
PTC® Arbortext®
Programmer’s Reference
PTC Arbortext Editor and PTC Arbortext

Publishing Engine 6.1 M040

Copyright © 2014 PTC Inc. and/or Its Subsidiary Companies. All Rights Reserved.

User and training guides and related documentation from PTC Inc. and its subsidiary companies
(collectively "PTC") are subject to the copyright laws of the United States and other countries
and are provided under a license agreement that restricts copying, disclosure, and use of such
documentation. PTC hereby grants to the licensed software user the right to make copies in printed
form of this documentation if provided on software media, but only for internal/personal use and
in accordance with the license agreement under which the applicable software is licensed. Any
copy made shall include the PTC copyright notice and any other proprietary notice provided by
PTC. Training materials may not be copied without the express written consent of PTC. This
documentation may not be disclosed, transferred, modified, or reduced to any form, including
electronic media, or transmitted or made publicly available by any means without the prior written
consent of PTC and no authorization is granted to make copies for such purposes.

Information described herein is furnished for general information only, is subject to change without
notice, and should not be construed as a warranty or commitment by PTC. PTC assumes no
responsibility or liability for any errors or inaccuracies that may appear in this document.

The software described in this document is provided under written license agreement, contains
valuable trade secrets and proprietary information, and is protected by the copyright laws of the
United States and other countries. It may not be copied or distributed in any form or medium,
disclosed to third parties, or used in any manner not provided for in the software licenses agreement
except with written prior approval from PTC.

UNAUTHORIZED USE OF SOFTWARE OR ITS DOCUMENTATION CAN RESULT IN CIVIL
DAMAGES AND CRIMINAL PROSECUTION. PTC regards software piracy as the crime it is,
and we view offenders accordingly. We do not tolerate the piracy of PTC software products, and
we pursue (both civilly and criminally) those who do so using all legal means available, including
public and private surveillance resources. As part of these efforts, PTC uses data monitoring and
scouring technologies to obtain and transmit data on users of illegal copies of our software. This
data collection is not performed on users of legally licensed software from PTC and its authorized
distributors. If you are using an illegal copy of our software and do not consent to the collection
and transmission of such data (including to the United States), cease using the illegal version, and
contact PTC to obtain a legally licensed copy.

Important Copyright, Trademark, Patent, and Licensing Information: See the About Box, or
copyright notice, of your PTC software.

UNITED STATES GOVERNMENT RESTRICTED RIGHTS LEGEND

This document and the software described herein are Commercial Computer Documentation and
Software, pursuant to FAR 12.212(a)-(b) (OCT’95) or DFARS 227.7202-1(a) and 227.7202-3(a)
(JUN’95), and are provided to the US Government under a limited commercial license only. For
procurements predating the above clauses, use, duplication, or disclosure by the Government
is subject to the restrictions set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data
and Computer Software Clause at DFARS 252.227-7013 (OCT’88) or Commercial Computer
Software-Restricted Rights at FAR 52.227-19(c)(1)-(2) (JUN’87), as applicable. 01012014

PTC Inc., 140 Kendrick Street, Needham, MA 02494 USA

Contents

About This Guide .. 7
Prerequisite Knowledge... 7
Document Revision History.. 8
Technical Support ... 8
Documentation for PTC Products ... 8
Global Services .. 9
Comments.. 9
Documentation Conventions .. 9

The PTC Arbortext Programmer's Reference ...11
Conventions Used in This Guide .. 12
Where to Get More Information .. 12

Getting Started ... 13
Supported Program and Script Languages.. 15
PTC Arbortext Object Model (AOM) Overview... 17

Introduction to the PTC Arbortext Object Model (AOM).................................... 18
Introduction to the Document Object Model (DOM).. 18
Using the DOM Support in AOM .. 19

Custom Applications.. 21
Overview of Custom Programs and Scripts... 22
Description of the Custom Directory Structure... 22
Using the Custom Directory for Custom Applications 32
Description of the Application Directory Structure .. 33
Using the Application Directory for Custom Applications 36
Deploying Zipped Customizations .. 37
Specifying the JavaScript Interpreter Engine... 38

Using the AOM.. 39
Using ACL with the AOM ... 41

Using the Acl Interface .. 42
Using Java to Access the AOM .. 43

Java Interface Overview .. 44
Java and ACL... 44
Java Virtual Machine (JVM) Management... 47
Accessing the Java Console .. 48
AOM Packages... 48
Compiling Your AOM Java Program ... 49
Using an IDE to create Your AOM Java Program .. 50
Making Classes Available to the Embedded JVM .. 50
Java Access to DOM Extensions ... 51
Java Interface Exceptions.. 51
Accessing the Java Console .. 52
Debugging Java Applications... 53
Sample Java Code.. 54

3

Using JavaScript to Access the AOM.. 55
JavaScript Interface Overview.. 56
JavaScript and ACL .. 56
JavaScript Limitations ... 59
JavaScript Language Extensions ... 59
JavaScript Global Objects ... 61
Calling Java from JavaScript.. 62
JavaScript Interface Error Handling .. 64
Specifying the Interpreter for .js Files.. 65
Sample JavaScript Code ... 65

Using COM to access the AOM.. 67
COM Interface Overview ... 68
Registering and Unregistering PTC Arbortext Editor as a COM Server 68
Accessing COM Using JScript or VBScript.. 69
COM Objects and ACL.. 70
COM Error Handling.. 71
Sample COM Code ... 73

Using JScript to Access the AOM ... 75
JScript Interface Overview ... 76
JScript with ACL ... 76
JScript Limitations... 79
AOM Interfaces Specific to JScript ... 79
JScript Global Objects ... 79
JScript Exception Handling .. 79
Specifying the Interpreter for .js Files ... 80
Sample JScript Code... 80

Using VBScript to Access the AOM .. 81
VBScript Interface Overview .. 82
VBScript and ACL ... 82
VBScript Limitations .. 83
AOM Interfaces Specific to VBScript .. 83
VBScript Global Objects .. 83
VBScript Error Handling .. 84
Sample VBScript Code.. 84

Programming and scripting techniques ... 85
Overview of Programming and Scripting Techniques ... 87
Basic Document Manipulation Using the DOM and AOM ... 89

Overview .. 90
Opening, Closing, and Saving documents... 90
Traversing a Document Using the DOM and AOM... 91
Inserting Text .. 93
Using Range to Select and Delete Content ... 94
Selecting, Copying, Moving Content ... 96

Events .. 99
Overview .. 100
Event Interfaces.. 100
Event Modules and Domains ... 101
Application-Dependent Features .. 104
Notes and Limitations.. 105
Event Handlers ... 105

4 PTC® Arbortext® Programmer’s Reference

Event Types .. 111
Working with Tables... 137

Working with Tables Overview ... 138
Example: Inserting and Modifying a Table... 138
Example: Inserting a Column Based on the Current Selection 140
Example: Identifying a Document Type's Table Model Support....................... 142

Working with XSL Composition .. 145
Overview .. 146
Related AOM Interfaces and Methods .. 146
Example: Composing an HTML File ... 147

Line Numbering in PTC Arbortext Editor and the PTC Arbortext Publishing
Engine ... 151
Line Numbering Overview ... 152
Applying Line Numbers ... 152
Building a Basic Line Numbering Application .. 154
Line numbering application building reference... 155

Interfaces.. 165
Interface Overview .. 167

AOM set Options .. 173
AOM set Options Overview.. 173

Contents 5

About This Guide

This guide covers the following information:

• Part 1: Getting Started— Introduces the AOM and describes supported program
and script languages.

• Part 2: Using the AOM—Describes configuration and customizations necessary to
implement custom applications and how to use Java, JavaScript, JScript, VBScript,
COM, and C++ to access the AOM.

• Part 3: Programming and scripting techniques— Provides descriptions and
examples of using PTC Arbortext Editor and the AOM to perform basic document
operations and to work with events.

• Part 4: Interfaces— Details the W3C and PTC Arbortext interfaces (and their
attributes, enumerations, and methods) supported by the AOM and the PTC
Arbortext Publishing Engine.

Prerequisite Knowledge

The PTC Arbortext Programmer's Reference assumes advanced skill using Java,
JavaScript, JScript, VBScript, or COM (Component Object Model). If you're creating
a PTC Arbortext Publishing Engine application, you also need to be familiar with Java
servlets, servlet containers, web servers, the HTTP protocol, and the SOAP protocol.

7

Document Revision History

6.1 M040
Event Types on page 111 Event documentation is updated with

event and event type additions made
over recent releases. The following event
interfaces are now covered in the event
documentation:

• CMSObjectEvent

• CMSSessionConstructEvent

• CMSSessionCreateEvent

• CMSSessionFileEvent

• CMSSessionBurstEvent

• CMSAdapterConnectEvent

• CMSAdapterDisconnectEvent

Technical Support

Contact PTC Technical Support using the PTC website, email, phone, or fax if you
encounter problems using your product or the product documentation.

Use the Contact Support links on the PTC website at:

www.ptc.com/support/

The PTC website also provides a search facility for technical documentation of particular
interest. To access this search facility, use the URL above and select Search Our
Knowledge.

You must have a Service Contract Number (SCN) before you can receive technical
support. If you do not have an SCN, contact PTC Maintenance Department using the
contact instructions found in your Customer Support Guide.

Documentation for PTC Products

You can access PTC product documentation using the following resources:

• Online Help

Click Help from the user interface for online help available for the product.

• Reference Documents

Individual product manuals are available from the Reference Documents link of
the PTC website at the following URL:

8 PTC® Arbortext® Programmer’s Reference

http://www.ptc.com/support/index.htm

http://www.ptc.com/support/
• Help Center

Help Centers for the most recent product releases are available from the PTC
website at the URL given below. Select the Support Center for the relevant products
to access the Help Centers link.

http://www.ptc.com/support/

You must have a Service Contract Number (SCN) before you can access the Reference
Documents or Help Centers links. If you do not have an SCN, contact PTC Maintenance
Department using the contact instructions found in your Customer Support Guide.

Global Services

PTC Global Services delivers the highest quality, most efficient and most comprehensive
deployments of the PTC Product Development System including PTC Creo, PTC
Windchill, PTC Arbortext, and PTC Mathcad. PTC’s Implementation and Expansion
solutions integrate the process consulting, technology implementation, education and
value management activities customers need to be successful. Customers are led through
Solution Design, Solution Development and Solution Deployment phases with the
continuous driving objective of maximizing value from their investment.

Contact your PTC sales representative for more information on Global Services.

Comments

PTC welcomes your suggestions and comments on our documentation. You can submit
your feedback to the following email address:

arbortext-documentation@ptc.com

Please include the following information in your email:
• Name
• Company
• Product
• Product Release
• Document or Online Help Topic Title
• Level of Expertise in the Product (Beginning, Intermediate, Advanced)
• Comments (including page numbers where applicable)

Documentation Conventions

This guide uses the following notational conventions:

9

http://www.ptc.com/support/
http://www.ptc.com/support/

• Bold text represents exact text that appears in the program's user interface. This
includes items such as button text, menu selections, and dialog box elements. For
example,

Click OK to begin the operation.

• A right arrow represents successive menu selections. For example,

Choose File ▶▶▶Print to print the document.

• Monospaced text represents code, command names, file paths, or other text
that you would type exactly as described. For example,

At the command line, type version to display version information.

• Italicized monospaced text represents variable text that you would
type. For example,

installation-dir\custom\scripts\

• Italicized text represents a reference to other published material. For example,

If you are new to the product, refer to the Getting Started Guide for basic interface
information.

10 PTC® Arbortext® Programmer’s Reference

1
The PTC Arbortext Programmer's

Reference

Conventions Used in This Guide... 12
Where to Get More Information ... 12

11

Conventions Used in This Guide
In addition to the conventions listed earlier, this guide uses the following notational
conventions:

• Square braces ([]) denote optional parameters which may be omitted. For example:

insertBefore(newChild[, refChild])

• A vertical bar (|) separates parameters in a list from which one parameter must be
chosen or used. For example:

allowinvalidmarkup {on | off}

Where to Get More Information
The PDF files for PTC Arbortext Editor and PTC Arbortext Publishing Engine supporting
documentation and related Javadoc can be found in the PTC Arbortext Editor Help Center.
You can open the Help Center from the PTC Arbortext Editor Helpmenu. ACL (Arbortext
Command Language) documentation is included in the Help Center and is not the focus of
the PTC Arbortext Programmer's Reference.

If you're using the PTC Arbortext Publishing Engine, be sure to review Installing PTC
Arbortext Publishing Engine and Configuring PTC Arbortext Publishing Engine for
extensive information on PTC Arbortext Publishing Engine installation, setup, and
configuration.

Training classes are also available. For more information, visit www.ptc.com.

If you are looking for more general information on programming or scripting languages,
you may want to consult the following resources:

• Thinking in Java, Second Edition, by Bruce Eckel. Published by Prentice Hall PTR.
The full content of the book is available online at www.mindview.net/Books/TIJ.

• Sun has extensive Java information available at its web site java.sun.com. The
tutorials are especially helpful to beginners.

• JavaScript: The Definitive Guide, Fourth Edition, by David Flanagan. Published by
O'Reilly and Associates Inc.

• Mozilla has extensive JavaScript information available at its web site
www.mozilla.org.

• ECMA International (European Computer Manufacturers Association) has the
ECMAScript Language Specification, which is the standard used for JavaScript,
available at its web site www.ecma.ch.

• Microsoft has extensive information about JScript, VBScript, ActiveX scripting
host, and COM available at its web site msdn.microsoft.com.

12 PTC® Arbortext® Programmer’s Reference

http://www.arbortext.com
http://www.mindview.net/Books/TIJ/
http://java.sun.com
http://www.mozilla.org
http://www.ecma.ch
http://msdn.microsoft.com

I
Getting Started

13

2
Supported Program and Script

Languages

You can write programs and scripts in several supported languages. The following table
lists the supported languages and their descriptions:

Supported Program and Script Languages

Language Description
Java Cross-platform, object-oriented programming language.
COM Windows Component Object Model. COM is not actually a

language but a standard. It is supported by several languages,
including C++ and Visual Basic.

JavaScript Cross-platform, object-oriented scripting language, not directly
related to Java. The standard it follows is called ECMAScript.

JScript A COM-based, loosely-typed scripting language, not directly
related to Java but similar to JavaScript.

VBScript A COM-based scripting language that is a subset of the Visual
Basic for Applications programming language.

ACL Arbortext Command Language, a proprietary scripting
language from PTC Inc.

15

3
PTC Arbortext Object Model

(AOM) Overview

Introduction to the PTC Arbortext Object Model (AOM) 18
Introduction to the Document Object Model (DOM) .. 18
Using the DOM Support in AOM ... 19

The AOM (PTC Arbortext Object Model) delivers much of ACL's functionality available
to non-ACL programmers. This includes support for the W3C DOM (Document Object
Model) standard. Specifically for PTC Arbortext Editor and PTC Arbortext Publishing
Engine, the DOM is extended with several additional interfaces, attributes, and methods.

17

Introduction to the PTC Arbortext Object
Model (AOM)
The AOM provides object-oriented programming access to PTC Arbortext Editor and
PTC Arbortext Publishing Engine. The AOM supports the W3C DOM (Document Object
Model) Core and Validation interfaces with extensions, and provides many additional
interfaces for PTC Arbortext-specific features that are not part of the DOM. The PTC
Arbortext extensions to the DOM use a naming convention where A (for PTC Arbortext)
is prepended to the DOM interface name; for example, the PTC Arbortext extension
for the DOM Node interface is ANode.

The AOM supports bindings to Java, COM (Component Object Model), and C++. The
AOM also provides scripting access to its interfaces using JavaScript, JScript, VBScript,
and the ACL (Arbortext Command Language).

The following diagram shows the relationship between PTC Arbortext Editor and PTC
Arbortext Publishing Engine, the DOM and AOM interfaces, and programs or scripts
accessing the DOM and AOM.

Introduction to the Document Object
Model (DOM)
The Document Object Model (DOM) is a standards-compliant interface for examining
and modifying an XML or SGML document. The DOM Level 2 specification is a
recommendation of the Worldwide Web Consortium (W3C) comprised of several parts.
PTC Arbortext products implement the DOM Level 2 features as described in the
following W3C specifications:

• Document Object Model (DOM) Level 2 Core Specification
(http://www.w3.org/TR/DOM-Level-2-Core)

• Document Object Model (DOM) Level 2 Views Specification
(http://www.w3.org/TR/DOM-Level-2-Views)

• Document Object Model (DOM) Level 2 Events Specification
(http://www.w3.org/TR/DOM-Level-2-Events)

18 PTC® Arbortext® Programmer’s Reference

• Document Object Model (DOM) Level 2 Traversal and Range Specification
(http://www.w3.org/TR/DOM-Level-2-Traversal-Range), range only

PTC Arbortext also implements the W3C Recommendation Document Object
Model (DOM) Level 3 Validation Specification dated 27 January 2004.
(http://www.w3.org/TR/2004/REC-DOM-Level-3-Val-20040127/) The validation
interfaces are implemented for both XML and SGML documents. (The DOM Level 3
Core interface DOMConfiguration is not implemented in this release.)

Using the DOM Support in AOM
Some considerations and limitations for using DOM through the AOM can help you
determine your approach.

DOM Programming Considerations
The following programming considerations apply to all language bindings:
• Document context

The DOM assumes that the XML document being processed is well-formed, but
makes no assumptions about its validity. Because there is no way to represent
validity without departing from the DOM Level 2 standard, the PTC Arbortext
Editor DOM interface ignores context checking. Therefore, it is possible for
the user-written program to make a document invalid that was previously valid.
However, users can context check the document once the user-written program
returns control to PTC Arbortext Editor. Alternatively, the user-written program
can use the Acl interface to perform context checking.

• Performance issues

The DOM allows users to create NodeList objects that contain pointers to
every tag with a given name in a document or document subtree. Once created,
a NodeList is dynamically updated to reflect every tag insertion or deletion.
The existence of these objects is likely to slow tag insertion and deletion in PTC
Arbortext Editor. Users should delete NodeList objects as soon after use as
practical.

DOM Limitations
The PTC Arbortext implementation of the DOM may be used with SGML documents.
Because the DOM portion of the AOM is XML- and HTML-based, features in PTC
Arbortext Editor that are available only for SGML, but not for XML, are not supported
(such as IGNORE marked sections).

The DOM standard states that management of namespace-qualified elements and attributes
will be performed without the insertion or modification of namespace-related XML
attributes, at least until a document is actually written to disk. Instead, PTC Arbortext

PTC Arbortext Object Model (AOM) Overview 19

http://www.w3.org/TR/2004/REC-DOM-Level-3-Val-20040127/

Editor inserts xmlns and xmlns:prefix XML attributes as needed to establish and
maintain namespace/prefix bindings.

PTC Arbortext Editor does not return the document type's internal subset, if any. The
internalSubset of the DocumentType interface will always return a null string.

Using the DOM with SGML Documents
The DOM is designed to support XML documents. The DOM support for SGML
documents is limited to parallel support for XML. If you'll be working with SGML
documents, the DOM will ignore IGNORE marked sections and RCDATA sections. If an
element in an SGML document contains three sub-elements, and one of the sub-elements
is an IGNORE marked section or an RCDATA section, user-written DOM programs will
see only two sub-elements.

20 PTC® Arbortext® Programmer’s Reference

4
Custom Applications

Overview of Custom Programs and Scripts... 22
Description of the Custom Directory Structure .. 22
Using the Custom Directory for Custom Applications.. 32
Description of the Application Directory Structure ... 33
Using the Application Directory for Custom Applications 36
Deploying Zipped Customizations ... 37
Specifying the JavaScript Interpreter Engine .. 38

21

Overview of Custom Programs and
Scripts
The PTC Arbortext Editor and Arbortext Publishing Engine installations have directory
structures within them where you can place your custom scripts and programs. The
custom and the application directories are described in the following sections.

The Custom Directory Structure
The Arbortext-path\custom directory has a subdirectory structure designed to
hold your custom programs and scripts and make them automatically available during
the session. At startup, these subdirectories are searched for Java, JavaScript, JScript,
VBScript, ACL, and composer configuration files. You can also provide custom document
types, entities, fonts, graphics, and native shared libraries and DLLs. The supported
file types are automatically accessed if they reside in the appropriate subdirectory.
Implementing your custom files using this approach takes advantage of the startup
sequence to automatically locate your custom files. The Arbortext-path\custom
directory and its subdirectories are explained in detail in this chapter.

