8 0] 2.828427125] 0.003673095 16.5 104 13
9 ¢} 31 0.002921841 185 116 13
10| 0] 3.16227766| 0.002379536 20.5 129 13
11 0] 3.31662479| 0.001975309 225 141 13
12 0] 3.464101615| 0.001665973 24.5 154 13

Figure 14: Incorrect paraboloid pattern

5 Surfaces of Revolution

T will now develop crochet patterns for surfaces of revolution. This means that the surfaces are

those created by rotating a curve about an axis, in this case the x or ¥ axis.

For example, the paraboloid is created by rotating a parabola about an axis on an x and y

graph. Different surfaces can be obtained by rotating a curve about a different axis. An example

of this is the two types of hyperboloids: one created by rotating a hyperbola about the z-axis and

one created rotating a hyperbola about the y-axis. See Figure 16 below for a hyperboloid of one

sheet. See Figure 17 below for a hyperboloid of two sheets.

5.1 Arc Length

Arc length is defined as the length of the curve. Arc length is used when the distance needed is

not a straight line, such as on the surfaces I will be crocheting. Figure 18 below is of a section of

16







Figure 17: Hyperboloid of 2 Sheets

Figure 18: Example of arc length

find the length of the curve, take the integral. The result is s = [ /1 + (g—g)Mt.

5.2 .ae General Idea

The basic idea to formulate the patterns for surfaces of revolution is to use are length to calculate
z or y value that serves as the radius of the row. Then, calculate the change in circumfere from
one row to the next to find the increase or decrease of stitches. The following sections will describe

this process in greater detail.

18



Figure 19: Right triangle used to derive arc length formula (6)

5.2.1 Using Wolfram Mathematica to Calculate Arc Length and z or y vaiues

To calculate arc length using Wolfram Mathematica I started by inputting as f(t) the "inside” of
the integral in the arc length formula. This way f(t) = /1 + y/(1))2 with ¢/(2)? for the specific
curve I was dealing with. An example of the command in Wolfram Mathematica is £f{t.] :=
\/I_—}_-_(W. This equation is used for a paraboloid.

1 then defined the arc length formula as the integration of f(t). This was best done by utilizing
the integration abilities of Wolfram Mathematica. I defined this equation as s(t). The command in
Wolfram Mathematica to do this is s[t_] := NIntegrate[f[ul, u, 0, t].

I made sure to use the numeric integration command rather than the integration command so
I could calculate the inverse and then specific values of the inverse later in the process. Otherwise,
Wolfram Mathematica will solve the integral and the inverse symbolically.

Then I used the interpolation abilities of Wolfram Mathematica to interpolate f(t), from

above, from 0 to some value, usually 10, with small steps. The interpolation function is defined

19



as ss[x]. The Wolfram Mathematica command is ss = Interpolation[Table[x, s[x], x, 0,
10, 0.511.

This interpolation helps with graphing the function, which is helpful in visualizing what is going
on with the arc length. If the arc length is negative when graphed, there is a problem. I graphed
each ss[x] to make sure the values for the function made sense with what I was expecting. The
Wolfram Mathematica command is Plot[ss[x], x, 0, 10].

The next step to using Wolfram Mathematica to calculate the z or y value of the arc length is
to define the inverse function of ss[x]. Since ss[x] is the arc length, the inverse of this function
will give the z or y value that produces that arc length. To define the inverse function in Wolfram
Mathematica I used inverse = InverseFunction[ss].

Then, it is possible to calculate the needed values for the different arc lengths. The way to
do this is to have Wolfram Alpha calculate the inverse function with a specific value by inputting
inverse[2] or inverse[6].

It is possible to double check that this z value is correct by calculating s(x) with z being the
value from the inverse function. This can be done by inputting s [%] or typing the number resulting
from evaluating the inverse function where the % is: s[1.97997] for example.

The % command in Wolfram Mathematica means the result from the preceding input, not matter
where is was on the page. Another way to think of this, is that the most recent output can be
represented as %. That means if I were calculate inverse [2], inverse [3], and then input s [4], the
result should be 3 (or close to it). See the Appendix for an example of how accurate the inverse[
1 and s[%] calculations are for the hyperboloid.

The z or y value that has been calculated using Wolfram Mathematica is the radiug that will

be used to calculate the circumference of the circle of the rotation of the curve at that arc length.

5.2.2 Circumference of the Circle at = or y vaiues

Since these surfaces are surfaces of revolution about an axis, they can be thought of as each point
of the curve in two dimensions as making a circle about the axis of rotation. So, it is possible to

compute the circumference of the circle at an z or y value. The z or y value that is being rotated

20



will be the radius of the circle at that point.
The r or y value has been calculated above, using Wolfram Mathematica, so now it is possible
to caleulate the circumference at that point.

