
Wayne State University

Library Scholarly Publications Wayne State University Libraries

4-29-2015

XSD: The Path From Excel to XML: The Basics:
Mapping Elements and Attributes
Amelia Mowry
Wayne State University, amelia.mowry@wayne.edu

This Article is brought to you for free and open access by the Wayne State University Libraries at DigitalCommons@WayneState. It has been accepted
for inclusion in Library Scholarly Publications by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Mowry, Amelia, "XSD: The Path From Excel to XML: The Basics: Mapping Elements and Attributes" (2015). Library Scholarly
Publications. Paper 103.
http://digitalcommons.wayne.edu/libsp/103

http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/libsp
http://digitalcommons.wayne.edu/libraries

XSD: THE PATH FROM EXCEL TO XML

The basics: Mapping Elements and Attributes

By Amelia Mowry, M.S.I.S

 Metadata & Discovery Services Librarian

 Wayne State University

 Detroit, Michigan

 Amelia.mowry@wayne.edu

 @TheMetaDiva

INTRODUCTION
Working with metadata often means moving it between various formats. One problematic move to make is from a

spreadsheet to an XML file. This paper will describe the basics of using an XSD to map a Microsoft Excel

spreadsheet to XML.

Moving metadata can be a messy process, especially when the data is older. Data often comes out of legacy

systems as csv files, tab-delimited files, or Excel files. Moving data from these formats into XML can prove to be a

challenge. I have also found it beneficial to do some initial data cleaning in spreadsheet form. This allows for the

use of Microsoft Excel tools such as sorting, filtering, and vertical lookups to identify potential problems. Having

metadata in a spreadsheet also allows for the use of other metadata tools, such as Open Refine and EMET.

This paper will describe the basics of using XSD to map data from an Excel spreadsheet to an XML file. It will cover

setting up Excel for XML mapping and creating XSDs that map elements and attributes.

This paper is based on a workshop I gave at the 2014 Great Lakes THATCamp at Lawrence Tech in Southfield,

Michigan in September 2014.

 Important notes:

1. This process is not supported in Microsoft Office for Mac.

2. Spreadsheets can be mapped to XML in Open Office, but that process is based on XSLT.

3. The XML editor used in the examples is jEdit. It is free and can be downloaded from

http://www.jedit.org

http://www.jedit.org/

HOW MAPPING DATA IN EXCEL WORKS: THE BIRDS-EYE VIEW
We’ll start with a very high-level view of how an XSD words in this process. The fundamental problem with

transforming a spreadsheet to XML is that spreadsheets are flat while XML is hierarchical. At the very basic level,

the XSD is building a map for how the content in the spreadsheet fits into the hierarchical XML structure.

For example, the

data in the title

column of

spreadsheet A goes

into an XML element

<mods:title>.

However,

<mods:title> is

itself contained

in the element

<mods:titleInfo>

which is in the

element,

<mods:mods>,

which is in turn

in the root

element

<mods:modsCollection>.

The XSD defines the structure of the XML file to be created and identifies where the data from the columns are to

be mapped. The XSD allows for the creation of elements that are not in the spreadsheet but that hold elements. In

the XSD example below, those “holding” or container elements are marked with yellow stars. The XSD also

includes an element that will contain data mapped from the columns in the spreadsheet. That element is circled in

red in the example.

XSD Example A

Spreadsheet Example A

XML Example A

SETTING UP EXCEL FOR XML
In order to use XSD in Excel, you will have to add the developer tab.

This is a simple procedure. First go to “File” and select “Options.”

From there, select “Customize Ribbon.” You’ll see a listing of the

main tabs. By default, the developer tab is unchecked. Simply check

it. When you return to the main Excel page, you will see the

Developer tab along the top. You will use the source tool within this

tab to map elements in your XSD to your spreadsheet.

MAPPING ELEMENTS
To avoid confusion from namespaces and specific schema requirements, I’m going to work through a simple

example that is not based on a particular standard. We’re going to go over the mapping of elements based on a

small spreadsheet about fruit. Our spreadsheet

contains three columns, each of which will become

an element.

However, we’re not going to worry about those

elements just yet. The first thing we need to do

when creating an XSD is identify the “invisible”

elements that hold the elements shown in the cells.

This is actually not a difficult thing to do. The data

in the cells are not independent. For example, the

three cells in row two are all related; they all

provide details about a type of fruit called an

apple, which is red and that grows on a tree.

Each row of data represents one thing. In the case of this spreadsheet,

each thing is a type of fruit. In library data, such as Spreadsheet Example A

above, each row is often a record recording metadata about an individual

item.