The Application Directory Structure
The Arbortext-path\application subdirectory can contain custom applications
as well as application software distributed by PTC Arbortext. The application
directory must have one or more uniquely named subdirectories, each containing a specific
configuration file, application.xml, that conforms to a specific format. At startup,
the application directory is searched for subdirectories and the presence of a valid
application.xml file. In the uniquely named subdirectory, all subdirectories of the
custom directory are supported. The custom application in a application then
uses these subdirectories in the same way as the custom directory structure. You can
also have additional subdirectories needed to support the implementation of this type of
custom application. Implementing your custom application using this approach takes
advantage of the startup sequence, supports delivering a completely self-contained custom
application, and offers the option of setting the conditions for whether the application
should be loaded. The application directory is also explained in this chapter.

Description of the Custom Directory
Structure
When PTC Arbortext Editor or an Arbortext PE sub-process starts, it can access custom
files placed in specific directories. At startup, it automatically looks for compiled Java
files (.class and .jar files), JavaScript, JScript, VBScript, ACL, document type,

22 PTC® Arbortext® Programmer’s Reference

publishing configuration and other types of files within the Arbortext-path\custom
directory structure.

You can have one or more custom directories outside the Arbortext-path install
tree. To specify a path list for their locations, set the APTCUSTOM environment
variable. The custom directory must be located using a file system; HTTP references
are not supported.

At startup, some search paths are automatically prepended with the path to a custom
subdirectory. Startup automatically sets some of these search paths using a symbolic
variable as a path specification. You can use symbolic parameters to represent a search
path in the context of the default search path, the location of the install tree, or the locale.

If a directory supports more than one type of file, the file types are processed in the
following order:
• .acl (Arbortext Command Language) files
• .js (JavaScript or JScript) files
• .class (Java) files
• .vbs (VBScript) files

For each file type, its files are processed in alphabetical order by file name.

The Arbortext-path\custom directory is processed at startup. If you add custom
applications and document types after startup, they're not recognized during the session. If
you're using PTC Arbortext Editor, it needs to be closed and restarted. If you're using PTC
Arbortext Publishing Engine, you need to stop and restart the Arbortext Publishing Engine
to re-initialize the Arbortext PE sub-processes.

custom.xml File
At the top level of the custom directory is the custom.xml file. Following is the
default version of this file:

<?xml version="1.0" encoding="UTF-8"?>
<!--Arbortext, Inc., 1988-2009, v.4002-->
<ApplicationConfiguration

xmlns="http://www.arbortext.com/namespace/doctypes/appcfg">
<Information>
<!--The following name will be shown in the New dialog

as the category for all document types in this
custom directory that do not specify a category.-->

<Name>Custom Directory Name</Name>
</Information>

</ApplicationConfiguration>

This file is only used when you have a custom document type in the custom\doctypes
subdirectory, and you have not designated a category name for the document type in the
associated document type configuration (.dcf) file’s NewDialog element. In this case,
the name in the custom.xml file’s Name element is used as the Category name for

Custom Applications 23

the document type(s) in the custom\doctypes subdirectory in the New Document
dialog box.

Subdirectory Structure
The following list describes each custom subdirectory and how it's used. PTC Arbortext
Editor and PTC Arbortext Publishing Engine look in these directories for any references
that use a relative path or have no specified path.

• classes subdirectory

Holds compiled Java .class and .jar files.

The PTC Arbortext Editor and Arbortext Publishing Engine JVM Java class path
holds a list of directories and paths to .jar files. Any files matching *.jar are
prepended to the JVM Java class path. Then the classes parent directory is
prepended, putting it first in the JVM Java class path.

In cases where a class file occurs in more than one .jar file, you can extract the
preferred .class file from its .jar file and place it in a subdirectory path of the
classes directory to control which one takes precedent.

• composer subdirectory

Holds publishing configuration files (.ccf, .ent, and .xml files) and can support
a catalog file. Supports one level of subdirectories.

The default path is Arbortext-path\composer. If there are any
subdirectories of the custom\composer directory, those subdirectories are
prepended to the publishing configuration path. Then the custom\composer
parent directory is prepended to the path. If the custom\composer directory
contains a catalog file, that directory is also prepended to the catalog path.

• datamerge subdirectory

Holds data merge configuration (.dmf) files specifying queries and their
components. The .dmf file structure is discussed in the PTC Arbortext Customizer's
Guide.

• dialogs subdirectory

Holds dialog files that can be accessed from custom applications, such as one that
uses the AOM Application.createDialogFromFile method.

The Arbortext-path\samples\XUI\preferences\pref_exts.zip
contains a sample application that adds a tab to the Preferences window as a way
to extend preferences for custom applications. Refer to the readme.txt file
for more information.

If there are any subdirectories of the custom\dialogs directory, those
subdirectories are prepended to the dialog path. Then the custom\dialogs
parent directory is prepended to the dialog path.

• ditarefs subdirectory

24 PTC® Arbortext® Programmer’s Reference

Holds content referenced by DITA documents when the reference is not specified
as either an absolute path name or a path name relative to the current document
directory. For example, the ditarefs subdirectory could hold content referenced
by topic references, content references, and so forth. Supports one level of
subdirectories.

The default DITA reference path is Arbortext-path\ditarefs. The DITA
references path can be set in the File Locations category of the Tools ▶▶▶Preferences
dialog box. You can also use the set ditapath option or the APTDITAPATH
environment variable to set the default path for DITA references. If there are
any subdirectories of the custom\ditarefs directory, those subdirectories
are prepended to the path. Then the custom\ditarefs parent directory is
prepended to the path.

Note
Graphic references from DITA documents are resolved using the graphics path list.

• dictionaries subdirectory

Holds user-defined dictionary files that can be used by the spelling checker.
Supports one level of subdirectories.

The default path is Arbortext-path\lib\proximity\userdict.
If there are any subdirectories of the custom\dictionaries directory,
those subdirectories are prepended to the dictionary path. Then the
custom\dictionaries parent directory is prepended to the dictionary path.

• doctypes subdirectory

Holds a custom catalog file and document type files. Supports one level of
subdirectories. Each document type should reside in a uniquely named subdirectory
of doctypes. The subdirectory should also contain a catalog file for the
custom document type. A doctypes subdirectory can also contain a subset of the
complete document type file set. You can place a document type configuration file
.dcf or stylesheets in a \custom\doctypes\doctype directory.

You can add a stylesheet to the list of stylesheets that displays when
you make a publishing request using one of the File ▶▶▶Publish choices.
PTC Arbortext Editor and PTC Arbortext Publishing Engine search each
\custom\doctypes\doctype directory and aggregate the list of stylesheets.
For example, you can add stylesheets for the Arbortext Simplified XML
DocBook Article built-in document type (asdocbook) by placing them in
Arbortext-path\custom\doctypes\asdocbook.

If a document does not specify an Editor view stylesheet with a stylesheet
association PI, PTC Arbortext Editor will first search first the document directory,
then the relevant \custom\doctypes\doctype directory, and finally the
original location for the doctype directory.

Custom Applications 25

If the subdirectory contains only a .dcf file, it must conform to a naming
convention that expects the subdirectory and .dcf file name to reflect the
base document type name. For example, you could customize the default
Arbortext Simplified XML DocBook Article asdocbook.dcf file, and put it in
Arbortext-path\custom\doctypes\asdocbook\asdocbook.dcf to
override the built-in .dcf. Note that the document type subdirectory and file name
must be the same as the default document type name for PTC Arbortext Editor and
PTC Arbortext Publishing Engine to find all the relevant document type files.

A DCF file can reference other files, such as the .pcf, demo.xml, and
template.xml files. Custom versions of these files can be placed with the .dcf
in \custom\doctypes\doctype. If PTC Arbortext Editor and PTC Arbortext
Publishing Engine find a .dcf in the \custom\doctypes\doctype location,
relative path references are resolved by first searching the same directory as the
.dcf and then by searching the document type directory in the original location.

The default catalog path is Arbortext-path\doctypes. If there are
any subdirectories of the custom\doctypes directory that contain a
catalog file, those subdirectories are prepended to the catalog path. Then the
custom\doctypes parent directory is prepended to the catalog path.

You can place custom tag template files (.tpl) in a
custom\doctypes\doctype\tagtemplates directory. The
custom\tagtemplates directory can also be used as a more generally
available location for tag templates.

Any document type from the custom\doctypes directory is also added to the
list of available document types that are displayed in the File ▶▶▶New dialog box.

• entities subdirectory

Holds file entities. Supports one level of subdirectories.

A file entity is any structurally complete document unit saved as a file. File entities
commonly have an .xml file extension.

The default entity path is Arbortext-path\entities. If there are any
subdirectories of the custom\entities directory, those subdirectories are
prepended to the entity path. Then the custom\entities parent directory is
prepended to the entities path.

• fonts subdirectory

Holds custom AFM or TFM font metric files (.afm and .tfm).

The default fonts path is Arbortext-path\fonts. If there are fonts in
custom\fonts, the path is prepended. If the APTTEXFONTS environment
variable is set, the custom\fonts directory is prepended to it.

• formats subdirectory

Holds custom PubTex format files (.fmt).

26 PTC® Arbortext® Programmer’s Reference

The default PubTex format path is Arbortext-path\formats. If there are
.fmt files in custom\formats, the path is prepended. If the APTTEXFMTS
environment variable is set, the custom\formats directory is prepended to it.

• framesets subdirectory

Holds custom framesets for Publish ▶▶▶For Web. Supports one level of
subdirectories. Framesets are defined in the document type configuration file.

The default frameset path is Arbortext-path\framesets. If there are any
subdirectories of the custom\framesets directory, those subdirectories are
prepended to the framesets path. Then the custom\framesets parent directory
is prepended to the frameset path.

• graphics subdirectory

Holds graphic files. Supports one level of subdirectories.

The default graphics path is Arbortext-path\graphics. If there are any
subdirectories of the custom\graphics directory, those subdirectories are
prepended to the graphics path. Then the custom\graphics parent directory is
prepended to the graphics path.

• importexport subdirectory

Holds PTC Arbortext Import/Export Import project files.

• inputs subdirectory

Holds source files for custom macros, program fixes, or other customizations in a
custom.tmx. Refer to Using .tmx files for more information. Document type
and document .tmx files can be placed in the custom\doctypes directory.

Also holds .tex files and source files for hyphenation exception and pattern rules
in .exc and .pat files.

The default source path is Arbortext-path\inputs. Then the
Arbortext-path\custom\inputs directory is prepended to it.

• lib subdirectory

Holds custom versions of the .pdfcf PDF configuration file. The
default path for .pdfcf files is Arbortext-path\lib. Then the
Arbortext-path\custom\lib directory is prepended to it. For more
information on creating .pdfcf files, refer to the PTC Arbortext Customizer's
Guide.

In addition, the lib subdirectory can hold .wcf files for custom window classes.
For more information on creating .wcf files for window classes, refer to the
Creating custom window class preferences files in the PTC Arbortext Editor help.

The lib subdirectory can also hold custom versions of the following files:

charent.cf

charmap.cf

installprefs.acl

Custom Applications 27

prted.pro

pubview.cf

pubview.fnt

tfmfont.cf

tfmscaling.cf

tfontsub.cf

wcharset.cf

wfontsub.cf

xcharset.cf

xfontsub.cf

You can specify more than one charent.cf file, as the effects are cumulative.
Refer to the Setting paths for new character set files and APTCUSTOM environment
variable topics in the online help for more information.

The custom\lib directory also has locale\locale-name
subdirectories. The default path is the appropriate locale subdirectory of
Arbortext-path\lib\locale. The locale-specific subdirectory of the
custom\lib\locale directory is prepended to the default locale path.

The locale\locale-name can hold custom versions of the .pdfcf PDF
configuration file. For more information on creating .pdfcf files, refer to the PTC
Arbortext Customizer's Guide.

Each locale\locale-name directory can hold custom versions of the
following files:
charent.cf

installprefs.acl

ixlang.cf

pubview.cf

pubview.fnt

tfmfont.cf

tfmscaling.cf

tfontsub.cf

wcharset.cf

wfontsub.cf

xcharset.cf

xfontsub.cf

The custom\lib directory also has a subdirectory to hold native shared libraries
for platform-specific use:
– dll

28 PTC® Arbortext® Programmer’s Reference

Holds Windows dynamic link libraries, or DLL files (.dll).

The path to this directory is prepended to the system PATH environment
variable.

The custom\lib directory can have an ixlang subdirectory, which
holds a custom ixlang.cf file and index mapping files like those found in
Arbortext-path\lib\ixlang.

• publishingrules subdirectory

Holds publishing rules .prcf files which contain definitions of publishing rules
and publishing rule sets.

• pubview subdirectory

Holds pubview.cf and pubview.fnt files.

The default path is Arbortext-path\pubview. Then the
Arbortext-path\custom\pubview directory is prepended to it.

• scripts subdirectory

Holds .acl (Arbortext Command Language), .vbs (VBScript), and .js
(JavaScript and JScript) files. Supports one level of subdirectories.

The scripts in this directory can be called from scripts or applications in the
custom\init directory, which is processed at startup time. Scripts placed here
can be accessed using the source or require ACL commands. A customized
menu item or button can call a script in custom\scripts when invoked.

If there are any subdirectories of the custom\scripts directory, those
subdirectories are prepended to the load path. Then the custom\scripts parent
directory is prepended to the load path.

• stylermodules subdirectory

Holds PTC Arbortext Styler stylesheet modules. Any modules stored in this
directory are automatically available to PTC Arbortext Styler.

• tagtemplates subdirectory

Holds .tpl files. You can also put custom tag templates
you want associated with a particular document type into a
custom\doctypes\doctype\tagtemplates directory or in the
original location of the document type's doctype\tagtemplates directory.

If the APTTAGTPLDIR environment variable is set, this path is prepended to it.
• init subdirectory

Holds .acl, .js, .class, and .vbs files.

The init subdirectory is processed last at startup time. All files of the
supported application types are executed. No nested subdirectories of
custom\init are supported. This directory is processed after the other
Arbortext-path\custom subdirectories so that its scripts and applications
can rely on paths already established during startup.

Custom Applications 29

If you are putting custom applications on the Arbortext PE server, use the init
directory for your custom .acl, .js, .class files.

In the startup process, the custom\init directory is processed after _main.acl
but before arbortext.wcf. See the online help topic Startup command files for
complete startup processing information.

The supported application types are:
– .acl (Arbortext Command Language) files

Errors are reported to PTC Arbortext Editor or recorded by PTC Arbortext
Publishing Engine to be sent to its HTTP client.

– .js (JavaScript or JScript) files

Errors are reported to PTC Arbortext Editor or recorded by PTC Arbortext
Publishing Engine to be sent to its HTTP clients. You need to specify the
JavaScript interpreter engine to use in processing .js files. Refer to Specifying
the JavaScript Interpreter Engine on page 38 for more information.

– .class (Java) files

Java .class files in this directory must be compiled Java classes that are not
part of a named package. You can also put a .class file in custom\init
that calls into a .jar file located in the custom\classes directory.

The Java class must also implement a public static void main(String[] args)
method, which will be called with an empty string array. If the .class file
does not implement this method, an error is reported to PTC Arbortext Editor or
recorded by PTC Arbortext Publishing Engine to be sent to its HTTP client.

– .vbs (VBScript) files

Errors are reported to PTC Arbortext Editor.
• editinit subdirectory

Holds .acl, .js, .class, and .vbs files. Note that when you run PTC
Arbortext Editor with the -c option, any applications in this subdirectory are not
executed at startup.

All files of the supported application types are executed each time a non-ASCII
document is opened for editing. Files in this directory act on a document opened in
the Edit window. File in this directory act on a document opened using ACL when
the 0x8000 flag is used with the doc_open function. File in this directory act on a
document opened using AOM when the OPEN_EDITINIT flag is used with the
Application.openDocument method.

The editinit subdirectory is processed before any document type command
files, document type instance command files, and document command files.

The supported application types are:
– .acl (Arbortext Command Language) files

Errors will be reported if the interface is running interactively, otherwise they
will be suppressed.

30 PTC® Arbortext® Programmer’s Reference

– .js (JavaScript or JScript) files

Errors will be reported if the interface is running interactively, otherwise they
will be suppressed.

– .class (Java) files

Java .class files in this directory must be compiled Java classes that are not
part of a named package. The Java class must also implement a public static
void main(String[] args) method, which is called with an empty string array.
You can put a .class file in custom\init that calls into a .jar file located
in the custom\classes directory. Errors will be reported if the interface is
running interactively, otherwise they will be suppressed.

– .vbs (VBScript) files

Errors will be reported if the interface is running interactively, otherwise they
will be suppressed.

Error Reporting for the custom\init Directory
Errors caused by mistakes in custom code in the Arbortext-path\custom\init
directory are reported with both the error message and the name of the initialization file
causing the error. Note the following:
• If PTC Arbortext Editor is not running interactively (batch mode), no errors are

reported and the errors are not logged.
• PTC Arbortext Publishing Engine records errors and reports them to its HTTP

clients in an HTML error page.
• ACL, JavaScript, and Java class errors are reported to the PTC Arbortext Editor

interface or held by PTC Arbortext Publishing Engine to be sent to HTTP clients
making requests.

Additional Information
If you are using the AOM, refer to the documentation for
Application.getCustomDirectory. Refer to the XUI section of the PTC Arbortext
Customizer's Guide for information on extending the PTC Arbortext Editor Preferences
dialog box for your custom application.

The following set command options and environment variables affect custom path
search lists. They are documented in the online help.
set catalogpath

set composerpath

set dialogspath

set ditapath

set entitypath

set framesetpath

Custom Applications 31

set graphicspath

set javaclasspath

set libpath

set loadpath

set pdfconfigfile

set tagtemplatepath

set userdictpath

Using the Custom Directory for Custom
Applications
The Arbortext-path\custom subdirectory structure provides the means to
implement custom applications. Where your application should be placed depends on the
application purpose and programming language.

If you're implementing custom applications or scripts, the following information will
assist you in determining the approach and location for your files:

• A custom Java program can be placed in custom\init, which supports a
.class file that must implement a public static void main (String[] args)
method. The method will be called at startup with no arguments (an empty String
array). If an error occurs, it's reported interactively for PTC Arbortext Editor or sent
to the HTTP client for the Arbortext Publishing Engine.

A custom Java program can also be placed in custom\classes, which supports
.class or .jar files.

We recommend putting Java applications in the custom\classes directory and
calling or initializing them from the custom\init directory.

Paths to .jar files in custom\classes are automatically prepended
to the embedded PTC Arbortext Editor Java class path. Then the path to
custom\classes is prepended, putting it first in the search order.

• A custom JavaScript, JScript, VBScript, or ACL application can be placed in
custom\init or in custom\scripts. If you place your scripts in the
custom\scripts directory, you can call them from a script or scripts you place
in custom\init (which is processed at startup). Any code that exists outside
a function definition in a script from custom\init is executed at startup time.
Errors are reported if running interactively, otherwise they're suppressed.

You can create a simple JavaScript example file called simple_init.js. The script
should contain the following line:

Application.alert("Hello from JavaScript");

Put the simple_init.js file in Arbortext-path\custom\init.

32 PTC® Arbortext® Programmer’s Reference

When the startup process loads scripts from custom\init, you will see a dialog box
showing the Hello from JavaScript message.

Description of the Application Directory
Structure
The Arbortext-path\application subdirectory supports installing an application
into the PTC Arbortext Editor and Arbortext Publishing Engine install trees. PTC
Arbortext Editor and the Arbortext Publishing Engine automatically search for
subdirectories of the application directory at startup.

Arbortext-path\application must contain a uniquely named subdirectory for
each distributed application. PTC Arbortext recommends using the naming pattern for a
unique qualified Java class name:

com.company-name.application-name

Each unique subdirectory of the application directory must also contain an
application.xml configuration file which describes various aspects of the
application, such as its release version and supported versions of PTC Arbortext products.
At startup, PTC Arbortext Editor and the Arbortext Publishing Engine search the
application directory for any subdirectories containing an application.xml
configuration file. The application.xml file contents provide the criteria to
determine whether the application should be loaded. The application directory must
be located using a file system; HTTP references are not supported.