C(z) =27z

5.2.3 Calculating the Change in Circumference

The last step in developing the crochet pattern is to determine how many stitches to increase or

decrease by from one row to the next. The best way to do this is to find the change in circumference.

C(z) =27z
ac ox
Br =275, an

The change of arc length with respect to x is represented as ‘(’l This is necessary to caleulate
the change in circumference later.

s= JVIT P

o = \/1 +(54)?

Since we calculated " -~ we can calculate 6:[ - by using the Inverse Function Theorem. The theorem
states that if a function is continuously differentiable and non-zero derivative then the inverse of
the derivative is 7;;-,1— So, by the Inverse Function Theorem it is possible to take the reciprocal to

oet on and or __

1
or on T Jitaz?’ (1"

1

So,5I W

ac _ 1

5.3 Paraboloid

A paraboloid is formed by rotating a parabola around an axis. An image of a paraboloid can be
seen below in Figure 20. A parabola has the equation y = az? + bz + ¢. The parabola I will be
using a = 1,b = 0 and ¢ = 0. So, this paraboloid is created by rotating the graph the parabola
represented by y = r2 about the y axis.

A paraboloid can also be made by rotating y? = x about the x axis. y* = z has the same shape

as y = 2 however, it is centered along the z axis rather than the y axis. Compare Figure 21 to

21



Figure 20: Paraboloid (14)

Figure 22 to see how the two parabolas have the same shape, just located in different sections of

the z and y graph. Working with y = z? is enough since my crocheted surfaces do not depend on

where the stitches fall on the graph as long as the shape of the surface is the same.

l N -1

Figure 21: Graph of y = x?

To dete " 1e the pattern for a paraboloid I will be using are length as described above. Since
F{z) = 2, then the parameterization of the function is y(¢) = t? and y’ = 2t. Then, the arc length

is s = [ \/1+ (y(1)2dt
s= [0 /14 (au)-dt
s = fOI V1 + 42dt
ved for z, tells

Note that this will be used to calculate circumference as this equation, when

22
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-0.5

-1.0

Figure 22: Graph of 42 = x

us what z value the specific arc length has. That z value is then the radius of the circumference of
the circle that forms that row. With that z value, it is possible to calculate the circumference of
the row and so the number of stitches in that row.

What we wish to work with is the change in the arc length (represented as n) with respect to

the change in x value. To calculate this, we calculate 42

dx -
M _ (1) = L (7T arkdr)
By the Fundamental Theorem of Calculus, %} =1+ 422,

Later I will use g—i to calculate the change in circumference. So, by the Inverse Function Theorem

e Do . ; ; ot On o3 O 1
it is possible to take the reciprocal to get 57 and 5~ = et

In order to know how many stitches to increase from one row to another, it is necessary to
calculate the change in circumference with respect to the row, represented as %
Circumference is defined by C = 2ar with r being the radius of the circle. Since the radius of

the circle that is the row is equal to the z value found from arc length, substitute z in for » to get

C(z) = 2nz.

23



Then. to find the number of stitches to increase or decrease by from one row to another, calculate

ac

G- In order to do this, the radius is equal to the change in radius with respect to the change in

arc length or row.

— 9q 0z
—271'(,)n

ocC

Bn

ac

. =27 1
on W

The above formula to find the change in circumference depends on the 2 value of the are length.

To find the z value, I need to solve for z in the equation for arc length.

s= fnl 1+ (y'(t))?dt

5= JOI m dt

To see the calculations for the x values used for this pattern see the Appendix.

See Figure 23 below to see a table with all the values calculated. Note that Circumference and
%ST have been rounded to the nearest whole number since both numbers are an amount of stitches

and stitches can only be whole numbers. See Figure 24 to see an image of a crocheted paraboloid

from the pattern I generated.

row arc length  x value of arc lenth C dC/dn
1 1 0.763927 5 3
2 2 12144 8 2
3 3 1.55405 10 2
4 4 1.83688 12 2
5 5 2.08401 13 1
6 6 2.3061 14 1
7 7 2.50942 16 1
8 8 2.69801 17 1
9 9 2.87463 18 1
10 10 3.0413 19 1

Figure 23: Paraboloid pattern

5.4 Ellipsoid

The ellipsoids T will be dealing with are created by rotating an ellipse about the x or y axis; this
means that an ellipse on a 2 dimensional graph would be rotated out of the page, back into the

page to end where it began while being centered about an axis. An ellipse is defined as g + %jr = ]

24






o [y P2

oz a?—a‘xr
or 1
on b2
an sqrt1+7—2—5—a — 5.7
Then, it is possible to calculate %g
C =2nr
IC _ < 1
on 2 1+ b
P Sy v 4

With this, it is possible to calculate the increase in stitches from one row to another. It is
important to realize that the equation for determining the z value that gives a certain arc length is
undefined for decreasing arc length. However, since the ellipse is symmetric about the y axis, the
crochet pattern will be the same for the positive o values as the negative x values. So, the change

in stitch numbers is repeated from the first half of the pattern in reverse.