The other “invisible” element we have to worry about is what is

represented by the entire spreadsheet, all the rows. If each individual row

represents a type of fruit, all of the rows as a whole represent a group of

fruits. Therefore the XML file created from this spreadsheet will look

something like the XML snippet to the right.

<fruits>

 <fruit>

 <name>apple</name>

 <color>red</color>

 <growsOn>tree</growsOn>

 </fruit>

 <fruit>

 <name>banana</name>

 [… other elements …]
</fruits>

Spreadsheet Example B

To create the XSD to map this spreadsheet, we start with these “holder” or container elements: <fruits> and

<fruit>.

The <fruits> element is declared in line three. It is followed in line four by <xs:complexType>. This means that this

is an element that contains other elements or attributes. <xs:sequence>, which follows in line five, contains those

elements. <fruits> only contains one element, <fruit>. Note the attributes minOccurs=”0” and

maxOccurs=”unbounded”. This means that our XML file must have at least one <fruit> element but can have as

many as we want. In the terms of our spreadsheet, we must have at least one row of data.

The other attribute on line six is ref=”fruit”. This means that the element contained within <fruits> is declared and

described in the <xs:element> with the name fruit. The <xs:element> in line six is referring to the <xs:element>

beginning on line ten. Note that <fruit> also includes an empty <xs:element> where we will add other elements.

On line thirteen, we do not have a ref attribute. In this case, we will be putting the declarations for elements within

the <fruit> element. XSDs can be constructed either way, with all the elements separate and referring to one

another or with elements declared within their container elements. For this example, I’m including both methods.

What you choose to do will depend on personal taste and the complexity of the XSD you are creating.

Now that the “invisible” elements from our spreadsheet are mapped, we can map the elements that represent the

columns in our spreadsheet. These elements will be inside of our <fruit> element. They will be placed between the

sequence tags, and the elements will look like <xs:element name=”name” type=”xs:string”/>

There are a few important things to note about these elements. First is that the type attribute is required for

elements that will contain data from the spreadsheet. In most cases, you will want to use the type “xs:string”. This

simply means that the data from the cells will transfer as is to the XML file. This will be covered in more detail later

on. Second is that these elements end it “/>.” Elements must be closed or your file will not be valid. If your

element does not contain other elements, you can use a self-closing tag, which is a tag that is closed at the end of

the tag that opened it. It ends with “/>.” Our example XSD with the columns mapped is below.

Once the XSD is created, save it. Make sure that you save it as an xsd. In jEdit, you can do this by simply writing the

file as [filename].xsd. The next step is to map this XSD file to your Excel spreadsheet. Go to the Excel file and click

on the developer tab, then go to source. This will add a panel to the right, which will allow you to add your XSD by

clicking on “XML Maps” at the bottom right.

The XML Maps window will open. Click on “Add” and add your XSD. If there is something wrong with the XSD, an

error message will pop up. If not, you’ll be asked to identify the root element of you XML file. This is element that

contains all of the others; it will be the one that represents the spreadsheet as a whole. In our example, that will

be fruits. When this is finished, press “OK.”

When the XSD has been successfully loaded, the map will be visible in the XML Source Pane. It is possible to

automatically map your elements based on the column headings, but I have had that method fail. I prefer to simply

drag the element names from the XML Source Pane to the appropriate column heading.

There are a few things known to cause issues with mapping the columns. First, keep your column headings simple,

unique, and without special characters or spaces. Also try to map the columns in spreadsheet order. Sometimes

columns won’t map properly if they are surrounded by unmapped columns. Make sure the columns map properly

as you go. They should be completely highlighted as shown below if the mapping worked.

When the XSD has been mapped, go to File > Save As. Change the “Save as Type” from an excel format to XML

Data. Then simply save. The result should be an XML file that looks like the XML below.

MORE ON DATA TYPES
Earlier I wrote that any element that will be containing data as opposed to other elements must have an attribute

giving the data type. Generally, this type will be “xs:string,” which will simply add the content of the cell as text.

There are many different data types that can be used, which can be found in Excel’s documentation. (“XML

Schema Definition”) One case in which you may use a different data type would be

if you have date information. Using this data type, you can select how you would

like the date elements formatted in your XML, even if the dates are not consistently

formatted in your spreadsheet.

As an example, I added another column to the fruit spreadsheet containing a

(random) date I ate said fruit. Take note that the dates are formatted

inconsistently. (Anyone who has worked with Excel knows that consistently

formatting dates can be problematic.) Here we have some dates that have an

abbreviated text month, either followed or preceded by the day. We also have a

date made up all numerals. For this XML file, I elected to put all of the dates in the format YYYY-MM. To do that,

we add the XSD element for the <eaten> element with the data type “xs:gYearMonth.” (“XML Schema Definition”)

This will result in an XML file that has all of the dates in this YYYY-MM

format. See the XML snippet at the right.