Subdirectory Structure
A subdirectory of the application directory can be structured the same as the custom
directory to take advantage of automatic PTC Arbortext Editor and PTC Arbortext
Publishing Engine startup processes. For example, if the uniquely named directory
contains graphics or entities directories, those directories are automatically added
to the search paths constructed at startup.

An application path could be something like:

application\com.company-name.application-name

Refer to the Description of the custom directory structure for the names and descriptions
of each supported subdirectory.

Custom Applications 33

Note
When PTC Arbortext Editor or the Arbortext Publishing Engine constructs search
paths, subdirectories of the custom directory take precedence over any corresponding
subdirectories under the application directory. When search lists are constructed
at startup, the first path in any search list will be the appropriate custom directory
followed by any applicable directory under the application directory. For
example, in constructing the graphics search path list at startup, custom\graphics
would precede application\com.arbortext.sample\graphics. An
application\graphics directory with no application.xml file will be ignored
during startup.

When implementing a custom application using the application directory structure,
you can add supplemental directories as needed to support your application. However,
your application code must be aware of these directories and how to use them.

Application Startup File
The Arbortext-path\doctypes\appcfg\application.xml file provides a
basic template for defining information about the custom application. You can make a
copy of doctypes\appcfg\application.xml to use as a template to create the
file that will eventually be distributed with the application. The application.xml file
must be placed in the application's top level directory, for example:

Arbortext-path\application\com.company.application-package-name\application.xml

In the template application.xml file, you can specify a list of elements that describe
the application. If the custom application determines its criteria is not met and the
application is not to be loaded, then these values are ignored. The base element for the file
is the ApplicationConfiguration element. This element has a required attribute called
installType that determines the type of PTC Arbortext Editor installation for which this
application is supported. The default value is any meaning the application is supported
in both the full and compact installations of PTC Arbortext Editor. The other supported
value is full meaning the application is only supported in the full installation of PTC
Arbortext Editor.

The following other elements are supported in the application.xml file:
• Name (required)
• Description
• LicenseNumber is only for an application distributed by PTC Arbortext
• Version (required)
• Date
• Copyright
• Vendor

34 PTC® Arbortext® Programmer’s Reference

• RequiredApplications is for other applications that are required for this application
to run correctly. You must enter the qualified name for the application in the
qualifiedName attribute and a human-readable name in the name attribute.

• SupportedProducts

A Product element has attributes for specifying the name (required), minimum
version (required), and maximum version of the PTC Arbortext product that
supports the custom application or application. The Product specification helps
the launching PTC Arbortext product determine whether it should load this custom
application by matching criteria specified in this section.

The name must be one or more of the following:
– PTC Arbortext Editor
– Arbortext Publishing Engine
– PTC Arbortext Architect
– PTC Arbortext Editor with Styler

The version must follow the convention used by PTC Arbortext products, such as
5.2, 5.2 M040, or 5.3.

• SupportedPlatforms

The section is reserved for future use. Windows is currently the only supported
platform.

• GlobalParameters

Parameter contains ParameterName and ParameterValue elements for
specifying any global variables that the application may need when it's launched.

Related Topics
If you are using ACL, refer to the following ACL function descriptions:
• application_name function
• get_custom_dir function
• get_custom_property function
• get_user_property function
• set_user_property function

If you are using the AOM, refer to the documentation for
Application.getCustomDirectory. Refer to the XUI section of the PTC Arbortext
Customizer's Guide for information on extending the PTC Arbortext Editor Preferences
dialog box for your custom application.

The following attributes from the Application interface are also useful:
• haveWindows

• initDone

Custom Applications 35

• isE3

• customProperties

• userProperties

• name

Using the Application Directory for
Custom Applications
The Arbortext-path\application subdirectory provides the means to implement
a custom application that uses a special configuration file to determine whether it should
be loaded at startup. The application directory uses the same principles of structure
as the custom directory.

The Arbortext-path\application directory is processed at startup. If you add a
custom application after startup, you must exit and restart PTC Arbortext Editor or stop
and restart the Arbortext Publishing Engine to have it recognized. You also have the
option to issue the f=init function to re-initialize the Arbortext PE sub-processes. Refer to
Configuring PTC Arbortext Publishing Engine for more information.

Rules for using the application directory are:

• Your custom application must be contained in a uniquely named subdirectory of
the application directory.

• You must have an application.xml configuration file in the uniquely named
subdirectory that sets the conditions for loading the application.

• The same set of subdirectories supported by the custom directory are supported
for the uniquely named subdirectory of the application directory. At startup,
the supported directories are automatically detected and used in constructing search
paths.

• Any other subdirectory of the application directory will be ignored at
startup. For example, an application\graphics subdirectory with no
application.xml file will be ignored during startup.

PTC Arbortext has developed proprietary custom applications that are deployed using
the application subdirectory structure. A uniquely named subdirectory contains all
the necessary components to run an application within PTC Arbortext Editor as well as
the Arbortext Publishing Engine.

The following information will help determine an approach for a custom application.

• You can have additional subdirectories for your custom application. You are not
limited to the subdirectories supported by the custom directory. However, these
additional directories are not automatically recognized during the startup process.

• Processing each unique application's subdirectories follows the same rules for
processing custom subdirectories. Recall that the application's subdirectories

36 PTC® Arbortext® Programmer’s Reference

come after the custom subdirectories in constructing any applicable search paths
for the session.

• If you decide not to use a particular supported subdirectory, you can improve
performance by omitting the directory to reduce the length of a search path that
would contain it.

• You can use the APTAPPLICATION environment variable to set the path to one
or more application directories.

• An application should not write data to its own application directory. An application
user may not have write permission access to this application directory, for example,
any C:\Program Files directories on Windows (the location where PTC
Arbortext Editor and the Arbortext Publishing Engine are typically installed).

Deploying Zipped Customizations
You can deploy not only custom directories, but also application and content
management system adapters directories in a compressed zip file. Using a zip file to
distribute your customizations has the following advantages:

• You can host your customizations on a web server.

In this case, use the HTTP or HTTPS URL to the zip file as the value for the
APTCUSTOM environment variable.

• Your customizations will be available to users when they cannot access your
network.

If you use a shared network folder to host your customizations, users do not have
access to those customizations when the network is unavailable. If you use a zip file
to distribute your customizations, PTC Arbortext Editor unzips those customizations
to a directory in the PTC Arbortext Editor cache directory (.aptcache\zc).
At start up, PTC Arbortext Editor checks to see whether the zip file has been
updated. If it has, PTC Arbortext Editor downloads and uncompresses the updated
customizations. If not, PTC Arbortext Editor continues to use the customizations
stored in the local cache. If the network is unavailable to a user, your customizations
are still available to that user in the local cache. Note that the user must also have a
fixed PTC Arbortext Editor license on their system to work away from the network.

• Network traffic might be reduced.

Since the zip file containing your customizations is only downloaded once over the
network, and then only if it has been updated, traffic on your network might be
reduced. If you store your unzipped customizations in a shared network folder, PTC
Arbortext Editor might have to access that folder several times over the course
of a session.

• Customizations stored in a compressed zip file are harder to change accidentally
than customizations stored in a directory structure.

Custom Applications 37

Note that you cannot use a zip file to distribute a customized installprefs.acl
in the custom\lib directory. You can use the APTINSTALLPREFS environment
variable to specify the location of a custom installprefs.acl file.

Note also that you cannot include the following font configuration files in the lib
subdirectory of a zipped custom directory:

• charent.cf

• wcharent.cf

• wfontsub.cf

• charmap.cf

These files are processed before a zipped custom directory when PTC Arbortext Editor
starts up, so the files cannot be processed when deployed in that way.

Specifying the JavaScript Interpreter
Engine
Both JavaScript and JScript files have a .js file extension. By default, PTC Arbortext
Editor and the Arbortext Publishing Engine interpret .js files as Rhino JavaScript files.
You should specify the JavaScript interpreter for a JavaScript or JScript .js file. This is
especially important if you have .js files of both types.

We recommend adding a comment line to your script that specifies either the Rhino
JavaScript engine (the default) or the Microsoft JScript engine as shown in the following
examples. The first line of your .js file must be a comment starting with //.

To specify the Rhino JavaScript interpreter:

// type="text/javascript"

To specify the Microsoft JScript interpreter:

// type="application/jscript"

The specification can be enclosed in a script tag. Both of the following examples are
a valid specification for JScript:

// <script type="application/jscript">

// type="application/jscript"

You can also specify the JavaScript interpreter using the ACL set
javascriptinterpreter command. You can specify it in an ACL file placed in the
Arbortext-path\custom\init directory, where it will be processed at startup.
For information on setting the interpreter using ACL, see the online help topic for set
javascriptinterpreter.

38 PTC® Arbortext® Programmer’s Reference

II
Using the AOM

39

5
Using ACL with the AOM

Using the Acl Interface .. 42

You can access the PTC Arbortext Object Model (AOM) from the Arbortext Command
Language (ACL). Because the AOM does not currently provide all the functionality
available from ACL, an AOM program may need to call ACL functions for certain types
of customizations. There are several ACL functions that interface with Java, JavaScript,
JScript, VBScript, and COM, which are documented in the Arbortext Command Language
Reference. Each section in this guide that covers a specific programming or scripting
language notes any language-specific binding issues.

41

Using the Acl Interface
The AOM provides the Acl interface with methods to evaluate an ACL expression
(Acl.eval) or execute an ACL command (Acl.execute). Both methods take a string object
as an argument. This means that any AOM object passed to ACL must be converted to
a string. Likewise, an ACL type returned by Acl.eval is converted to a string to pass to
the AOM.

The expression passed to Acl.eval and the command passed to Acl.execute are evaluated
in the ACL package context of the originating ACL function that invoked the AOM
method, for example, javascript or js_source for JavaScript or a java_type function for
Java. For document type and document JavaScript and VBScript customization files
automatically executed by PTC Arbortext Editor or the Arbortext PE sub-process, this is
the main package. If the string passed to Acl.eval or Acl.execute starts with a function
call with a package prefix, then the package declaring the function is used.

Note
Be aware that the letter case to use for the Acl interface methods varies depending on
the implementation language being used. If you are working with Java or Javascript to
implement the Acl interface, refer to the Acl class Javadoc in the PTC Arbortext Editor
Help Center for the proper letter case for the Acl methods.

42 PTC® Arbortext® Programmer’s Reference

6
Using Java to Access the AOM

Java Interface Overview.. 44
Java and ACL.. 44
Java Virtual Machine (JVM) Management... 47
Accessing the Java Console ... 48
AOM Packages.. 48
Compiling Your AOM Java Program.. 49
Using an IDE to create Your AOM Java Program ... 50
Making Classes Available to the Embedded JVM... 50
Java Access to DOM Extensions .. 51
Java Interface Exceptions ... 51
Accessing the Java Console ... 52
Debugging Java Applications .. 53
Sample Java Code .. 54

43

Java Interface Overview
PTC Arbortext Editor and the PTC Arbortext Publishing Engine include a Java binding to
the AOM. Using this binding, software developers can use the Java programming language
to write applications for PTC Arbortext Editor or the PTC Arbortext Publishing Engine.

PTC Arbortext Editor and the PTC Arbortext Publishing Engine implement the Java
interface using the Java Native Interface (JNI). The JNI allows Java code that runs within
an embedded Java Virtual Machine (JVM) to operate with applications and libraries
written in other languages such as C++. In PTC Arbortext Editor and the PTC Arbortext
Publishing Engine, the JNI interacts specifically with the AOM.

PTC Arbortext Editor or an Arbortext PE sub-process creates only one instance of the
embedded JVM per session and initializes it the first time a Java method is executed.
The –js startup option may be specified when launching PTC Arbortext Editor to cause
the JVM to be initialized on startup. You can also start the JVM using the java_init
ACL function. The JVM is unloaded when you end the current PTC Arbortext Editor or
Arbortext PE sub-process session.

There are several ACL functions of the form java_xxx that allow ACL programs to call a
Java static method, a Java instance method, or a Java constructor, and otherwise interact
with Java programs. These ACL functions are explained in Java and ACL on page 44.

Java Interface Platform Requirements
The Java interface requires access to Sun's Java Runtime Environment (JRE), which is
included in the PTC Arbortext Editor or PTC Arbortext Publishing Engine installation in
the Arbortext-path\bin\jre directory.

Refer to the Installing PTC Arbortext Editor, PTC Arbortext Styler, and PTC Arbortext
Architect or Installing PTC Arbortext Publishing Engine for the most recent version
support information. To use a different JRE, set the ACL set option javavmpath or
Advanced Preference to the location of the alternate JVM.

PTC Arbortext Editor and the PTC Arbortext Publishing Engine make no attempt to use
any other JVM installed on your system, even if it is already loaded for use by another
program. If you want to use another JVM, you need to specify it with the javavmpath
ACL set option. To set the maximum size of the Java Virtual Machine (JVM) memory
allocation pool, use the javavmmemory ACL set option.

Java and ACL
To call a Java method from ACL, use one of the following java_type functions.

• java_constructor— Calls a Java constructor.

• java_constructor_modal— Calls a Java constructor in a new thread.

44 PTC® Arbortext® Programmer’s Reference

• java_delete—Deletes a Java object created by java_constructor, java_instance,
or java_static.

• java_instance— Calls a Java instance method.

• java_instance_modal— Calls a Java instance method in a new thread.

• java_static— Calls a Java static method.

• java_static_modal— Calls a Java static method in a new thread.

• java_init— Tests if the JVM is running and optionally initializes it.

The flow of control in the Java interface usually starts with the execution of a java_type
ACL function.PTC Arbortext Editor or the Arbortext PE sub-process starts its embedded
Java Virtual Machine (JVM) at startup, making the distributed Java classes and user
Java classes available. Java .class files placed in the custom\init directory are
automatically executed without the need for the java_type functions.

The Java programming language supports method overloading, so several methods in a
class may have the same name with different arguments. When searching for the method
to invoke, PTC Arbortext Editor or the Arbortext PE sub-process will use the first method
it finds that has the correct name and correct number of arguments.

The java_type functions use Java reflection methods to analyze the called Java class or
method before calling it, converting the arguments in the java_type function to the data
types used by the called Java code. If you include ACL variables and function calls within
your arguments, PTC Arbortext Editor or the Arbortext PE sub-process will perform the
necessary variable substitution and pass the result to the called Java code. All arguments
passed are considered read-only to the called Java code; the called Java code will not
change the value of any of the passed arguments.

Argument values that originate in ACL and are passed to a class or method can only
be converted to a void, a Java string, or one of the supported primitive data type. The
supported primitive data types are:

• int

• short

• long

• float

• double

• char

• byte

Argument values that originate as returned data from a previous call to a java_type
function can be passed back to a Java class or method. For example, a called Java method
may return a Java structure. This returned object would be placed within the specified
ACL return variable name. While this Java structure could not be used directly within
ACL, you could pass it to another Java class or method by calling a java_type function
and supplying the return variable name as an input argument.

Using Java to Access the AOM 45

Passing Arrays Between Java and ACL
Some ACL functions accept or return array data. Java programs that call these ACL
functions will require additional coding to transfer the array data across the interface.

For example, if a Java program needs a list of the available tag names in a document, it can
use the Acl.eval Java method to call the tag_names ACL function. This ACL function
returns an integer for the total number of available tag names to the Java method, but it
stores the array of tag names in an ACL array. To retrieve this data and make it available
to the Java program, further calls to the Acl.eval method would be necessary. Consider the
sample code that follows:

// This method fills a Java String array with the data
// from an ACL array

private String[] convertAclArray(String aclArrayName, \
int aclArraySize) {

String[] result = new String[aclArraySize];

for (int i = 0; i < aclArraySize; i++) {
// The first element of a Java array has index 0 but the first
// element of an ACL array has index 1
result[i] = Acl.eval(aclArrayName + "[" + String.valueOf(i+1)

+ "]");
}
return result;

}
.
.
.

try {
total = Acl.eval("tag_names($arr)");

} catch (AclException e) {
// Maybe the $arr has been defined and it is not an array
g.drawString(e.getMessage() , 20, 60);
return;

}

String[] names = convertAclArray("$arr", Integer.parseInt(total));
.
.
.

Similarly, data in Java arrays need to be transferred to an ACL array before that data
can be used by an ACL function.

46 PTC® Arbortext® Programmer’s Reference

The java_array_from_acl and java_array_to_acl ACL functions can also be used to
convert certain types of arrays between ACL and Java. See the online help for details.

Java Virtual Machine (JVM) Management
By default at startup, PTC Arbortext Editor loads its embedded Java Virtual Machine
(JVM). You can also load the embedded JVM using the java_init function. The embedded
JVM is dedicated to running Java code started from within PTC Arbortext Editor. PTC
Arbortext Editor creates only one instance of the embedded JVM per session. The JVM is
unloaded when you end the current PTC Arbortext Editor session.

PTC Arbortext Editor makes no attempt to use a public JVM installed on your system,
even if it is already loaded for use with another program. If you choose to load another
JVM, specify it with the set javavmpath ACL command. To set the maximum size of
the Java Virtual Machine (JVM) memory allocation pool, use the set javavmmemory
ACL command.

By default, PTC Arbortext Editor uses the JVM in the Java Runtime Environment
(JRE) included in the PTC Arbortext Editor installation. The JRE is located in the
Arbortext-path\bin\jre directory. You can see the current JVM version included
with PTC Arbortext Editor by choosing Tools ▶▶▶Administrative Tools ▶▶▶Java Console to
open the PTC Arbortext Java Console.

Making Classes Available to the Embedded JVM
You can use the set javaclasspath command or the append_javaclass_path
function to set the list of directories where the embedded JVM can locate your Java
classes. The default setting of set javaclasspath is empty. Regardless of whether
set javaclasspath is set, the embedded JVM searches the distributed Java
classes in Arbortext-path\lib\classes\aom.jar. The aom.jar file holds
com.arbortext.epic, which contains the PTC Arbortext Editor distributed Java
classes that implement the AOM and DOM.

Any .class and .jar files in Arbortext-path\custom\classes are
automatically added to the PTC Arbortext Editor class path.

Subsequent changes to specify external Java class directories do not affect the running
Java Virtual Machine until you exit PTC Arbortext Editor and start a new session. Be sure
to set the path to your directory before making your first Java function call.

Making the AOM Available for Other Java Programs
If you are compiling a Java program that uses the AOM, put
Arbortext-path\lib\classes\aom.jar in the compiler's
-classpath argument.

Using Java to Access the AOM 47

Accessing the Java Console
The Java Console displays everything that a Java program writes to the Java
System.out PrintStream and output from the JavaScript Print() function. The Java
Console also displays the JVM version number and vendor.

Note
The Java Console is not a standard input (that is, stdin). You cannot type in the Java
Console window.

For example, if you use the java_static function to run a Java method and that Java
method executes:

System.out.println("Hello");

then Hello displays on the Java Console (if the Java Console is open).

If the Java Console is closed, output will be discarded.

There are two ways in which you can access the Java Console:
• Choose Tools ▶▶▶Administrative Tools ▶▶▶Java Console.
• Use the java_console function. You can also use this function to specify the size of

the window.

AOM Packages
PTC Arbortext Editor and the PTC Arbortext Publishing Engine ship with Java classes
for using the AOM from the Java programming language. The supplied Java classes are
stored in a Java archive file Arbortext-path\lib\classes\aom.jar and are
intended for developer use. The AOM and DOM Java classes and interfaces are stored in
the following packages:

Package Description
com.arbortext.epic The core interfaces of the AOM, including the

singleton Application and Acl objects.
com.arbortext.epic.tableThe table-related interfaces for the AOM, including

the TableObject superinterface.
com.arbortext.epic.ui User interface-related interfaces for the AOM,

including the Component superinterface.
org.w3c.dom The core interfaces for the W3C Document Object

Model (DOM).
org.w3c.dom.events The interfaces for the W3C DOM Events

specification.

48 PTC® Arbortext® Programmer’s Reference

Package Description
org.w3c.dom.ranges The interfaces for the W3C DOM Ranges

specification.
org.w3c.dom.views The interfaces for the W3C DOM Views

specification.

All the methods in the Application class and the Acl class are class methods. Therefore
you will never need an instance of the Application or an Acl object.

Note
If you inspect the aom.jar file, you will find additional packages (for example,
com.arbortext.epic.internal). These additional packages are for PTC Arbortext internal
use and should not be used in your Java programs.