5.4.1 Ellipsoid with a =6 and b=14

An ellipse with ¢ = 6 and b = 4 would have the equation % + % = 1 and would appear as in

Figure 25 below.

Figure 25: Ellipsoid with a =2 and b= 6

In order to determine the formula for arc length, 2% must be calculated.

or
dy . b7
dx a? b27b23—2
Oy __ —16

ar / P
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Arc length can then be determined.

S—f: \/1+(%6—71§—)2d7‘

/ 1612
16— 3¢
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Using Wolfram Mathematica I used the same sequence of ideas and formulas as described pre-
viously to determine the z values to given an arc length, see the Appendix.

In the Appendix, I was unable to use inverse [6] when trying to calculate the z value for arc
length of 6. This is because Wolfram Mathematica was unable to calculate the value since the
function the integral does not act in a way that Wolfram Mathematica can handle at 6. So I used
the ! function to estimate the most accurate z value to two decimal places.

The next step was to use those z values to calculate the circumference of the circle of rotation

at that point, using the equation C = 27z. Then, also using the x values. I was able to calculate

ac
on *
‘?)—C =27 L =
on 1+ll —bﬂ. x
M msties

Note that since the ellipse of i;—z + 3{% = 1 is symmetric about the ¥ axis, the ellipsoid is also
svmmetric about the y axis. This means that when the z value is equal to a (or as close to it
as is reasonable) the pattern is halfway done and the second half of the pattern decreases the
same number of stitches each row as the corresponding increase row. In general, when a surface
is symmetric about an axis and requires increasing and decreasing it is necessary to repeat this
process. It was not necessary to do this for the hyperboloid of 2 sheets and paraboloid because
there was no need to repeat the pattern while decreasing like for the sphere and the ellipsoid.

In this example when the arc length (or row number) is 8, the z value is 5.92. This is as close
to 6 as is reasonable to expect judging from the way the z values increase just short of 1 with an
increase of 1 arc length. So, row 7 of the pattern will decrease the same number as row 6 increased.
The pattern repeats the increases in reverse order as decreases. This is because the ellipsoid pattern
is the same whether the starting r value is positive or negative on the graph: the two halves of
the ellipsoid increase the same amount when moving toward the center independent of the starting

side. See Figure 26 below for the entire ellipsoid pattern with a = 6 and b = 4. See Figure 27 below

for the crocheted ellipsoid from this pattern.
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be obtained: a hyperboloid of one sheet (Figure 28) and a hyperboloid of two sheets (Figure 29). 1

will cover each in different subsections below.

Fig 28" rhe of 1 Sheet,

Figure 29: Hyperboloid of 2 Sheets

5.6 Hyperboloid of Two Sheets

The hyperboloid of two sheets is created by rotating a hyperboloid of the form ’ " =1 about
the y axis. I will be using @ = b = 1. The same hyperboloid can be obtained from Z‘; — g; 1
rot: about the x value and if the = and y values are switched in the following calculations. Note
that this hyperboloid is crocheted the same way, but does look different when graphed.

So, it is necessary to determine £ and to use Wolfram Mathematica to determine the z values

of certain arec lengths.
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y=V1+z?

o _ =
Az r +1

So, then the arc length is as follows.
5= fOI \/1 + g;’dt

s =[5 T+ (f(1)%t

s= Iy \/1 + ;j dt

5= fo 2tt2

Using Wolfram Mathematica I calculated the x values that give each consecutive arc length,

this can be seen in the Appendix. Using that z value T was able to solve for the y value using the

equation ¥y = v/1 4+ 22, Then, [ was able to calculate the circumference of the circles at those arc

lengths. The next step is to calculate g%

R 2t2—1
s=Jo Tt

on __ 2921
Ay y2—1

By . [yl
SO’ an 2221

Then, the increase in stitches from row to row is calculated by the following.