Overall, you don’t have to be too concerned about data types. If you

attempt to map an element with a data type that does not match the

format of the Excel column, Excel will alert you to the discrepancy and

allow you to select your desired data type.

MAPPING ATTRIBUTES
Mapping Excel data to XML attributes

is slightly more complicated than

mapping elements. There are also

differences depending on whether you

are attempting to map an element that

contains both an attribute and text,

see Attribute Example A, or whether

you are trying to map and element that

contains only an attribute or an

attribute and elements, but no text,

such as Attribute Example B.

First, we will go over how to map

attributes as shown in Example A,

where the elements contain both

content and attributes. In order to do this, we will make use of two new XSD elements, simpleContent and

extension. SimpleContent is used when an elements contains only text or attributes. Extension is used in

conjunction with simpleContent to define the content allowed in the element. (“XSD Text-Only Elements”)

In our example, we will add a column for

the scientific name of our fruits, as shown

on the right. Rather than include this data

as a new element, we are going to include

it as an attribute of our name element.

Then we will extend the content of our

name element in our XSD as shown in the

screenshot below. “Name” now becomes

a complex element, like “fruits” and “fruit.” This means that the tag is no longer self-closing. The element also

cannot declare a type of textual content and contain an attribute, so the “name” element will now look like this:

<xs:element name=”name”> Do not forget to close this tag with </xs:element> as was done with “fruit” and

“fruits.”

Within the name element, add the tag <xs:complexType> to declare that this element contains other items.

However, because this element only contains text and an attribute, we use the tag <xs:simpleContent> rather than

the <xs:sequence> tags used in “fruit” and “fruits.” Next, add the tag <xs:extension base=”xs:string”>. This tag

extends our “name” element to allow for textual content. Note that this tag is not self-closing. The tag declaring

the attribute is located within it. That tag is named <xs:attribute>. It is formatted the same as tags declaring

elements, with an attribute for the name of the attribute and another attribute for the type of the content.

 Attribute Example A

 Attribute Example B

The “name” element

in your finished XSD

will look like the one

in the screenshot to

the right. The rest of

your XSD will look the

same. A common

mistake here is for

elements not to be

closed or not to be

closed in the correct

order.

Add the XSD to your new spreadsheet. The mapping will look slightly different than it did previously. Apply <value>

underneath name to the column representing the common fruit name and add “scientificName” to the column for

the attribute. The resulting XML should look like the screenshot below.

There is a different process for adding attributes to elements that do not hold textual data. Let us say we want to

add an attribute “id” to <fruit> that will specifying a unique identification number for each different fruit. Add the

column as shown below.

In our XSD, we

will add our

<xs:attribute> tag

just above the

</complexType>

and below the

</sequence> tag.

Placement is

important; the

tag must be

below any

elements that are

also contained in

the element. If

this element only

contained an

attribute, no elements, the <xs:attribute> tag would simply be declared between the <complexType> tags.

(“Creating XML Mappings”)

The resulting XML is shown below:

SOURCES
“Creating XML Mappings in Excel 2003.” Office|Dev Center. Microsoft, n.d. Web. 28 Apr. 2015

https://msdn.microsoft.com/en-us/library/office/aa203737%28v=office.11%29.aspx

“XML Schema Definition (XSD) data type support.” Office. Microsoft, n.d. Web. 27 Apr. 2015

https://support.office.com/en-in/article/XML-Schema-Definition-XSD-data-type-support-7cd3c906-9b9e-

4a64-ba77-1b23dc5c771c

“XSD Text-Only Elements.” W3schools.com. Refsnes Data, n.d. Web. 27 Apr. 2015

http://www.w3schools.com/schema/schema_complex_text.asp

APPENDIX

FULL FINAL XSD

https://msdn.microsoft.com/en-us/library/office/aa203737%28v=office.11%29.aspx
https://support.office.com/en-in/article/XML-Schema-Definition-XSD-data-type-support-7cd3c906-9b9e-4a64-ba77-1b23dc5c771c
https://support.office.com/en-in/article/XML-Schema-Definition-XSD-data-type-support-7cd3c906-9b9e-4a64-ba77-1b23dc5c771c
http://www.w3schools.com/schema/schema_complex_text.asp

	Wayne State University
	4-29-2015
	XSD: The Path From Excel to XML: The Basics: Mapping Elements and Attributes
	Amelia Mowry
	Recommended Citation

	tmp.1430320616.pdf.zIjZ6