Your Java program should import the required AOM and DOM packages. For example, if
you are writing a DOM event handler you would need to import at least the following
packages:

import com.arbortext.epic.*;
import org.w3c.dom.*;
import org.w3c.dom.events.*;

See Overview on page 100 for details on using events with the AOM.

Note
The com.arbortext.epic.ui package defines several AOM-specific interfaces that have the
same names as some in the java.awt package. If you import the AOM user interface
package in a .java source file, do not also import java.awt.

Javadoc
Complete Java API Javadoc is delivered in the Programming ▶▶▶Javadoc section of Help
Center. You can also refer to the detailed documentation for each of the AOM interfaces
in 17 Interface Overview on page 167.

Compiling Your AOM Java Program
When compiling a Java program that uses the AOM, you must put
Arbortext-path\lib\classes\aom.jar in the compiler's -classpath
argument. For example:

Using Java to Access the AOM 49

javac -classpath "C:\Program Files\Arbortext\editor\lib\classes\aom.jar" MyClass.java

The compiled program can only be run in the embedded JVM. Java programs running in a
JVM outside of PTC Arbortext Editor cannot use the AOM classes.

Using an IDE to create Your AOM Java
Program
There are a number of Java-based Integrated Development Environments (IDE) that can
be used to create AOM Java programs. The IDE must be able to find the AOM JAR file.
Using Oracle's J/Developer version 3.2.2 as an example, follows these instructions:

1. Create a library

Click on menu item Project followed by Project Properties. On the resulting
dialog box, choose the Libraries tab and then click the Libraries button.
On the resulting dialog box, click the New button and name the new library
Arbortext AOM. In the Class path field on the same dialog box, specify
Arbortext-path\lib\classes\aom.jar. Click OK to finish creating
the library.

2. Reference the library

Return to the Project Properties window under the Libraries tab and click the
Add button. Select Arbortext AOM on the resulting dialog box and click OK
to add it to the current project.

Refer to the documentation for your IDE for instructions on a class path.

Making Classes Available to the
Embedded JVM
The simplest way to make your classes available to PTC Arbortext's embedded JVM
is to put them in the custom\classes directory. Any .class and .jar files in
Arbortext-path\custom\classes are automatically added to the PTC Arbortext
Editor class path.

You can also use the ACL set javaclasspath command or the ACL
append_javaclass_path function to set the list of directories where the embedded JVM
can locate your Java classes. The default setting of set javaclasspath includes
Arbortext-path\custom\classes.

The javaclasspath option is used only for locating non-PTC Arbortext supplied
classes. In addition to aom.jar, several other .jar files are distributed in
Arbortext-path\lib\classes and are automatically included as part of the
embedded JVM's class path.

50 PTC® Arbortext® Programmer’s Reference

Once the embedded Java Virtual Machine has started, changes to the javaclasspath
option or to the directories it specifies will not take affect until you exit and start a new
session of PTC Arbortext Editor or stop and restart the servlet container for the PTC
Arbortext Publishing Engine.

Java Access to DOM Extensions
The AOM's extensions to DOM are represented by companion interfaces that start with
the letter A, for example, ANode is the extension to the W3C Node interface, ADocument
is the extension to the Document interface, and so on.

In Java, these interfaces can be obtained from their related objects by using the casting
methods. For instance:

Document doc = Application.getActiveDocument();
Range r = ((ADocument)doc).getInsertionPoint();

Java Interface Exceptions
Several AOM and DOM methods will raise an exception if an error occurs. The following
tables summarize the DOM and AOM exception classes:

DOM Exception Classes

Exception Class Description
DOMException Raised by core DOM methods.
EventException Raised by DOM event methods.
RangeException Raised by DOM range methods.

AOM Exception Classes

Exception Class Description
AclException Raised by methods in the Acl interface.
AOMException Raised by general AOM methods.
TableException Raised by table-related methods.
WindowException Raised by Window and other user interface related

methods.

In the PTC Arbortext Editor Java interface, all DOM and AOM exceptions are
subclasses of java.lang.RuntimeException and inherit the getMessage method from
the java.lang.Throwable interface. The getMessage method can be used to retrieve an
error message associated with the exception.

Using Java to Access the AOM 51

Most DOM and AOM exception classes define a code field that can be accessed
to determine the numeric error code associated with the exception (the exception
is the AOMException class). Symbolic names for the error codes listed with each
exception interface description in 17 Interface Overview on page 167 are available as
class constants. For example, the following checks for a specific DOM error code
(NO_MODIFICATION_ALLOWED_ERR):

try {
node.insertBefore(newNode, refNode);

}
catch (DOMException e) {
if (e.code == DOMException.NO_MODIFICATION_ALLOWED_ERR) {
// document is read only

}
}

If your Java program does not catch an exception, its execution will be aborted and an
error message will be displayed.

Accessing the Java Console
The Java Console displays everything that a Java program writes to the Java
System.out PrintStream and output from the JavaScript print() function. The Java
Console also displays the JVM version number and vendor.

Note
The Java Console is not a standard input (that is, stdin). You cannot type in the Java
Console window.

For example, if a Java method executes:

System.out.println("Hello");

then Hello displays on the Java Console (if it is open).

If the Java Console is closed, output will be discarded.

There are two ways you can access the Java Console:

• Choose Tools ▶▶▶Java Console.

• Use the java_console ACL function, which can also specify the size of the window.

52 PTC® Arbortext® Programmer’s Reference

Debugging Java Applications
Because the PTC Arbortext embedded JVM supports Sun's Java Platform Debugger
Architecture (JPDA, see http://java.sun.com/products/jpda/),any JPDA compliant Java
debugger can hook to PTC Arbortext's embedded JVM.

JDB can also be used to debug a Java program using two methods: the socket method
and the shared memory method.

Before using JDB, ensure you have Sun JDK version 1.5.0 or later installed on your
workstation. Java debugging related DLLs and shared libraries must be accessible by the
debugger. The PATH environment variable must include the bin directory of the JDK.

Compile your Java programs with the -g flag (for debugging).

The Socket Method
The ACL set javadebugport option specifies the socket port you want to use for
debugging. If javadebugport is set to auto, the PTC Arbortext Publishing Engine
and PTC Arbortext Editor will randomly select an unused socket port.

As an example, if you want to debug the EventFlow class, and it is located in the directory
C:\temp, use the following steps.

1. From the PTC Arbortext Editor command line, enter the following commands:

set javaclasspath=C:\temp
set javadebugport=auto
java_console() # this loads the JVM
eval option('javadebugport')

Note the port number displayed in the eval window. For purposes of this example,
assume this number was 3539,

2. Open a shell window, navigate to the directory where your Java source resides, and
enter the following command:

jdb -connect com.sun.jdi.SocketAttach:port=3539

3. After JDB is initialized, give it a break point. For example, to break at the method
flow of the class EventFlow, enter the following:

> stop in EventFlow.flow

4. From the PTC Arbortext Editor command line, run EventFlow.flow as follows:

java_static('EventFlow','flow')

JDB will stop at the break point and display the line of the source code where it
stopped.

Using Java to Access the AOM 53

http://java.sun.com/products/jpda/

The Shared Memory Method
To use the shared memory method, you must set JVM arguments properly and create a
name for the shared memory address.

As an example, if you want to name the shared memory address <myaddr>, use the
following steps to debug EventFlow.class in C:\temp:

1. From the PTC Arbortext Editor command line, enter the following commands:

set javaclasspath=C:\temp
set javavmargs="-Xdebug -Xrunjdwp:transport=dt_shmem,

address=<myaddr>,server=y,suspend=n"
the above is one long line
java_console()

2. Open an MSDOS shell and enter the following command:

jdb -attach <myaddr>

3. After JDB is initialized, give it a break point. For example, to break at the method
flow of the class EventFlow, enter the following:

> stop in EventFlow.flow

4. From the PTC Arbortext Editor command line, run EventFlow.flow as follows:

java_static('EventFlow','flow')

JDB will stop at the break point and display the line of the source code where it
stopped.

Sample Java Code
Sample Java code for the Java interface is included in the
Arbortext-path\samples\java directory. The README file in this directory
provides a description of the sample code and how to invoke the sample methods. Note
that you must compile the sample Java code before you can use it.

54 PTC® Arbortext® Programmer’s Reference

7
Using JavaScript to Access

the AOM

JavaScript Interface Overview... 56
JavaScript and ACL... 56
JavaScript Limitations.. 59
JavaScript Language Extensions .. 59
JavaScript Global Objects ... 61
Calling Java from JavaScript ... 62
JavaScript Interface Error Handling... 64
Specifying the Interpreter for .js Files .. 65
Sample JavaScript Code... 65

55

JavaScript Interface Overview
PTC Arbortext Editor and the PTC Arbortext Publishing Engine include a JavaScript
binding to the AOM. Using this binding, software developers can use the JavaScript
programming language to write applications for PTC Arbortext Editor and the PTC
Arbortext Publishing Engine.

PTC Arbortext uses the Rhino open-source Java implementation from The Mozilla
Organization as its JavaScript interpreter. This version of Rhino supports the
JavaScript language version 1.5 and is compliant with the European Computer
Manufacturers Association (ECMA) standard described in ECMA-262 Edition 3
(www.mozilla.org/js/language/E262-3.pdf).

PTC Arbortext Editor uses the Rhino interpreter unmodified, distributed as
Arbortext-path\lib\classes\js.jar. For more information about Rhino,
see the Rhino: JavaScript for Java web page at www.mozilla.org/rhino.
The source code for the interpreter is available at the Mozilla site at
www.mozilla.org/rhino/download.html.

The PTC Arbortext Object Model (AOM) interface for JavaScript is implemented on top
of the Java AOM interface classes using a feature called LiveConnect. Refer to Calling
Java from JavaScript on page 62 for details.

Note
The PTC Arbortext Editor JavaScript implementation supports the DOM and PTC
Arbortext Editor AOM interfaces only. It does not support client-side JavaScript
found in web browsers. In particular, there is no browser Window object or window
global execution context. The AOM provides its own Window interface. By default, all
JavaScript code is executed in a single global context. PTC Arbortext Editor does not
currently support other browser-specific JavaScript objects such as Form, HTMLElement,
or Location.

JavaScript platforms
The JavaScript interface is implemented in Java, so it has the same platform requirements
as the Java interface. Refer to Java Interface Platform Requirements on page 44 for
more information.

JavaScript and ACL
JavaScript expressions or scripts can be called from ACL with one of the following ACL
primitives:

56 PTC® Arbortext® Programmer’s Reference

http://www.mozilla.org/js/language/E262-3.pdf
http://www.mozilla.org/rhino/download.html
http://www.mozilla.org/rhino/download.html

• javascript — Function that evaluates a JavaScript expression and returns the
result as a string.

• js_source — Function that reads and executes a file containing a JavaScript
program.

• js— Command that evaluates a JavaScript expression and displays the result.

• source— Command that interprets files ending in .js as JavaScript programs to
be executed when set javascriptinterpreter is set to rhino.

The flow of control in the JavaScript interface usually starts with the execution of
one of these ACL functions or commands, with the exception of customization files
ending in .js. PTC Arbortext Editor and the Arbortext PE sub-process automatically
load and execute JavaScript programs from the doctype.js, instance.js, and
document.js files following the same rules as doctype.acl, instance.acl,
and docname.acl files.

The JavaScript interpreter starts the first time PTC Arbortext Editor or the Arbortext
PE sub-process executes one of these ACL functions or commands or reads a .js
customization file. PTC Arbortext Editor and the Arbortext PE sub-process will also start
the Java Virtual Machine, if necessary. You may also specify the -jvm and -js startup
command options to start Java and JavaScript, respectively, when PTC Arbortext Editor
is opened.

Unlike the Java interface, only string arguments are passed from ACL to JavaScript.
So any ACL argument value passed to js_source is converted to a string. ACL arrays
must be converted to some form of delimited string (for example, as an array literal) or
passed element by element to JavaScript expressions. Refer to Passing Arrays Between
JavaScript and ACL on page 57 for more details.

JavaScript objects may not be returned directly to ACL. If the result of a JavaScript
expression passed to javascript is an object, the toString method is invoked on the object
and that value is returned by javascript.

Passing Arrays Between JavaScript and ACL
There are two ways to pass arrays between JavaScript and ACL, both involving the
conversion of arrays to strings. The first method uses the JavaScript Array.join method to
convert the JavaScript array to a string that is passed to the ACL split function.

For example, the JavaScript code

var jsArr = [1, 2, 3];
Acl.eval("split('" + jsArr.join() + "', aclArr, ',')");

converts the JavaScript array jsArr to the ACL array aclArr.

Using JavaScript to Access the AOM 57

Note
ACL arrays normally start at index 1, which is the same as JavaScript index 0.

The second method uses a loop to pass the array, element by element. The Acl.eval call
in the example above can be rewritten as:

for (var i = 0; i < jsArr.length; i++) {
var ai = i + 1;
Acl.eval("aclArr[" + ai + "] = '" + jsArr[i] + "'");

}

This method is slower, but isn't subject to the ACL string token limit of 4096 characters.

Similarly, there are two ways to retrieve an ACL array from JavaScript. The first method
uses the ACL join function to concatenate the ACL array into a string that initializes a
JavaScript array. For example, you can use the following ACL code to pass the ACL
array created above to JavaScript:

javascript("var jsArr = [" . join(aclArr) . "]");

This method is not limited by the ACL string token limit.

You can also use a loop to retrieve the array, element by element, as shown in the
following JavaScript example:

var count = parseInt(Acl.eval("count(aclArr)"));
var lowBound = parseInt(Acl.eval("low_bound(aclArr)"));
var jsArr = new Array(count);
for (var i = 0; i < count; i++) {
var ai = lowBound + i;
jsArr[i] = Acl.eval("aclArr[" + ai + "]");

}

This method translates the arbitrary array index bounds in an ACL array to the zero-based
array index in JavaScript. It also uses the parseInt method to convert the Java string
returned by Acl.eval into a JavaScript number.

Associative Arrays
The previous examples concern normal numeric indexed arrays. You can use equivalent
techniques to pass associative arrays using for/in loops instead of the for loops as
above. The following JavaScript example passes an associative array to ACL:

var jsAssoc = {one: 1, two: 2, three: 3};
for (var i in jsAssoc) {
Acl.eval("aclAssoc['" + i + "']='" + jsAssoc[i] + "'");

}

58 PTC® Arbortext® Programmer’s Reference

You can pass an ACL associative array to JavaScript using the ACL join function or an
ACL for/in loop similar to the JavaScript example. The following ACL example
shows the join technique to declare a JavaScript array using object literal syntax:

javascript("var jsAssoc={" . join(aclAssoc,',',1) . "}")

Note
The ACL join function also works for associative arrays, and produces a result that can be
used to initialize a JavaScript associative array object as in the previous example.

JavaScript Limitations
The following lists some limitations of the PTC Arbortext Editor JavaScript
implementation.

• The Mozilla Rhino JavaScript interpreter does not support the
netscape.javascript.JSObject class as part of LiveConnect. It
uses a different mechanism for accessing JavaScript objects from
Java. See Requirements and Limitations at the Mozilla web page
www.mozilla.org/rhino/limits.html for additional limitations
of the interpreter, and Tutorial: Embedding Rhino at the Mozilla web page
www.mozilla.org/rhino/tutorial.html for a description of using
JavaScript objects from Java.

• Strings returned by AOM/DOM methods are Java String objects and not JavaScript
String objects. While Java String objects share many of the same methods as
JavaScript String objects (for example, charAt, substring, toLowerCase) and
can be used in string contexts, they are not equivalent. In particular, Java String
has no length property; use the length() method instead. Also, Java String
is not automatically converted to a number when used in a numeric context. To
explicitly convert a Java String to a number when appropriate, use the parseInt
or parseFloat function.

To perform JavaScript-style string manipulations on a Java String returned by the
AOM, convert the string to a JavaScript String by concatenating it with a null
string. For example:

var jsStr = doc.documentElement.tagName + "";

JavaScript Language Extensions
The PTC Arbortext Editor JavaScript implementation includes a few non-standard
extensions, modeled on similar features provided by the Rhino Shell. The Rhino Shell is a
standalone utility from Mozilla that runs JavaScript programs.

Using JavaScript to Access the AOM 59

www.mozilla.org/rhino/limits.html
www.mozilla.org/rhino/tutorial.html

Function Description
defineClass(javaclass) This global function defines a JavaScript

class from the Java class specified by
javaclass. The Java class file must be in the
class path set for the Java Virtual Machine
embedded in PTC Arbortext Editor, for
example, by including the .class file in the
Arbortext-path\custom\classes
directory.
javaclass must implement the
org.mozilla.javascript.Scriptable
interface or extend the
org.mozilla.javascript.ScriptableObject
class. See the Rhino documentation
at the Mozilla web page
(www.mozilla.org/rhino/doc.html)
for details.

implementationVersion() This global function returns the JavaScript
interpreter implementation version as a string
encoding the product name, language version,
release number, and date.

importClass(javaclass) This global function will “import” the Java
class javaclass by making its unqualified name
available as a property of the top-level scope.

importPackage(javapackage) This global function will “import” all the
classes of the Java package javapackage by
searching for unqualified names as classes
qualified by the given package. This is similar
to the Java import statement.

Note
If this function is evaluated in the global scope,
then the unqualified names are available to
all JavaScript code subsequently executed in
the shared scope.

60 PTC® Arbortext® Programmer’s Reference

http://www.mozilla.org/rhino/doc.html

Function Description
load(filename, ...) This global function will load and execute the

JavaScript source file given by the filename
argument. Multiple file name arguments may
be specified and filename can be a URL.
If filename is not an absolute path or URL,
the list of directories is the list in loadpath
parameter of the setOption method, described
in AOM set Options Overview on page 173.
If filename is not found relative to the current
directory and is not an absolute path, the list
of directories specified in the PTC Arbortext
Editor (or the PTC Arbortext Publishing
Engine) loadpath parameter is searched to
locate the JavaScript source file.

print(expr) This global function evaluates the expression
expr and prints the string value of the result
to the Java Console. If the Java Console is
not open, the output is discarded. The print
function supplies a trailing new line character,
so each call to print() ends a line.

quit() This global function terminates the current
script execution. It is provided so sample
Rhino JavaScript scripts can be run unmodified
within PTC Arbortext Editor and the PTC
Arbortext Publishing Engine. This function
is implemented by throwing a special
JavaScriptException object; if quit() is used
inside a try block with a catch, it will not
function as expected.

JavaScript Global Objects
The PTC Arbortext JavaScript implementation provides several global objects available
to all JavaScript scripts. The Application and Acl objects are instances of the AOM
Application and Acl interfaces. Only one object for each interface exists in a PTC
Arbortext Editor or Arbortext PE sub-process session.

Object Description
Application This global object implements the Application

interface that provides access to all other DOM
and AOM objects except for the Acl interface.

Acl This global object implements the Acl interface
that provides access to ACL (PTC Arbortext
Command Language).

Using JavaScript to Access the AOM 61

Object Description
AclException This is an instance of the class AclException,

raised by some Acl interface methods.
DOMException This is an instance of the class DOMException,

raised by some DOM interface methods.
EventException This is an instance of the class EventException,

raised by some DOM Event interface methods.
RangeException This is an instance of the class RangeException,

raised by some DOM Range interface methods.
TableException This is an instance of the class TableException,

raised by some Table interface methods.
WindowException This is an instance of the classWindowException,

raised by some UI interface methods.
arguments This global array contains the arguments passed

to the js_source ACL function as the args
parameter. The array will have zero length if no
arguments were passed, or if the JavaScript code
was executed by the javascript ACL function.

environment This global object provides access to
Java System properties. Accessing an
environment property name results in a call to
java.lang.System.getProperty("name").
Setting a property name to
value results in a call to
java.lang.System.getProperties().put("name",
"value").
For example:

environment["user.dir"] = "c:\\temp"

changes the java user directory system property.

Calling Java from JavaScript
The Mozilla Rhino JavaScript interpreter bundled with PTC Arbortext Editor provides
a mechanism called LiveConnect that lets you use Java classes and methods from
JavaScript. The PTC Arbortext Object Model (AOM) classes are written in Java and made
available in JavaScript by LiveConnect.

LiveConnect manages the Java to JavaScript communication, including conversion of
data types. JavaScript: The Definitive Guide, written by David Flanagan and published
by O'Reilly, discusses this subject. There are some limitations with LiveConnect and the
AOM, as noted in JavaScript Limitations on page 59.