C=2mr
Cly) = 27y
oC I
(071 =2r 0:/1

aC —1
on T 277\/211,2 i
For a complete look at the different calculations see Figure 30 below and for an image of the

crocheted hyperboloid of two sheets from this pattern see Figure 31 below.

5.6.1 Hyperboloid of One Sheet

A hyperboloid of one sheet can be thought of as the inverse of the hyperboloid of two sheets: the
hyperboloid of one sheet covers the parts of the graph that the hyperboloid of two sheets misses.

Since the hyperboloid of two sheets is the rotation of a; — #r = 1 about the ¢ axis, the hyperholoid

of one sheet is the rotation of i—’l% — If—; = 1 about the y axis. In order to crochet a hyperboloid of
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until the graph reaches y axis.

For convenience, I will start with z = —7.46134 and continue to xz = 7.46134. The graph
contimes on infinitely along the z axis, but I will only be focusing on the z values between -7.46134
and 7.46134. This means that the = values will increase throughout the pattern and y = 1 will be
the middle of the pattern.

After calculating each y value from the known = values, it is possible to calculate the circum-
ference for each circle. The circumference, when rounded, tells how many stitches there are total
in that row. From this information it is possible to calculate the change in stitches from one row
to another by subtracting the circumference of the previous row from the current circumference.

Figure 32 is the pattern produced by this process for the hyperboloid of a = b = 1. Figure 5.6.1

is an image of the crocheted hyperboloid of one sheet.

n x of rly value C change in circumference
1] -7.46134| 7.394024 46
2] -6.75077| 6.676294 42 -5
3] -6.03939{ 5956025 37 -S
4 -5.3269] 5.232195 33 -5
5 -4.61277| 4.503071 28 -5
6] -3.89617| 3.765649 24 -5
71 -3.17547] 3.013903 19 )
8| -2.44735| 2.233724 14 )
9] -1.70359] 1.37921 9 -5
10| 0.918028 1 6 -2
11} 1.70359} 1.37921 9 2
12| 2.44735f 2.233724 14 S
13] 3.17547| 3.013903 19 S
14| 3.896166] 3.765649 24 5
15| 4.61277| 4503071 28 5
16 5.3269| 5.232195 33 )
17| 6.03939] 5.956025 37 5
18] 6.75077]| 6.67629%4 42 5
19} 7.46134] 7.394024 46 5

Figure 32: Excel pattern for hyperboloid of 1 sheet
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Regular Hyperboloid Cross Section Square Rotation Hyperboloid Crass Section

r r

r r
r r

r r
r r

Figure 34: Square cross section

the previously calculated number of stitches from the radius. Lastly, it is possible to calculate the
increase from one row to another. See Figure 35 below for the pattern of rotation a paraboloid
about a square. See Figure 36 for an image of the side view of a hyperboloid of square rotation,
note how the shape is the same as a hyperboloid of circular rotation. See Figure 37 for an image of

a hyperboloid of square rotation from the top, note how there are 4 sides and 4 corners to form a

square.

n xorr| Stitches with out corners| Total Stitches| Increase
1] 0.918028 7 15
2 1.7035% 14 22 (3]
3| 2.44735 20 28 6
4] 3.17547 25 33 6
5| 3.896166 31 39 6
6] 4.61277 37 a5 6
7 5.3269 43 51 6
8| 6.03939 a8 56 6
9| 6.75077 54 62 6

10| 7.46134 60 68 6

Figure 35: Hyperboloid square rotation pattern
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the parabolic surface, the hyperboloid surface, and the ellipsoid surface. These surfaces are surfaces
of constant curvature or of revolution. Tused the idea of crocheting in circles to use the circumference
of that circle to determine the number of stitches in each row. Doing this research has increased the
amount of research done into relating crochet and mathematics, specifically discrete geometry. By
researching how to crochet mathematical surfaces I am increasing the ability for people, especially

crocheters and crafters, to understand mathematics and learn more about geometry and surfaces.
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A  Summary of Notations

# Angle of arc length on a sphere

an

S Derivative of arc length with respect to x

fezd

o Derivative of z with respect to row number

%% Derivative of circumference with respect to row number
F, Frst derivative of F(x,y) with respect to r

F,, First derivative of F(x,y) with respect to y

F,, Second derivative of F(x,y) with respect to

F,,, Second derivative of F(x,y) with respect to y

a Real number that is used to form an ellipse, denominator of
b Real number that is used to form an ellipse, denominator of
C Circumference of circle

k1 Principal curvature

k> Principal curvature

I Stitch size

n Row number, equal to arc length

R Radius of sphere

r Radius of circle
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T Total number of stitches

s Arc length

w Representation for R2 4+ 22+ y2
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