Rhino also supports defining new JavaScript classes by writing Java code that extends
the org.mozilla.javascript.ScriptableObject class. The JavaScript function defineClass

62 PTC® Arbortext® Programmer’s Reference

makes such classes available to JavaScript. Refer to the Rhino documentation at the
Mozilla web page (www.mozilla.org/rhino/doc.html) for details.

With LiveConnect, Java packages are represented in JavaScript by the JavaPackage
class. You can access the Java classes provided with the JVM embedded in PTC Arbortext
Editor, plus those found in the Java class path (as specified by the javaclasspath parameter
of the setOption method, described in AOM set Options Overview on page 173) from
the top-level JavaPackage object Packages. This includes the standard Java system
classes (for example, Packages.java.lang.System) and the packages provided by PTC
Arbortext (for example, Packages.com.arbortext.epic, Packages.org.w3c.dom), and
the JavaScript interpreter (Packages.org.mozilla.javascript). As a convenience, the
classes in the java package can be referred to directly without the Packages qualifier,
for example, java.lang.System and java.lang.awt.Frame.

Note
The Java Swing classes are in the javax package, so you must fully qualify the package
name (Packages.javax.swing) to use Swing classes.

The global object Application is a shortcut for the
Packages.com.arbortext.epic.Application JavaClass. Similarly, the global object Acl is
a shortcut for the Packages.com.arbortext.epic.Acl JavaClass.

The following JavaScript example uses the standard Java AWT classes to create and
display a dialog box.

Note
Since no event handling is specified in this example, the dialog box cannot be dismissed.

function hello()
{
var f = new java.awt.Frame("Hello World");
var ta = new java.awt.TextArea("hello, world", 100, 200);
f.add("Center", ta);
f.pack();
f.show();

}

hello();

A more complicated example with event handling is included with the PTC Arbortext
distribution. Refer to Sample JavaScript Code on page 65 for details.

Using JavaScript to Access the AOM 63

http://www.mozilla.org/rhino/doc.html

JavaScript Interface Error Handling
Errors When Executing JavaScript
When executing JavaScript programs, PTC Arbortext Editor displays error messages if
there are problems when starting the JavaScript interpreter, in the embedded Java Virtual
Machine (JVM), or if the JavaScript interpreter reports an exception. If the JavaScript
interpreter reports an exception, PTC Arbortext Editor displays a message such as “The
Java method name has thrown an exception.” If you use the ACL function javascript to
invoke the JavaScript interpreter, name is eval; if you use the ACL function js_source,
name is source.

The JavaScript exception message is sent to the Java Console if it is open; otherwise, it
is discarded. When developing JavaScript applications, choose Tools ▶▶▶Java Console
to open the Java Console and view exception messages.

For JavaScript code executed by reading a .js file, the JavaScript exception report
includes a traceback showing the file name and line number of each function active at the
time of the error. The traceback also lists Java methods for the JavaScript interpreter,
which can be ignored.

Exception Handling
JavaScript provides exception handling with try/catch statements. Since JavaScript is
implemented using the Java interface, it supports all the DOM and AOM exception classes
summarized in Java Interface Exceptions on page 51 and defined in 17 Interface Overview
on page 167. Most exception classes define a numeric error code attribute named code
and message attribute named message. The symbolic names for the error codes listed with
each exception interface description are available for the global exception objects listed
in JavaScript Global Objects on page 61. For example,

try {
node.insertBefore(newNode, refNode);

}
catch (e) {
if (e.code == DOMException.NO_MODIFICATION_ALLOWED_ERR) {
Application.alert("Document is read only");

}
else {
Application.alert("Error: " + e.code +
" Message: " + e.message);

}
}

64 PTC® Arbortext® Programmer’s Reference

Specifying the Interpreter for .js Files
PTC Arbortext Editor supports two JavaScript interpreters. You should specify which
interpreter to use to process your .js files. You can include a special comment as the first
line of the file. If the first line of the .js file using either form specified in the following
examples, then the Rhino JavaScript interpreter will be used.

// type="text/javascript"

or

// <script type="text/javascript">

You can also specify the interpreter with the ACL set javascriptinterpreter
command. However, we recommend using the commenting technique as it ensures proper
handling of your .js files regardless of the javascriptinterpreter setting.

Sample JavaScript Code
Sample JavaScript code that uses the JavaScript AOM interface is included in the
Arbortext-path\samples\javascript directory. The readme.txt file in
this directory provides a description of the sample code and how to invoke the sample
scripts. The samples include examples of using the DOM to manipulate the active
document, registering DOM Event handlers, using Java AWT classes, and transferring
arrays between JavaScript and ACL.

There is a sample from the Mozilla Rhino distribution that implements a JavaScript File
class in Java and an example script, jsdoc.js, that uses the defineClass JavaScript
extension to define the File class.

Refer to Rhino Examples at the Mozilla web page
(www.mozilla.org/rhino/examples.html) for additional sample JavaScript
scripts.

Using JavaScript to Access the AOM 65

http://www.mozilla.org/rhino/examples.html

8
Using COM to access the AOM

COM Interface Overview ... 68
Registering and Unregistering PTC Arbortext Editor as a COM Server 68
Accessing COM Using JScript or VBScript ... 69
COM Objects and ACL.. 70
COM Error Handling .. 71
Sample COM Code ... 73

67

COM Interface Overview
PTC Arbortext Editor includes a Component Object Model (COM) binding to the AOM.
Using this binding, developers on Windows platforms can write programs that use COM
to access the AOM or DOM functions supported in PTC Arbortext Editor.

COM should be installed on all Windows systems that are running PTC Arbortext Editor.
It is unlikely that your Windows systems will not have COM already installed on them.

When acting as a COM server, PTC Arbortext Editor registers an Epic.Application
COM class which implements the _ApplicationN interface (for example, _Application6
— consult the type library for the correct interface version), an Epic.Acl COM class
which implements the IAcl3 interface, a number of DOMxxx classes which implement
their respective IDOMxxx interfaces, and many other xxx classes that implement their
respective Ixxx AOM interfaces.

If you are trying to use COM among different machines, you will need to install DCOM
(Distributed Component Object Model). Extensive information on both COM and
DCOM is available from the Microsoft Developers Network (MSDN) web site at
msdn.microsoft.com.

The PTC Arbortext Editor COM interface to the DOM portion of AOM uses the COM
binding defined by Microsoft with changes for DOM Level 2 and PTC Arbortext
extensions. However, Microsoft has made several significant extensions to the DOM that
are not supported by PTC Arbortext. The definition of the COM classes and methods
that PTC Arbortext Editor exports is contained in the type library that is part of the
Arbortext-path\bin\editor.exe binary. Developers can use a variety of tools
to inspect this type library.

The type library defines multiple versions of many interfaces. When an interface is
extended for a given PTC Arbortext Editor or PTC Arbortext Publishing Engine release, a
new version of the interface is defined with the version number incremented. For example,
the _Application3 interface was introduced with Epic Editor and E3 4.3.

PTC Arbortext Editor or an Arbortext PE sub-process does not need to be running for
it to be available to COM. If PTC Arbortext Editor or an Arbortext PE sub-process
is not running when a call is made to the PTC Arbortext Editor COM server, it will
automatically load and run in the background while servicing the COM call. If a user then
uses the Windows user interface to start a PTC Arbortext Editor session, the invisible
instance that was running exclusively as a COM server automatically becomes visible
and available to the user.

Registering and Unregistering PTC
Arbortext Editor as a COM Server
When you install PTC Arbortext Editor, the setup program automatically registers PTC
Arbortext Editor as a COM server. The uninstall program will unregister PTC Arbortext
Editor as a COM server.

68 PTC® Arbortext® Programmer’s Reference

http://msdn.microsoft.com

Starting with release 5.4, PTC Arbortext Editor also automatically checks at startup to see
whether the application is registered as a COM server. If PTC Arbortext Editor finds that
it is not registered as a COM server, it performs a COM registration for PTC Arbortext
Editor itself and all of its installed components as part of the startup process. This check
can be disabled with the APTNOCOMCHECK environment variable. If the automatic
registration fails for some reason (usually because the user does not have administrator
privileges), PTC Arbortext Editor still opens but displays an error message first saying
that this version is no longer configured correctly. In this case, some PTC Arbortext Editor
components might not be available. You can keep PTC Arbortext Editor from opening in
this case with the APTFAILIFNOCOM environment variable.

If you run a version of PTC Arbortext Editor earlier than 5.4 on the same system with
your current version, you might encounter problems with the earlier version’s COM
registration due to the new automatic COM registration. You can obtain a utility called
register.bat from PTC Technical Support that will correctly register releases of
PTC Arbortext Editor prior to 5.4. For more information, search the Technical Support
knowledge base for TPI 144503.

You can manually register or unregister a PTC Arbortext Editor installation at any time by
running PTC Arbortext Editor with the -RegServer, -UnregServer, or -UnregAnyServer
startup command options. In the examples that follow, the first path to the editor.exe
binary is for 64-bit installations, and the second path is for 32-bit installations.

Arbortext-path\bin\x64\editor.exe -RegServer
Arbortext-path\bin\x86\editor.exe -RegServer

Registers a specific PTC Arbortext Editor installation as a COM server.

Arbortext-path\bin\x64\editor.exe -UnregServer
Arbortext-path\bin\x86\editor.exe -UnregServer

Unregisters a specific PTC Arbortext Editor installation as a COM server. Note that
the -UnregServer option will not remove the editor.exe COM server entry in the
registry, unless the PTC Arbortext Editor installation you are running matches the PTC
Arbortext Editor installation listed as the current editor.exe COM server.

Arbortext-path\bin\x64\editor.exe -UnregAnyServer
Arbortext-path\bin\x86\editor.exe -UnregAnyServer

Unregisters any version of PTC Arbortext Editor on the system as a COM server, not just
the installation for which you are using the option.

Accessing COM Using JScript or VBScript
You can access the AOM in JScript and VBScript using the COM interface. The PTC
Arbortext Editor Application and Acl objects are exposed to the script automatically as
global objects when using the built-in script interpreters.

You can access external third-party COM objects using the JScript ActiveXObject object
or the VBScript CreateObject and GetObject functions. Microsoft Excel is an example

Using COM to access the AOM 69

of a COM server which can be accessed from PTC Arbortext Editor. For example, to
launch Microsoft Excel using JScript, use the following statement:

var xl = new ActiveXObject("Excel.Application");

To launch it using VBScript, use:

Dim xl
set xl = CreateObject("Excel.Application")

Both examples provide access to Excel's Application object, which is different from
the PTC Arbortext Editor Application object. (If you were running a script outside the
built-in interpreter, for example, using Excel VBA, you would need to create an instance
of the PTC Arbortext Editor Application object using Epic.Application.)

Extensive documentation on JScript and VBScript is available from the Microsoft
Developers Network (MSDN) web site at msdn.microsoft.com. Search for the topic
“Windows Script”. Documentation on how to use a COM server, such as Excel, is
provided by the software vendor. In the case of Microsoft Office products, the VBA
(Visual Basic for Applications) documentation is the primary source of information on the
COM objects exposed in each Microsoft Office application.

COM Objects and ACL
You can use ACL (Arbortext Command Language) to call most COM (Component Object
Model) objects which export the IDispatch interface and which include a type library.

You can use this functionality, for example, to invoke an application or DLL written in
Visual Basic. Such an external application can, in turn, invoke PTC Arbortext Editor or an
Arbortext PE sub-process using its COM interface to access or change a document. Keep
in mind that calling COM objects from VBScript or JScript scripts is more straightforward
than calling COM objects from ACL (refer to Accessing COM Using JScript or VBScript
on page 69).

ACL includes a set of functions to support COM calls: com_attach, com_call,
com_prop_get, com_prop_put, and com_release.

Use the com_attach function to attach to a COM object and return a handle that can be
used to invoke the object. After a successful com_attach, you can use the object handle to
make calls to com_call, com_prop_get, or com_prop_set to invoke a method or get or set
a property in a COM interface. Use the com_release function to release an object attached
by com_attach or one returned by another interface. These functions are documented in
the Arbortext Command Language Reference.

PTC Arbortext Editor and the Arbortext PE sub-process use the type library associated
with a COM interface to determine the type of each argument and the return value of a
method or property invoked using an ACL function. This makes it possible, for example,
to pass ACL variables to COM methods that expect parameters passed by reference and
have the COM object return results to ACL by changing the value of the variable.

70 PTC® Arbortext® Programmer’s Reference

http://msdn.microsoft.com

PTC Arbortext Editor and PTC Arbortext Publishing Engine have some restrictions and
limitations in their support for calling COM interfaces, many of which are inherent
to ACL:
• Named arguments are not supported.
• Arguments can be omitted only at the end of the argument list
• You cannot pass an ACL array to a COM interface as an array. You can pass a

member of an ACL array as an individual argument.
• A called COM interface function can't return an array and have it converted into

an ACL array.
• You cannot use the other information in a type library (such as enum definitions)

in ACL.
• There is no implicit support for the implied Value, _NewEnum, or Evalute

methods and properties even though it may be possible to call them explicitly.

COM Error Handling
All of the PTC Arbortext Editor COM interfaces support the ErrorInfo COM interface and
use it to pass error messages to the client if the called method fails. All supplied methods
return an HRESULT which indicates success or failure and the general nature of the failure.
Developers can use standard COM practices to retrieve error codes and error messages.

The DOM specification indicates that several methods will raise an exception upon
certain types of failure. This is also the case for several AOM methods. Since the COM
interface doesn't support exceptions, these failures will be turned into HRESULT return
values. The specific value returned for a given exception can be found in the type
library for the Arbortext-path\bin\editor.exe binary. They're also presented
in the tables that follow. The general rule is that these exceptions will be returned as
DOM_E_YYY_ERR for the DOMException, EventException and RangeException
errors, TABLE_E_YYY_ERR for TableException errors, WINDOW_E_YYY_ERR for
WindowException errors, and EXECUTE_E_YYY for AclException errors.

The following tables list the COM error codes and values for each range of errors. See the
exception interface definitions in 17 Interface Overview on page 167 for the exception
codes and their meanings.

DOM Error Codes

Error Code Value
DOM_E_INDEX_SIZE_ERR 0x80042101
DOM_E_DOMSTRING_SIZE_ERR 0x80042102
DOM_E_HIERARCHY_REQUEST_ERR 0x80042103
DOM_E_WRONG_DOCUMENT_ERR 0x80042104
DOM_E_INVALID_CHARACTER_ERR 0x80042105

Using COM to access the AOM 71

Error Code Value
DOM_E_NO_DATA_ALLOWED_ERR 0x80042106
DOM_E_NO_MODIFICATION_ALLOWED_ERR 0x80042107
DOM_E_NOT_FOUND_ERR 0x80042108
DOM_E_NOT_SUPPORTED_ERR 0x80042109
DOM_E_INUSE_ATTRIBUTE_ERR 0x8004210A
DOM_E_INVALID_STATE_ERR 0x8004210B
DOM_E_SYNTAX_ERR 0x8004210C
DOM_E_INVALID_MODIFICATION_ERR 0x8004210D
DOM_E_NAMESPACE_ERR 0x8004210E
DOM_E_INVALID_ACCESS_ERR 0x8004210F
DOM_E_VALIDATION_ERR 0x80042110
DOM_E_UNSPECIFIED_EVENT_TYPE_ERR 0x80042148
DOM_E_BAD_BOUNDARYPOINTS_ERR 0x80042141
DOM_E_INVALID_NODE_TYPE_ERR 0x80042142
DOM_E_NO_SCHEMA_AVAILABLE_ERR 0x80042647

Table Interface Error Codes

Error Code Value
TABLE_E_TABLE_OPERATION_FAILED_ERR 0x80042301
TABLE_E_TABLE_INVALID_INDEX_ERR 0x80042302
TABLE_E_TABLE_INVALID_DIRECTION_ERR 0x80042303
TABLE_E_TABLE_INVALID_ORIENTATION_ERR 0x80042304
TABLE_E_TABLE_INVALID_SPAN_ERR 0x80042305
TABLE_E_TABLE_INVALID_PARAMETER_ERR 0x80042306
TABLE_E_TABLE_INVALID_ATTRIBUTE_ERR 0x80042307

Window Interface Error Codes

Error Code Value
WINDOW_E_WINDOW_NOT_SUPPORTED_ERR 0x80042401
WINDOW_E_WINDOW_HIERARCHY_REQUEST_ERR 0x80042402
WINDOW_E_WINDOW_WRONG_WINDOW_ERR 0x80042403
WINDOW_E_WINDOW_NOT_FOUND_ERR 0x80042404
WINDOW_E_WINDOW_INVALID_COLOR_ERR 0x80042405

72 PTC® Arbortext® Programmer’s Reference

Error Code Value
WINDOW_E_WINDOW_INVALID_MODIFICATION_ERR 0x80042406
WINDOW_E_WINDOW_NO_MODIFICATION_ALLOWED_ERR 0x80042407

Acl.Execute Error Codes

Error Code Value
EXECUTE_E_PARSE_FAILURE 0x80042200
EXECUTE_E_ERROR 0x80042201
EXECUTE_E_INTERNAL_ERROR 0x80042202

JScript maps the COM errors to the Error object, and VBScript maps the COM errors
to the Err object. See JScript Exception Handling on page 79 and VBScript Error
Handling on page 84 for details.

Sample COM Code
Sample Visual Basic and Visual C++ code that uses the COM interface is included in
the Arbortext-path\samples\com directory. The Readme file in this directory
provides details on the samples.

Using COM to access the AOM 73

9
Using JScript to Access the AOM

JScript Interface Overview... 76
JScript with ACL .. 76
JScript Limitations ... 79
AOM Interfaces Specific to JScript .. 79
JScript Global Objects ... 79
JScript Exception Handling.. 79
Specifying the Interpreter for .js Files ... 80
Sample JScript Code... 80

75

JScript Interface Overview
PTC Arbortext Editor and the PTC Arbortext Publishing Engine include a JScript binding
to the AOM. Using this binding, software developers can use the JScript programming
language to write applications for PTC Arbortext Editor and the PTC Arbortext Publishing
Engine.

PTC Arbortext uses Microsoft Windows Script (or ActiveScript) as the JScript
interpreter. This script engine is represented primarily by the system files
jscript.dll and scrrun.dll which are typically installed by Microsoft
Windows, Internet Explorer, and the Windows Script Host upgrades available
from the Microsoft Developers Network (MSDN). PTC Arbortext recommends
Windows Script Version 5.6, which is free from the Microsoft web site at:
msdn.microsoft.com/library/default.asp?url=/library/en-us/script56/html/letintro.asp.

Note
JScript versions prior to 5.0 shipped with Windows 98 have not been tested.

The AOM interface and the DOM interface for JScript are implemented using the PTC
Arbortext COM interface. Access to external COM servers is implemented through
standard COM interfaces used by the Microsoft script engines.

Note
By default, all JScript code is executed in a single global context, in a namespace called
EpicJS. A JScript instance can create nested JScript instances which use unique
namespaces. See the description of the createScriptContext method for the AOM
Application object in on page .

JScript Platforms
The JScript interface is a Windows-only technology, available on Microsoft Windows
2000 and Windows XP.

JScript with ACL
JScript expressions or scripts can be called from ACL with one of the following ACL
primitives:

• jscript— Function that evaluates a JScript expression and returns the result as
a string.

76 PTC® Arbortext® Programmer’s Reference

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/script56/html/letintro.asp

• js— Command that evaluates a JScript expression and displays the result.

• source— Command that interprets files ending in .js as JavaScript programs to
be executed when set javascriptinterpreter is set to jscript.

The flow of control in the JScript interface usually starts with the execution of one of these
ACL functions or commands, with the exception of customization files ending in .js.
PTC Arbortext Editor and the Arbortext PE sub-process automatically load and execute
JScript programs from the doctype.js, instance.js, and document.js files
following the same rules as doctype.acl, instance.acl, and docname.acl files.

The JScript interpreter starts the first time PTC Arbortext Editor or the Arbortext
PE sub-process executes one of these ACL functions or commands or reads a .js
customization file. PTC Arbortext Editor and the Arbortext PE sub-process will also start
the Java Virtual Machine, if necessary. You may also specify the -jvm and -js startup
command options to start JScript when PTC Arbortext Editor is opened.

Unlike the Java interface, only string arguments are passed from ACL to JScript. ACL
arrays must be converted to some form of delimited string (for example, as an array literal)
or passed element by element to JScript expressions. Refer to Passing Arrays Between
JavaScript and ACL on page 77 for more details.

JScript objects may not be returned directly to ACL. If the result of a JScript expression
passed to javascript is an object, the toString method is invoked on the object and that
value is returned by javascript.

Passing Arrays Between JavaScript and ACL
There are two ways to pass arrays between JScript and ACL, both involving the conversion
of arrays to strings. The first method uses the JScript Array.join method to convert the
JScript array to a string that is passed to the ACL split function.

For example, the JScript code

var jsArr = [1, 2, 3];
Acl.eval("split('" + jsArr.join() + "', aclArr, ',')");

converts the JScript array jsArr to the ACL array aclArr.

Note
ACL arrays normally start at index 1, which is the same as JavaScript index 0.

The second method uses a loop to pass the array, element by element. The Acl.eval call in
the previous example can be rewritten as:

for (var i = 0; i < jsArr.length; i++) {
var ai = i + 1;
Acl.eval("aclArr[" + ai + "] = '" + jsArr[i] + "'");

}

Using JScript to Access the AOM 77

This method is slower, but isn't subject to the ACL string token limit of 4096 characters.

Similarly, there are two ways to retrieve an ACL array from JScript. The first method
uses the ACL join function to concatenate the ACL array into a string that initializes a
JScript array. For example, you can use the following ACL code to pass the ACL array
created above to JScript:

javascript("var jsArr = [" . join(aclArr) . "]");

This method is not limited by the ACL string token limit.

You can also use a loop to retrieve the array, element by element, as shown in the
following JScript example:

var count = parseInt(Acl.eval("count(aclArr)"));
var lowBound = parseInt(Acl.eval("low_bound(aclArr)"));
var jsArr = new Array(count);
for (var i = 0; i < count; i++) {
var ai = lowBound + i;
jsArr[i] = Acl.eval("aclArr[" + ai + "]");

}

This method translates the arbitrary array index bounds in an ACL array to the zero-based
array index in JScript. It also uses the parseInt method to convert the Java string returned
by Acl.eval into a JScript number.

Associative arrays
The previous examples concern normal numeric indexed arrays. You can use equivalent
techniques to pass associative arrays using for/in loops instead of the for loops as
above. The following JScript example passes an associative array to ACL:

var jsAssoc = {one: 1, two: 2, three: 3};
for (var i in jsAssoc) {
Acl.eval("aclAssoc['" + i + "']='" + jsAssoc[i] + "'");

}

You can pass an ACL associative array to JScript using the ACL join function or an ACL
for/in loop similar to the JScript example. The following ACL example shows the join
technique to declare a JScript array using object literal syntax:

javascript("var jsAssoc={" . join(aclAssoc,',',1) . "}")

Note
The ACL join function also works for associative arrays, and produces a result that can be
used to initialize a JavaScript associative array object as in the previous example.

78 PTC® Arbortext® Programmer’s Reference

JScript Limitations
Some limitations of the PTC Arbortext JScript implementation are:

• JScript is not case-sensitive. Rhino JavaScript is case-sensitive. AOM and DOM
compatiblity between JScript and JavaScript files requires the script author to
comply with the capitalization of methods and attributes described in this guide.

• The AOM and DOM constants are not defined in the global context. They must be
defined inline in JScript files to be referenced by variable name.

AOM Interfaces Specific to JScript
By default, JScript instances run in a single global context, or namespace, called EpicJS.
The AOM includes JScript-specific features related to the ScriptContext interface:

• createScriptContext—allows scripts to create and run nested scripts in the global
namespace (EpicJS) or in a user-defined context or namespace.

• getScriptContext—retrieves a reference to any running script context by
namespace.

See the descriptions in on page and on page for more information.

JScript Global Objects
The PTC Arbortext JScript implementation provides several global objects available to all
JScript scripts. The Application and Acl objects are instances of the AOM Application
and Acl interfaces. Only one object for each interface exists in a PTC Arbortext Editor
session.

Object Description
Application This global object implements the Application interface

that provides access to all other DOM and AOM objects
except for the Acl interface.

Acl This global object implements the Acl interface
that provides access to ACL (Arbortext Command
Language).

JScript Exception Handling
JScript provides exception handling with try/catch statements. JScript is implemented
using the COM interface, so it does not support the DOM and AOM exception classes.
All exceptions are mapped to the JScript Error global object. The COM error code
values listed in COM Error Handling on page 71 are available using the number property

Using JScript to Access the AOM 79

of the Error object. The message associated with the exception is available using the
description property. For example:

try {
doc.insertBefore(doc, doc); // this is invalid

}
catch(e) {
Application.alert("Error: " + (e.number&0xffff) +

" Description: " + e.description);
}

Specifying the Interpreter for .js Files
PTC Arbortext Editor supports two JavaScript interpreters on Windows. You should
specify which interpreter to use to process your .js files. You can include a special
comment as the first line of the file. If the first line of the .js file contains a comment
using either form specified in the following examples, then the Microsoft JScript
interpreter will be used.

// application="text/jscript"

or

// <script application="text/jscript">

You can also specify the interpreter with the ACL set javascriptinterpreter
command. However, we recommend using the commenting technique as it ensures proper
handling of your .js files regardless of the javascriptinterpreter setting.

Sample JScript Code
Sample JScript code that uses the JScript AOM interface is included in the
Arbortext-path\samples\jscript directory. The readme.txt file in this
directory provides a description of the sample code and instructions for invoking the
sample scripts. Examples show how to use the DOM to manipulate the active document,
register DOM Event handlers, and transfer arrays between JScript and ACL. The JScript
examples are ported from the corresponding Rhino JavaScript samples of the same name.

80 PTC® Arbortext® Programmer’s Reference

10
Using VBScript to Access the AOM

VBScript Interface Overview.. 82
VBScript and ACL.. 82
VBScript Limitations .. 83
AOM Interfaces Specific to VBScript ... 83
VBScript Global Objects .. 83
VBScript Error Handling .. 84
Sample VBScript Code.. 84

81

VBScript Interface Overview
PTC Arbortext Editor and the PTC Arbortext Publishing Engine include a VBScript
binding to the AOM. Using this binding, software developers can use the VBScript
programming language to write applications for PTC Arbortext Editor and the PTC
Arbortext Publishing Engine.

PTC Arbortext uses Microsoft Windows Script (or ActiveScript) as the VBScript
interpreter. This script engine is represented primarily by the system files
vbscript.dll and scrrun.dll which are typically installed by Microsoft
Windows, Internet Explorer, and the Windows Script Host upgrades available on the
Microsoft Developers Network (MSDN). PTC Arbortext recommends the most recent
version of Windows Script, Version 5.6, which is free from the Microsoft web site at:
msdn.microsoft.com/library/default.asp?url=/library/en-us/script56/html/letintro.asp.

Note
VBScript versions prior to 3.1 shipped with Windows 98 have not been tested.

The AOM interface and the DOM interface for VBScript is implemented via PTC
Arbortext's COM interface. Access to external COM servers is implemented through
standard COM interfaces used by the Microsoft script engines.

Note
By default, all VBScript code is executed in a single global context, in a namespace called
EpicVBS. A VBScript instance can create nested VBScript instances which use unique
namespaces. See the createScriptContext method for the AOM Application object in
on page .

VBScript Platforms
The VBScript interface is a Windows-only technology, available on Windows 2000 and
Windows XP.

VBScript and ACL
VBScript expressions or scripts can be called from ACL with one of the following ACL
primitives:

• vbscript— Function that evaluates a VBScript expression and returns the result as
a string.

82 PTC® Arbortext® Programmer’s Reference

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/script56/html/letintro.asp

• source— Command that interprets files ending in .vbs as JScript programs to
be executed.

VBScript Limitations
Some limitations of the PTC Arbortext VBScript implementation are:

• VBScript is not case-sensitive.

• The AOM and DOM constants are not defined in the global context. They must be
defined inline in VBScript files to be referenced by variable name.

AOM Interfaces Specific to VBScript
By default, VBScript instances run in a single global context, or namespace, called
EpicVBS. The AOM includes VBScript-specific features related to the ScriptContext
object:

• createScriptContext— allows scripts to create and run nested scripts in the global
namespace (EpicVBS), or in a user-defined context or namespace.

• getScriptContext — retrieves a reference to any running script context by
namespace.

See the descriptions in on page and on page for more information.

VBScript Global Objects
The PTC Arbortext VBScript implementation provides several global objects available
to all VBScript scripts. The Application and Acl objects are instances of the AOM
Application and Acl interfaces. Only one object for each interface exists in a PTC
Arbortext Editor session.

Object Description
Application This global object implements the Application interface

that provides access to all other DOM and AOM objects
except for the Acl interface.

Acl This global object implements the Acl interface
that provides access to ACL (Arbortext Command
Language).

Using VBScript to Access the AOM 83

VBScript Error Handling
VBScript does not support exceptions, so the DOM and AOM exception classes are not
available. All exceptions are mapped to the VBScript Err global object. The COM error
code values listed in COM Error Handling on page 71 are available using the Number
property of the Err object. The message associated with the exception is available using
the Description property. For example:

On Error Resume Next
doc.insertBefore doc, doc ' this is invalid
If Err.Number <> 0 Then
Application.alert("Error: " & Err.Number _
& " Description: " & Err.Description)

Err.Clear
End if

Sample VBScript Code
Sample VBScript code that uses the VBScript AOM interface is included in the
Arbortext-path\samples\vbscript directory. The readme.txt file in
this directory provides a description of the sample code and instructions for invoking
the sample scripts. Examples show how to use the DOM to manipulate the active
document and register DOM event handlers. There are two samples, commdlg.vbs and
graphic-browser.vbs, which show how to use COM to launch and communicate
with Microsoft Word and Microsoft Excel. The VBScript examples are ported from the
corresponding JScript samples of the same name.

84 PTC® Arbortext® Programmer’s Reference

III
Programming and scripting

techniques

85

11
Overview of Programming and

Scripting Techniques

This part of the PTC Arbortext Programmer's Reference contains information on using
PTC Arbortext Editor and the AOM to perform basic and advanced operations. Individual
chapters include:

• Overview on page 90 — Contains a series of examples demonstrating basic
techniques for manipulating documents and content using the DOM and AOM.

• Overview on page 100 — Summarizes the DOM Event Model interfaces and the
AOM extended event interfaces supported by PTC Arbortext Editor and the PTC
Arbortext Publishing Engine.

• Working with Tables Overview on page 138 — The AOM contains interfaces that
provide access to more than 100 PTC Arbortext Editor table functions. This chapter
provides several examples that illustrate the basics of inserting and manipulating
tables using the interfaces.

• Overview on page 146 — XSL composition refers to PTC Arbortext Editor's
ability to transform a document using XSL or XSL-FO stylesheets. This chapter
describes XSL composition and its components, and provides an example of calling
the composition pipeline for an HTML file composition.

• Line Numbering Overview on page 152 — You can add line numbers to your
document, specifying their format using a custom application. This chapter
describes the basic line numbering functionality that is available with a PTC
Arbortext distributed document type, and detailed instructions for building your
own.

87

12
Basic Document Manipulation

Using the DOM and AOM

Overview.. 90
Opening, Closing, and Saving documents .. 90
Traversing a Document Using the DOM and AOM ... 91
Inserting Text ... 93
Using Range to Select and Delete Content... 94
Selecting, Copying, Moving Content ... 96

89

Overview
This chapter contains a series of brief examples demonstrating basic techniques for
manipulating documents and content using the DOM and AOM. The examples cover
opening, closing, and saving documents; traversing document trees; inserting text; and
locating, selecting, cutting, and pasting content in and between documents.

Most of the sample code in this chapter can be run on the PTC Arbortext XML Docbook
sample opened with PTC Arbortext Editor. (Choose File ▶▶▶New, check Sample, select PTC
Arbortext XML Docbook V4.0, and click OK.) Example code that calls openDocument
requires access to one or two saved copies of the PTC Arbortext XML Docbook sample.

All of the examples in this chapter are written in JavaScript.

Opening, Closing, and Saving documents
DOM Level 2 does not provide methods to open, save, and close documents. However,
the AOM includes methods on the Application and ADocument interfaces that implement
these capabilities.

The Application interface openDocument method returns a Document object that has
information about a document or document type and can be used to dynamically update
the content, structure, and style of the document

The openDocument method takes several optional parameters, including the flags
parameter, which controls the state in which the document is opened. This parameter
is constructed by adding the hex values of the LoadFlag enumeration constants. (The
symbolic constant names can be used instead with some language bindings.) Refer to on
page for a complete listing and full descriptions of the LoadFlag enumeration constants.
The following table highlights a selection of these constants.

Name Hexadecimal value Description
OPEN_RDONLY 0x0001 Open the document as read only.
OPEN_DOCRDWR 0x0002 Open the document for read and

write.
OPEN_NOMSGS 0x0020 Suppress any parser error messages.
OPEN_EDITINIT 0x8000 Process initialization files upon

opening.

In the following code, the flags parameter is used to open a document for read and write
while suppressing any parser errors:

var doc = Application.openDocument("mydocument.xml", (0x0002 + 0x0020))

Once a document is opened, it can be manipulated and then saved and closed using
methods of the ADocument interface (which extends the W3C DOM Document
interface).

90 PTC® Arbortext® Programmer’s Reference

ADocument.save writes the document to disk. The save method's flags parameter
determines the state of the saved document.

ADocument.close frees all resources associated with the Document object.

Refer to the examples in the remainder of this chapter for several sample uses of the
Application.openDocument, ADocument.save, and ADocument.close methods.

Traversing a Document Using the DOM
and AOM
A Document object is the tree representation of the document's structure. Like any tree,
the document can be traversed several ways.

Traversing and Printing a Document Structure
In this example, as the document is traversed, the tag name and up to the first 60 characters
of each node are printed to illustrate the hierarchical structure of the current document.

In addition to demonstrating how to walk a DOM tree, this example also shows how
to access the names of nodes (Node.nodeName), how to determine a node's type
(Node.nodeType = text, element, comment, or processing instruction), and how to extract
text content from a document (Node.data).

function printTree(n, elem) {

if (elem == null) {

if (n == 0)

print("document has no element nodes");

return;

}

var str = "";

for (var i = 0; i < n; i++)

str += " ";

// show this node

print(str + elem.tagName + getAttrs(elem));

str += " ";

// followed by its children

for (var child = elem.firstChild; child != null;

child = child.nextSibling) {

if (child.nodeType == child.ELEMENT_NODE)

printTree(n + 1, child);

else if (child.nodeType == child.TEXT_NODE) {

// for text nodes, show the first 60 characters

Basic Document Manipulation Using the DOM and AOM 91

// note, concatentation with a null string is used to convert

// the Java String returned into a JavaScript string.

var text = child.data + "";

if (text.length > 60)

print(str + '"' + text.substr(0, 60) + "...\"");

else

print(str + '"' + text + '"');

}

else if (child.nodeType == child.COMMENT_NODE) {

var text = "#comment: " + child.data;

if (text.length > 60)

text = text.substr(0, 60) + "...";

print(str + text);

}

else if (child.nodeType == child.PROCESSING_INSTRUCTION_NODE)

print(str + "#pi: " + child.target + ' ' + child.data);

else // all others

print(str + child.nodeName);

}

}

// start at the root

printTree(0, Application.activeDocument.documentElement);

Using getElementsByTagName
In this example, the tree is traversed by calling getElementsByTagName. All of the
Document, ADocument, Element, and AElement interface getElementsByXxx methods
populate a NodeList with nodes in the order encountered in a preorder traversal of the
tree. All occurrences of the <emphasis> tag have their role attribute value changed from
bold to italic, changing all bold text to italic. This is done by iterating over the
NodeList returned by getElementsByTagName, and using Node.getAttribute to check
the value of each node's role attribute, and then using Node.setAttribute to change that
value to italic.

var doc = Application.activeDocument;

//get all emphasis tags in the document

var tags = doc.getElementsByTagName("emphasis");

for(i=0; i < tags.length; i++) {

if(tags.item(i).getAttribute("role") == "bold") {

tags.item(i).setAttribute("role", "italic")

}

}

92 PTC® Arbortext® Programmer’s Reference

Using getElementsByAttribute
The previous example could be improved by using theAElement.getElementsByAttribute
method. (The AOM AElement interface extends the W3C DOM Element interface.)
Doing so will return only those tags from the document that have the role attribute set to
bold. The value on all of the tags can then be changed from bold to italic without
having to test every <emphasis> tag in the document.

The getElementsByAttribute method takes three arguments: name, value, and selector.
If selector is set to 1 (one), the search will return all nodes that match both name and
value. If selector is set to 0 (zero), all nodes matching name, regardless of their value, are
returned.

var doc = Application.activeDocument;

var tags = doc.getElementsByAttribute("role", "bold", 1);

for (i=0; i < tags.length; i++) {

tags.item(i).setAttribute("role", "italic");

}

Inserting Text
Text can be added at any appropriate place in a document by creating and inserting a new
Text node. Document.createTextNode takes a text string as an argument, and returns a
new node (Text object) that can be inserted by calling methods such as Node.appendChild
or Node.insertBefore on the desired node.

Inserting Text Using createTextNode
This example appends the line “Adding new text.” to the end of the first paragraph
in a document

var doc = Application.activeDocument;

var paras = doc.getElementsByTagName("para");

//create the new Text Node

var newText = doc.createTextNode(" Adding new text.");

//append it to first paragraph

paras.item(0).appendChild(newText);

Inserting Text Containing a Non-Latin Character
To insert a string containing characters such as letters from non-English alphabets, include
the Unicode character in the text string. Do not include it as an entity reference.

For example, suppose you are authoring a travel guide and wish to append a paragraph
that includes the German word Gemütlichkeit. If you include the ü as an entity
reference, the entity will not be resolved. For example:

Basic Document Manipulation Using the DOM and AOM 93

var newText1 = doc.createTextNode("Austrians are known for their Gemütlichkeit");

The text node will literally contain “Gemütlichkeit”. Instead, insert the
character as in the following example:

var doc = Application.activeDocument;

var paras = doc.getElementsByTagName("para");

var newText = doc.createTextNode(" Austrians are known for their Gemütlichkeit");

paras.item(0).appendChild(newText);

Inserting an Entity Reference Using
createEntityReference
To insert such characters as an entity references, use Document.createEntityReference
rather than createTextNode. This example produces the same result as the previous
example, but uses a character entity to insert the u-umlaut:

var doc = Application.activeDocument;

var paras = doc.getElementsByTagName("para");

var newText1 = doc.createTextNode("Austrians are known for their Gem");

var charEnt = doc.createEntityReference("uuml");

var newText2 = doc.createTextNode("tlichkeit");

paras.item(0).appendChild(newText1);

paras.item(0).appendChild(charEnt);

paras.item(0).appendChild(newText2);

Using Range to Select and Delete Content
The W3C DOM Range API consists of a single interface, Range. This interface exposes
the ability to select contiguous portions of a structured document, delineated by specified
beginning and end points. The Range interface contains methods that allow copying,
inserting, or deleting of content, as well as methods for marking the start and end points of
the content range.

Deleting Sections of a Document Using a Range
This example illustrates several basic techniques:

• Opening a document using the optional flags parameter
(Application.openDocument).

• Gathering elements by attribute name and value (getElementsByAttribute).

• Prompting for user input (Application.confirm).

• Using a range to mark content for deletion and delete it (the deleteTag function).

• Handling a NodeList.

94 PTC® Arbortext® Programmer’s Reference

The result of the code in this example is that the user is prompted with the option to delete
all the tags in a document that have a certain profiling attribute.

The deleteTag function in the example demonstrates the creation, marking, and use of a
Range object. First the Range must be created (Document.createRange). The beginning
and end points must then be set (Range.setStartBefore and Range.setEndAfter). The
content in the Range is then deleted, and the range is detached.

The call to Range.detach() is critical, as this method frees all resources associated with
this Range object. Any subsequent call on that object would result in an exception being
thrown. This method should be called whenever a use of a Range object is complete.

//Delete the given node (tag and its children and/or contents)

function deleteTag(tag) {

var range = doc.createRange();

range.setStartBefore(tag);

range.setEndAfter(tag);

range.deleteContents();

range.detach();

}

//Open the document for writing, while suppressing any parse errors

//OPEN_DOCRDWR(0x0002) - open the document for reading and writing

//OPEN_NMSGS(0x0020) - suppress any parser error messages

var doc = Application.openDocument("sample.xml", (0x0002 | 0x0020));

//Select all tags with the profiling attribute "security" and the value "Employee"

var profiles = doc.getElementsByAttribute("security", "Employee", 1);

//Prompt the user to delete the selected tags

var response = Application.confirm("Found " + profiles.length +

" profiled items.\nOK to delete?", "Confirm Deletion");

//If the user clicked "OK", go ahead and delete them

if(response) {

while(0 < profiles.length) {

deleteTag(profiles.item(0));

}

}

Notice in this example that in the loop that calls deleteTag, it is item(0) that is deleted each
time. This is because in the W3C DOM NodeList specification, NodeLists are live. That
is, changes in the underlying document object are immediately reflected in the NodeList.

For example, if tags had been deleted using the following code, only every other node
would have been deleted.

for(i = 0; i < profiles.length; i++) {

deleteTag(profiles.item(i));

Basic Document Manipulation Using the DOM and AOM 95

}

Selecting, Copying, Moving Content
The following examples demonstrate how to copy, cut, and paste content within and
between documents.

Cutting and Pasting within a Document
This example swaps the position of the first two chapters in a document. When chapter
one is inserted before chapter three, it is the same as a cut and paste; it is not a copy of the
node, but the node itself that is being moved.

var doc = Application.openDocument("sample1.xml");

//Get the nodes contining chapters one and three from the document

//Chapter three will be the node to insert before

var chapters=doc.getElementsByTagName("chapter");

var chapter1 = chapters.item(0);

var chapter3 = chapters.item(2);

var book = doc.getElementsByTagName("book").item(0);

//chapter1 is the new node, and chapter3 is the reference

book.insertBefore(chapter1,chapter3);

Copying and Pasting within a Document
A copy and paste within a document can be done by cloning the contents of chapter one
before inserting them before chapter three. In this example, the result will be two copies
of chapter one in the document; one before and one after chapter two.

var doc = Application.openDocument("sample1.xml");

var chapters=doc.getElementsByTagName("chapter");

var chapter1 = chapters.item(0);

var chapter3 = chapters.item(2);

var book = doc.getElementsByTagName("book").item(0);

var range = doc.createRange();

range.setStartBefore(chapter1);

range.setEndAfter(chapter1);

var clone = range.cloneContents();

book.insertBefore(clone,chapter3);

range.detach();

96 PTC® Arbortext® Programmer’s Reference

Copying and Pasting between Documents
Content can also be moved between documents using Document.importNode. The code
in this example results in a copy and paste without the need to clone the region from the
first document. This is because Document.importNode does not alter or remove content
from the original document; it creates a new copy of the source node — in effect, cloning
it. This example also demonstrates the use of ADocument.openDocument, the use of
optional flags and path parameters on ADocument.save, and ADocument.close.

var doc1 = Application.openDocument("sample1.xml");

var doc2 = Application.openDocument("sample2.xml");

//Get the first chapter from sample1.xml and sample2.xml

var sample1Chapter = doc1.getElementsByTagName("chapter").item(0);

var sample2Chapter = doc2.getElementsByTagName("chapter").item(0);

var book = doc2.getElementsByTagName("book").item(0);

//Import the chapter from sample1.xml into sample2.xml

var newChapter = doc2.importNode(sample1Chapter,true);

//insert the chapter

book.insertBefore(newChapter,sample2Chapter);

//SAVE_NAC_ENTREF(0x0400) - write non-ascii characters as

// character entity references

doc2.save(0x0400, "newSample2.xml");

doc1.close();

doc2.close();

To execute a cut and paste between documents, select and delete the contents in the
original document after inserting it in the target document.

Inserting Text at the Caret
This example shows how to insert text in the document where the caret is located using
the Range returned by the ADocument.insertionPoint attribute. If the caret is within
a text node, the text is inserted into that node. Otherwise, a new text node is inserted
before the insertionPoint node.

var doc = Application.activeDocument;

var caret = doc.insertionPoint;

var node = caret.endContainer;

if (node.nodeType == node.TEXT_NODE)

node.insertData(caret.endOffset, " new text ");

else

caret.insertNode(doc.createTextNode(" new text "));

Basic Document Manipulation Using the DOM and AOM 97

Inserting Markup at the Caret
The ARange extension includes the method insertParsedString. This method makes it
easy to insert strings containing markup (tags and entity references) into a range, including
the one that represents the document caret position. The following two examples are
equivalent and insert the string “an emphasized word” with the second word “emphasized”
enclosed in <emphasis> tags. The first example is implemented using standard DOM
methods:

var doc = Application.activeDocument;

var caret = doc.insertionPoint;

var node = caret.endContainer;

var parent = node.parentNode;

// does not consider caret offset into text node

parent.insertBefore(doc.createTextNode("an "), node);

var emph = doc.createElement("emphasis");

emph.appendChild(doc.createTextNode("emphasized"));

parent.insertBefore(emph, node);

parent.insertBefore(doc.createTextNode(" word"), node);

The following example uses the ARange.insertParsedString method:

var doc = Application.activeDocument;

doc.insertionPoint.insertParsedString("an <emphasis>emphasized</> word");

98 PTC® Arbortext® Programmer’s Reference

13
Events

Overview.. 100
Event Interfaces... 100
Event Modules and Domains... 101
Application-Dependent Features ... 104
Notes and Limitations.. 105
Event Handlers .. 105
Event Types.. 111

99

Overview
PTC Arbortext Editor and the PTC Arbortext Publishing Engine implement the W3C
DOM Event Model described in the Document Object Model (DOM) Level 2 Events
Specification (www.w3.org/TR/DOM-Level-2-Events). The DOM Event Model is a
generic event system that provides registration of event handlers, describes the flow of
events through a tree structure, and defines contextual information for each event.

Event Interfaces
The following tables summarize the DOM Event Model interfaces and the AOM extended
event interfaces supported by PTC Arbortext Editor and the PTC Arbortext Publishing
Engine.

W3C Event Interfaces

Interface Description
DocumentEvent Implemented by objects that implement the Document

interface to create user dispatched events.
Event Provides contextual information for an event handler. The

superinterface of more specific event context interfaces.
EventException Exception thrown by event related methods.
EventListener Mechanism for handling events.
EventTarget Implemented by objects that implement the Node and

Component interfaces to allow registration and removal of
EventListeners and dispatching of events.

MouseEvent Provides contextual information associated with Mouse events.
MutationEvent Provides contextual information associated with Mutation

events.
UIEvent Provides contextual information associated with User Interface

events.

AOM Event Interfaces

Interface Description
ADocumentEntityEvent Provides specific contextual information associated

with the ADocumentEntityEvent extension.
ADocumentEvent Provides specific contextual information associated

with document events.
ActivexEvent Provides specific contextual information associated

with Activex events.

100 PTC® Arbortext® Programmer’s Reference

http://www.w3.org/TR/DOM-Level-2-Events

Interface Description
AEditEvent Provides contextual information associated with

EditEvent events.
AEvent Extension to the W3C DOM Event interface.
ApplicationEvent Provides specific contextual information associated

with application events.
CMSObjectEvent Provides specific contextual information associated

with the CMSObjectEvent extension.
CMSSessionConstructEvent Provides specific contextual information associated

with the CMSSessionConstructEvent extension.
CMSSessionCreateEvent Provides specific contextual information associated

with the CMSSessionCreateEvent extension.
CMSSessionFileEvent Provides specific contextual information associated

with the CMSSessionFileEvent extension.
CMSSessionBurstEvent Provides specific contextual information associated

with the CMSSessionBurstEvent extension.
CMSSessionDisconnectEvent Provides specific contextual information associated

with the CMSSessionDisconnectEvent extension.
CMSAdapterConnectEvent Provides specific contextual information associated

with the CMSAdapterConnectEvent extension.
CMSAdapterDisconnectEvent Provides specific contextual information associated

with the CMSAdapterDisconnectEvent
extension.

ControlEvent Provides specific contextual information associated
with Control events.

MenuEvent Provides contextual information associated with
Menu events.

ToolBarEvent Provides specific contextual information associated
with ToolBar events.

WindowEvent Provides contextual information associated with
Window events.

Event Modules and Domains
The DOM Level 2 Events specification allows an application to support multiple modules
of events. PTC Arbortext Editor and the PTC Arbortext Publishing Engine support all of
the DOM Level 2 event modules exceptHTMLEvents. In addition, PTC Arbortext Editor
and the PTC Arbortext Publishing Engine add several application-specific event modules

Events 101

and further divide the event modules into the following event domains: CMSObject,
CMSSession, CMSAdapter, Document, and Window.

The Document domain includes those events created by the createEvent method of
the DocumentEvent interface and used by the EventTarget interface as implemented
by the Node interface and its subclasses. The Document domain includes the DOM
Level 2 Event modules UIEvents,MouseEvents, andMutationEvents, as well as the
PTC Arbortext-specific AEditEvent module. The AEditEvent module defines several
event types used to notify programmers of important document operations that are not
covered by DOM events.

The Window domain includes those events created by the createEvent method of
the Window interface and used by the EventTarget interface as implemented by
the Component interface and its subclasses. The Window domain includes the
WindowEvents,MenuEvents and ControlEvents modules.

The CMSSession domain includes those events associated with CMS sessions. The
target of all events in this domain is a CMSSession. The events in this domain bubble in
the following order:
1. CMSSession

2. Associated CMSAdapter
3. Application

An EventListener may be established on any of these targets.

The CMSObject domain includes those events associated with CMS objects. The target
of all events in this domain is a CMSObject. The events in this domain bubble in the
following order:
1. CMSObject

2. Associated Document (if any). There may be no associated document, for
example, if the object has no associated nodes (such as an object representing a
folder in the repository).

3. Associated CMSSession
4. Associated CMSAdapter
5. Application

An EventListener may be established on any of these targets.

The CMSAdapter domain includes those events associated with CMS adapters. The
target of all events in this domain is a CMSAdapter. The events in this domain bubble in
the following order:
1. CMSAdapter

2. Application

An EventListener may be established on both of these targets.

The AEvent interface is the PTC Arbortext extension to the W3C Event interface which
adds two attributes to determine the domain and module of the event:

102 PTC® Arbortext® Programmer’s Reference

• domain— returns a constant identifying the event domain
• moduleType— returns a constant identifying the event module

The following event modules are supported. The module name listed is the feature string
to pass as the eventType parameter to the appropriate createEvent method.
UIEvents

Events associated with user interaction with a mouse or keyboard.

Domain: Document
MouseEvents

Events associated with mouse input devices.

Domain: Document
MutationEvents

Events associated with actions that modify the structure of the document.

Domain: Document
AEditEvents

Events associated with high level editing operations.

Domain: Document
WindowEvents

Events associated with changes in the state of Window objects.

Domain: Window
MenuEvents

Events associated with MenuItem objects.

Domain: Window
ControlEvents

Events associated with XUI control objects. These are not currently exposed
through the AOM.

Domain: Window
CMSObjectEvent

Events associated with CMS objects.

Domain: CMSObject
CMSSessionConstructEvent

Events associated with construct operations for existing CMS objects.

Domain: CMSSession
CMSSessionCreateEvent

Events associated with creating new CMS objects.

Domain: CMSSession
CMSSessionFileEvent

Events associated with file-related CMS session operations.

Domain: CMSSession

Events 103

CMSSessionBurstEvent
Events associated with burst-related CMS session operations.

Domain: CMSSession

CMSSessionDisconnectEvent
Events associated with CMS session disconnection operations.

Domain: CMSSession

CMSAdapterConnectEvent
Events associated with CMS adapter connection operations.

Domain: CMSAdapter

CMSAdapterDisconnectEvent
Events associated with CMS adapter disconnection operations.

Domain: CMSAdapter

Note
The DLMEvent module supports events associated with the PTC Arbortext Dynamic Link
Manager. It is a Java-only implementation that is documented in the Javadoc available
in the PTC Arbortext Editor Help Center.

Application-Dependent Features
The DOM Level 2 Events specification defines the DOMFocusIn, DOMFocusOut,
and DOMActivate user interface events, but does not define when they will
occur. The specification also allows implementation-dependent treatment of the
DOMSubtreeModified mutation event. The following table describes when these events
occur in PTC Arbortext Editor and the PTC Arbortext Publishing Engine:

Event Occurrence
DOMFocusIn Two occurrences:

• When the cursor of the view that has keyboard
input focus moves into an event target.

• When the keyboard input focus switches from
another view to the current view while the cursor
of the current view is inside an event target.

DOMFocusOut Two occurrences:

• When the cursor of the view that has keyboard
input focus moves out of an event target.

104 PTC® Arbortext® Programmer’s Reference

Event Occurrence

• When the keyboard input focus switches from the
current view to another view while the cursor of
the current view is inside an event target.

DOMActivate When an event target is activated through a mouse
double-click.
For a XUI document, this event will be dispatched when
its corresponding dialog box state changes, such as
when a check box is selected, an item of a list box is
selected, a push button is pressed, and so on.

DOMSubtreeModified Certain user interface actions like Insert ▶▶▶Markup can
result in multiple changes to the document; only a single
DOMSubtreeModified event will be fired in those
cases.

Refer to Event Types on page 111 for a description of each event type.

Notes and Limitations
The following notes and limitations apply to the PTC Arbortext Editor and the PTC
Arbortext Publishing Engine implementations of events:

• Be aware that DOM mutation events trigger after the document is loaded and
something happens to change the document, not as the document is being read in by
PTC Arbortext Editor or the PTC Arbortext Publishing Engine.

• HTML-specific features in theW3CDOMEvents specification are not implemented.

• No mutation events are currently fired for undo or redo operations. Instead the
AOMUndo event type is dispatched.

• SGML-specific document structures such as ignored marked sections are not
supported by the PTC Arbortext Editor and the PTC Arbortext Publishing Engine
DOM implementation.

Event Handlers
Event handlers are registered in a binding-specific manner. The following sections
illustrate the techniques used to implement the EventListener interface for each language
binding supported by PTC Arbortext Editor and the PTC Arbortext Publishing Engine.

The example (repeated in each binding) shows how to register a mouse click handler (of
theMouseEvents event module) for the active document. The handler prints a line to
the message window showing the element hierarchy in the following form each time
the mouse is clicked within the document:

(book(chapter(para

Events 105

Java
In Java, it is necessary to cast the Document object to call the addEventListener method
of the EventTarget interface. Also, note the event listener parameter is specified using an
anonymous inner class.

Document doc = Application.getActiveDocument();

((EventTarget)doc).addEventListener("click",

new EventListener() {

public void handleEvent(Event event) {

Node node = (Node)event.getTarget();

String context = "";

while (node != null) {

if (node.getNodeType() == Node.ELEMENT_NODE) {

context = "(" + node.getNodeName() + context;

}

node = node.getParentNode();

}

Application.print(context + "\n");

event.stopPropagation();

}

}, true);

JavaScript
JavaScript uses the LiveConnect feature to connect to Java to create the DOM
EventListener object to pass to addEventListener. The handler object associated with
the EventListener is declared using object literal syntax.

function clickEvent(event)

{

var node = event.target;

var context = "";

while (node != null) {

if (node.nodeType == node.ELEMENT_NODE) {

context = "(" + node.nodeName + context;

}

node = node.parentNode;

}

Application.print(context + "\n");

event.stopPropagation();

}

var doc = Application.activeDocument;

// define an object with the required handleEvent method

var o = { handleEvent: clickEvent };

106 PTC® Arbortext® Programmer’s Reference

var listener = Packages.org.w3c.dom.events.EventListener(o);

doc.addEventListener("click", listener, true);

JScript
In JScript, the EventListener interface is implemented by declaring a constructor of the
same name. Note, that because of the way JScript works, the interface constants like
Node.ELEMENT_NODE are not available. Otherwise, the clickEvent function is the
same as the in the JavaScript example. The main difference is in how the listener object
is created.

function EventListener()

{

this.handleEvent = clickEvent;

}

function clickEvent(event)

{

var node = event.target;

var context = "";

while (node != null) {

if (node.nodeType == 1 /*ELEMENT_NODE*/) {

context = "(" + node.nodeName + context;

}

node = node.parentNode;

}

Application.print(context + "\n");

event.stopPropagation();

}

var doc = Application.activeDocument;

var listener = new EventListener();

doc.addEventListener("click", listener, true);

VBScript
In VBScript, the event handler is declared as a class:

Class EventListener

Public Function handleEvent(ByVal evt)

Dim node

set node = evt.target

Dim context

context = ""

While Not node Is Nothing

Events 107

If node.nodeType = 1 Then

context = "(" & node.nodeName & context

End If

Set node = node.parentNode

Wend

Application.print(context)

Application.print()

evt.stopPropagation()

handleEvent = 0

End Function

End Class

Dim doc

set doc = Application.activeDocument

Dim listener

set listener = new EventListener

doc.addEventListener "click", listener, true

Visual Basic
In Visual Basic, the event handler is created as a listener class with the following code.
Note that Print is a reserved method name in Visual Basic, so the Application.Print
method is not available; the VB Debug.Print method is used instead.

Option Explicit

Implements IDOMEventListener

Private Sub IDOMEventListener_handleEvent _

(ByVal evt As IDOMEvent)

Dim node As IDOMNode3

Set node = evt.target

Dim context As String

context = ""

While Not node Is Nothing

If node.nodeType = NODE_ELEMENT Then

context = "(" & node.nodeName & context

End If

Set node = node.parentNode

Wend

Debug.Print context

evt.stopPropagation

End Sub

Then a Visual Basic form must be created with this code included to register the event
listener:

108 PTC® Arbortext® Programmer’s Reference

Option Explicit

Dim myListener As IDOMEventListener

Dim app As Epic.Application

Dim activeDoc As DOMDocument

Dim target As IDOMEventTarget

Private Sub Form_Load()

Set myListener = New Listener

Set app = New Epic.Application

Set activeDoc = app.ActiveDocument

Set target = activeDoc

target.addEventListener "click", myListener, False

End Sub

COM C++
Much of the COM C++ example was generated automatically using the Insert ▶▶▶New ATL
Object menu in the Microsoft Visual C++ IDE followed by Implement Interface on the
CListener class added by New ATL Object. This was edited so both the raw methods and
the method wrappers were created by the #import statement.

The listener class declaration is:

#ifndef __LISTENER_H_

#define __LISTENER_H_

#include "resource.h" // main symbols

#import "epic.exe" raw_native_types, no_namespace, named_guids

class ATL_NO_VTABLE CListener :

public CComObjectRootEx<CComSingleThreadModel>,

public IDispatchImpl<IDOMEventListener,

&IID_IDOMEventListener, &LIBID_Epic>

{

public:

CListener()

{

}

DECLARE_NO_REGISTRY()

DECLARE_PROTECT_FINAL_CONSTRUCT()

BEGIN_COM_MAP(CListener)

COM_INTERFACE_ENTRY(IDispatch)

COM_INTERFACE_ENTRY(IDOMEventListener)

END_COM_MAP()

public:

Events 109

STDMETHOD(raw_handleEvent)(IDOMEvent * evt);

};

#endif //__LISTENER_H_

The listener implementation class is:

#include "stdafx.h"

#include "Listener.h"

#include <string>

typedef std::basic_string< unsigned short > DOMString;

STDMETHODIMP CListener::raw_handleEvent(IDOMEvent *rawEvent)

{

IDOMEventPtr pEvent = rawEvent;

IDOMNode3Ptr pNode = pEvent->target;

DOMString context;

while (pNode)

{

if (pNode->nodeType == NODE_ELEMENT)

{

context.insert(0, pNode->nodeName);

context.insert(0, L"(");

}

pNode = pNode->parentNode;

}

_Application3Ptr pEpic(__uuidof(Application));

context += L"\n";

pEpic->Print(_variant_t(context.c_str()));

pEvent->stopPropagation();

return S_OK;

}

The method that creates and attaches the listener is:

void AttachListener()

{

CListener *pListener = new CComObject<CListener>;

IDOMEventListenerPtr pIntfc;

if (pListener)

{

pListener->QueryInterface(IID_IDOMEventListener,

(void **) &pIntfc);

_Application3Ptr pEpic(__uuidof(Application));

IDOMEventTargetPtr pDocTarget;

110 PTC® Arbortext® Programmer’s Reference

pDocTarget = pEpic->ActiveDocument;

pDocTarget->addEventListener(_bstr_t("click"), pIntfc, true);

}

}

Event Types
The following sections define the event types supported by each event module and include
information about event bubbling, event cancellation, and specific context information
for each event type.

The descriptions of the W3C modules (UIEvent, MouseEvent, and MutationEvent) in
the following sections are taken from the Document Object Model (DOM) Level 2 Events
Specification (www.w3.org/TR/DOM-Level-2-Events).

UIEvent Module
The W3C UIEvent module has the following event types:

DOMFocusIn
The DOMFocusIn event occurs when an EventTarget receives focus, for instance
by a pointing device being moved onto an element or by tabbing navigation to
the element. Unlike the HTML event focus, DOMFocusIn can be applied to any
focusable EventTarget, not just FORM controls.

• Bubbles: Yes

• Cancelable: No

• Context Info: None

DOMFocusOut
The DOMFocusOut event occurs when an EventTarget loses focus, for instance
by a pointing device being moved out of an element or by tabbing navigation out
of the element. Unlike the HTML event blur, DOMFocusOut can be applied to
any focusable EventTarget , not just FORM controls.

• Bubbles: Yes

• Cancelable: No

• Context Info: None

DOMActivate
The activate event occurs when an element is activated, for instance, through a
mouse click or a key press. A numerical argument is provided to give an indication
of the type of activation that occurs: 1 for a simple activation (for example, a
simple click or ENTER), 2 for hyperactivation (for example, a double click or SHIFT
ENTER).

Events 111

http://www.w3.org/TR/DOM-Level-2-Events

• Bubbles: Yes
• Cancelable: Yes
• Context Info: detail (the numerical value)

MouseEvent Module
The W3C MouseEvent module has the following event types:

click
The click event occurs when the pointing device button is clicked over an element.
A click is defined as a mousedown and mouseup over the same screen location.
The sequence of these events is:

mousedown

mouseup

click

If multiple clicks occur at the same screen location, the sequence repeats with the
detail attribute incrementing with each repetition. This event is valid for most
elements.
• Bubbles: Yes
• Cancelable: Yes
• Context Info: screenX, screenY, clientX, clientY, altKey, ctrlKey, shiftKey,

metaKey, button, detail

mousedown
The mousedown event occurs when the pointing device button is pressed over an
element. This event is valid for most elements.
• Bubbles: Yes
• Cancelable: Yes
• Context Info: screenX, screenY, clientX, clientY, altKey, ctrlKey, shiftKey,

metaKey, button, detail

mouseup
The mouseup event occurs when the pointing device button is released over an
element. This event is valid for most elements.
• Bubbles: Yes
• Cancelable: Yes
• Context Info: screenX, screenY, clientX, clientY, altKey, ctrlKey, shiftKey,

metaKey, button, detail

mouseover
The mouseover event occurs when the pointing device is moved onto an element.
This event is valid for most elements.

112 PTC® Arbortext® Programmer’s Reference

• Bubbles: Yes
• Cancelable: Yes
• Context Info: screenX, screenY, clientX, clientY, altKey, ctrlKey, shiftKey,

metaKey, relatedTarget indicates the EventTarget the pointing device is
exiting.

mousemove
Themousemove event occurs when the pointing device is moved while it is over an
element. This event is valid for most elements.
• Bubbles: Yes
• Cancelable: No
• Context Info: screenX, screenY, clientX, clientY, altKey, ctrlKey, shiftKey,

metaKey

mouseout
The mouseout event occurs when the pointing device is moved away from an
element. This event is valid for most elements.
• Bubbles: Yes
• Cancelable: Yes
• Context Info: screenX, screenY, clientX, clientY, altKey, ctrlKey, shiftKey,

metaKey, relatedTarget indicates the EventTarget the pointing device is
entering.

MutationEvent Module
The W3C MutationEvent module has the following event types:

DOMSubtreeModified
This is a general event for notification of all changes to the document. It can be
used instead of the more specific events listed below. It may be fired after a single
modification to the document or, at the implementation's discretion, after multiple
changes have occurred. The latter use should generally be used to accommodate
multiple changes which occur either simultaneously or in rapid succession. The
target of this event is the lowest common parent of the changes which have taken
place. This event is dispatched after any other events caused by the mutation have
fired.
• Bubbles: Yes
• Cancelable: No
• Context Info: None

DOMNodeInserted
Fired when a node has been added as a child of another node. This event is
dispatched after the insertion has taken place. The target of this event is the node
being inserted.

Events 113

• Bubbles: Yes
• Cancelable: No
• Context Info: relatedNode holds the parent node

DOMNodeRemoved
Fired when a node is being removed from its parent node. This event is dispatched
before the node is removed from the tree. The target of this event is the node being
removed.
• Bubbles: Yes
• Cancelable: No
• Context Info: relatedNode holds the parent node

DOMNodeRemovedFromDocument
Fired when a node is being removed from a document, either through direct
removal of the Node or removal of a subtree in which it is contained. This event
is dispatched before the removal takes place. The target of this event is the Node
being removed. If the Node is being directly removed the DOMNodeRemoved
event will fire before the DOMNodeRemovedFromDocument event.
• Bubbles: No
• Cancelable: No
• Context Info: None

DOMNodeInsertedIntoDocument
Fired when a node is being inserted into a document, either through direct insertion
of the Node or insertion of a subtree in which it is contained. This event is
dispatched after the insertion has taken place. The target of this event is the node
being inserted. If the Node is being directly inserted the DOMNodeInserted event
will fire before the DOMNodeInsertedIntoDocument event.
• Bubbles: No
• Cancelable: No
• Context Info: None

DOMAttrModified
Fired after an Attr has been modified on a node. The target of this event is the
Node whose Attr changed. The value of attrChange indicates whether the Attr
was modified, added, or removed. The value of relatedNode indicates the Attr node
whose value has been affected. It is expected that string based replacement of an
Attr value will be viewed as a modification of the Attr since its identity does not
change. Subsequently replacement of the Attr node with a different Attr node is
viewed as the removal of the first Attr node and the addition of the second.
• Bubbles: Yes
• Cancelable: No
• Context Info: attrName, attrChange, prevValue, newValue, relatedNode

114 PTC® Arbortext® Programmer’s Reference

DOMCharacterDataModified
Fired after CharacterData within a node has been modified but the node itself has
not been inserted or deleted. This event is also triggered by modifications to PI
elements. The target of this event is the CharacterData node.
• Bubbles: Yes
• Cancelable: No
• Context Info: prevValue, newValue

AEditEvent Module
The AEditEvent extension to the Event interface includes the following event types:

AOMCut
The AOMCut event occurs before a cut operation is executed. If an event listener
doesn't cancel the cut, proper mutation events will be fired after the cut has taken
place.
• Bubbles: Yes
• Cancelable: Yes
• Context Info: relatedRange holds the range that is going to be removed from

the document.

AOMCopy
The AOMCopy event occurs before the copy operation is executed.
• Bubbles: Yes
• Cancelable: Yes
• Context Info: relatedRange holds the range that is going to be copied.

AOMDeleteRegion
The AOMDeleteRegion is called before an attempt to delete a contiguous region of
a document in an edit window. AOMDeleteRegion parallels the delete_regionACL
callback type, and is dispatched immediately before that callback is invoked. Refer
to the delete_region documentation for details on when and how this event is fired.
• Bubbles: Yes
• Cancelable: Based on the method by which the content was removed: true

in cases where detail does not contain 0x08, and false if detail does
contain 0x08. Refer to the description of delete_region for additional details.
Calling preventDefault if the event is not cancelable will have no effect.

• Context Info: relatedRange holds the range containing the content about to
be deleted. The detail field holds a value identical to the flags parameter to
the delete_region callback.

AOMPaste
The AOMPaste event occurs after the paste operation has been executed. Proper
mutation events are fired together with the paste event.

Events 115

• Bubbles: Yes
• Cancelable: No
• Context Info: relatedRange holds the range that is newly inserted into the

document by the paste operation. detail indicates the source of the paste
content: 1 for PTC Arbortext Editor, 2 for clipboard.

AOMUndo
The AOMUndo event occurs after the undo operation executes. Currently, no
mutation events are fired for the undo.
• Bubbles: Yes
• Cancelable: No
• Context Info: relatedRange holds the range that is affected by the undo

operation. detail indicates the source of the undo: 1 for the undo command,
2 for the undo triggered by PTC Arbortext Editor as the result of context
errors, 3 for the redo command.

ApplicationEvent Module
The ApplicationEvent extension to the ApplicationEvent interface includes the following
event types:

ApplicationLoad
The ApplicationLoad event occurs after PTC Arbortext Editor is initialized and
all the startup files in the custom directories have been executed. There is no ACL
callback equivalent for this event.

ApplicationEvent event listeners need to be registered before PTC Arbortext
software is fully loaded. Therefore, a good place to register an ApplicationLoad
event listener is in a startup file in the custom directory.
• Bubbles: No
• Cancelable: No
• Context Info: None

ApplicationClosing
The ApplicationClosing event occurs when the user closes down the PTC Arbortext
software. This event type is similar to the ACL session quit callback.

This event type is cancelable. If an event listener calls the preventDefault method,
the closing will be cancelled.

The detail indicates whether the PTC Arbortext software will prompt for document
changes or not:
• 0: prompts for any changes.
• 1: saves all modified documents without prompting.
• 2: doesn't prompt for unsaved changes and quits without saving modified

documents.

116 PTC® Arbortext® Programmer’s Reference

• Bubbles: No

• Cancelable: Yes

• Context Info: detail

ADocumentEvent Module
The ADocumentEvent extension to the Event interface includes the following event types:

DocumentCreated
The DocumentCreated event occurs after a document is constructed and before
any document instance startup files are executed. This event type is similar to the
ACL document create callback. However, the ACL document create callback is
called after document instance startup files are executed; the DocumentCreated
event is called before the startup files are executed.

It is impossible to register a DocumentCreated event listener in a Document
object. If the Document object exists, the document has already been created.
DocumentCreated event listeners need to be registered in the Application object.

The detail attribute indicates whether the document is empty or not:

• 0: if the document is constructed from a source file.

• 1: if the document is empty.

• Bubbles: Yes

• Cancelable: No

• Context Info: detail

DocumentClosed
The DocumentClosed event occurs when a document is destroyed. This event is
similar to the ACL document destroy callback.

• Bubbles: Yes

• Cancelable: No

• Context Info: None

DocumentLoad
The DocumentLoad event occurs when a document is loaded into a window frame
and all document instance startup files have been executed. This event is similar to
ACL editfilehook hook.

When a new window frame is launched, a DocumentLoad event will be dispatched
for the document displayed in the new window frame.

A window frame can have more than one view. A DocumentLoad event will only
be dispatched if a document is loaded into a window frame and the document does
not already have a view in that window frame.

Events 117

A document can be loaded into two or more different window frames. A
DocumentLoad event will be dispatched when a document is loaded into a window
frame event if the same document is already displayed in another window frame.

relatedWindow specifies the window frame into which the document is loaded.

• Bubbles: Yes

• Cancelable: No

• Context Info: relatedWindow

DocumentUnload
The DocumentUnload event occurs when a document is unloaded from a window
frame. There is no ACL callback equivalent for this event.

A DocumentUnload event will only be dispatched if a document is unloaded from a
window frame and the document does not have another view in that window frame.

relatedWindow specifies the window frame from which the document is unloaded.
relatedWindow is not set if the window frame is also being destroyed.

• Bubbles: Yes

• Cancelable: No

• Context Info: relatedWindow if the window frame still exists. Otherwise,
null.

DocumentSaving
The DocumentSaving event occurs when the user saves a document. This event
type covers ACL document save and saveas callbacks. The write command does
not cause any ACL callbacks to be called, but it triggers theDocumentSaving event.

This event type is cancelable. If an event listener calls the preventDefault method,
the save will be canceled. The user can cancel the save and call the ADocument
Save method in the event listener to save the document. This is useful when some
actions need to be done before or after the save.

The targetURI specifies the path the document is saved in. The targetEncoding
specifies the encoding the document is saved in.

The detail indicates the command that caused the event:

• 0: if the event is caused by a save command.

• 1: if the event is caused by a saveas command.

• 2: if the event is caused by a write command.

• Bubbles: Yes

• Cancelable: No

• Context Info: targetURI, targetEncoding, detail

118 PTC® Arbortext® Programmer’s Reference

ADocumentEntityEvent Module
The ADocumentEntityEvent extension to the Event interface includes the following
event type:

EntityDeclConflict
The EntityDeclConflict event occurs when an entity declaration in an internal
subset conflicts with one in an external subset (usually a DTD) or with one in a
referencing parent document. This event type is similar to the entitydeclconflict
ACL callback.

The following module properties provide the context information for this event:

object
The CMSObject in which the declaration was found.

relatedDocument
The Document in which the declaration was found.

relatedNode
DOM Entity containing information about the entity declaration.

To avoid the default behavior (which is to ignore the conflicting entity declaration),
the event handler must set the result property to specify an alternative entity name as
well as call preventDefault. Even if result is set and preventDefaultis called,
the conflicting declaration will still be ignored if any of the following are true:

• result was set to a blank or null string.

• result was set to a name which conflicts with an already existing entity.

• result was set to an invalid entity name.

Note
Setting result without calling preventDefault will cause the result to be ignored
and the default processing to proceed.

• Bubbles: Yes

• Cancelable: Yes

• Context Info: object, relatedDocument, relatedNode

WindowEvent Module
The WindowEvent module has the following event types:

WindowCreated
TheWindowCreated event occurs when a window is created. This event is similar
to the ACL window create callback.

Events 119

It is impossible to register aWindowCreated event listener in aWindow object; if
theWindow object exists, the window has already been created. WindowCreated
event listeners need to be registered in the Application object.

TheWindowCreated event type bubbles to the Application object.
• Bubbles: Yes
• Cancelable: No
• Context Info: None

WindowLoad
This event type is triggered when a window is opened at the first time.

TheWindowLoad event type bubbles to the Application object.
• Bubbles: No
• Cancelable: No
• Context Info: None

WindowClosing
This event type is triggered when the user requests a window be closed through
the system menu, through a close button on a window's title bar, or through a
platform-defined keystroke, such as ALT-F4 on Windows.

TheWindowClosing event type bubbles to the Application object.
• Bubbles: No
• Cancelable: Yes
• Context Info: None

WindowClosed
This event type is triggered after a window is disposed.

TheWindowClosed event type bubbles to the Application object.
• Bubbles: No
• Cancelable: No
• Context Info: None

WindowActivated
This event type is triggered when a window is activated, that is, when it is given
the keyboard focus and becomes the active window.

TheWindowActivated event type bubbles to the Application object.
• Bubbles: No
• Cancelable: No
• Context Info: None

WindowDeactivated
This event type is triggered when a window ceases to be the active window.

120 PTC® Arbortext® Programmer’s Reference

TheWindowDeactivated event type bubbles to the Application object.

• Bubbles: No

• Cancelable: No

• Context Info: None

WindowMinimized
This event type is triggered when the user minimizes a window.

TheWindowMinimized event type bubbles to the Application object.

• Bubbles: No

• Cancelable: No

• Context Info: None

WindowRestored
This event type is triggered when a window is restored from a minimized state to its
previous displayed window size and position.

TheWindowRestored event type bubbles to the Application object.

• Bubbles: No

• Cancelable: No

• Context Info: None

MenuEvent Module
The MenuEvent module has the following event types:

MenuPost
This event is dispatched before a menu item is displayed. The target of the event is
theMenuItem being displayed. This event provides an opportunity for application
programmers to disable or enable the menu item based on the nature of the current
document or current cursor location.

• Bubbles: No

• Cancelable: No

• Context Info: None

MenuSelected
This event is dispatched when a menu item is selected. The target of the event is the
MenuItem being selected. The default action of this event is to execute the ACL
commands attached to the menu item. If the preventDefault method is called, the
default action will not occur.

• Bubbles: No

• Cancelable: Yes

• Context Info: None

Events 121

CMSObjectEvent Module
The CMSObjectEvent module has the following event types:

CMSObjectPreCheckin
This event occurs before an object is checked in and before any supporting
calls have been made. This event is similar to the precheckin ACL callback
associated with the sess_add_callback function.

This event type is cancelable. If an event listener calls the preventDefault method,
the checkin will be canceled. The event handler can perform a customized checkin
itself and then cancel the default checkin by calling preventDefault and setting
result to the result of the checkin.

Note
Setting result without calling preventDefault will cause the result to be ignored
and the default processing to proceed.

• Bubbles: Yes

• Cancelable: Yes

• Context Info: None

CMSObjectCheckin
This event occurs before an object is checked in and after some transactional and
bursting calls have been made. Specifically, if the adapter supports transactions,
a transaction will have been already started, and if the adapter specifies that
objects should be burst on checkin then this bursting will already have occurred.
If bursting modified the object contents, the object will also have been saved back
to the repository.

This event is similar to the checkin ACL callback associated with the
sess_add_callback function.

This event type is cancelable. If an event listener calls the preventDefault method,
the checkin will be canceled. In this case, the pending transaction (if supported)
will be rolled back.

The event handler can perform a customized checkin itself and then cancel the
default checkin by calling preventDefault and setting result to the result of
the checkin. In this case, the specified result will be used and the transaction will
be committed.

122 PTC® Arbortext® Programmer’s Reference

Note
Setting result without calling preventDefault will cause the result to be ignored
and the default processing to proceed.

• Bubbles: Yes
• Cancelable: Yes
• Context Info: None

CMSObjectPostCheckin
This event occurs after an object has been checked in. As such, it is not cancelable.
There is no equivalent ACL hook for this event.

The following module property provides the context information for this event:
result

Represents the object that has been checked in.
• Bubbles: Yes
• Cancelable: No
• Context Info: result

CMSObjectCheckout
This event occurs before an object has been checked out. This event is similar to the
lock ACL callback associated with the sess_add_callback function.

This event type is cancelable. If an event listener calls the preventDefault method,
the checkout will be canceled. The event handler can perform a customized
checkout itself and then cancel the default checkout by calling preventDefault and
setting result to the result of the checkout.

Note
Setting result without calling preventDefault will cause the result to be ignored
and the default processing to proceed.

The following module property provides the context information for this event:
flags

Defined according to the flags parameter of the CMSObject.checkout
method.

• Bubbles: Yes
• Cancelable: Yes
• Context Info: flags

CMSObjectPostCheckout

Events 123

This event occurs after an object has been checked out. As such, it is not cancelable.
There is no equivalent ACL hook for this event.

The following module property provides the context information for this event:
result

Represents the object that has been checked out.
• Bubbles: Yes
• Cancelable: Yes
• Context Info: result

CMSObjectCancelCheckout
This event occurs before an object's checkout has been canceled. This event is
similar to the unlock ACL callback associated with the sess_add_callback
function.

This event type is cancelable. If an event listener calls the preventDefault
method, the checkout will remain. The event handler can perform a customized
cancellation of the checkout itself and then cancel the default behavior by calling
preventDefault and setting result to the result of the canceled checkout.

Note
Setting result without calling preventDefault will cause the result to be ignored
and the default processing to proceed.

• Bubbles: Yes
• Cancelable: Yes
• Context Info: None

CMSObjectPostCancelCheckout
This event occurs after an object's checkout has been canceled. As such, it is not
cancelable. There is no equivalent ACL hook for this event.

The following module property provides the context information for this event:
result

Represents the object whose checkout has been canceled.
• Bubbles: Yes
• Cancelable: No
• Context Info: result

CMSObjectSave
This event occurs before an object has been saved. This event is similar to the save
ACL callback associated with the sess_add_callback function.

This event type is cancelable. If an event listener calls the preventDefault method,
the save will be canceled. The event handler can perform a customized save itself

124 PTC® Arbortext® Programmer’s Reference

and then cancel the default save by calling preventDefault and setting result to
the result of the save.

Note
Setting result without calling preventDefault will cause the result to be ignored
and the default processing to proceed.

The following module properties provide the context information for this event:

flags
Defined according to the flags parameter of the CMSObject.save method.

start
Along with end, represents the content being saved.

end
Along with start, represents the content being saved.

• Bubbles: Yes

• Cancelable: Yes

• Context Info: flags, start, end

CMSObjectPostSave
This event occurs after an object has been saved. As such, it is not cancelable.
There is no equivalent ACL hook for this event.

The following module property provides the context information for this event:

result
Represents the object that has been saved.

• Bubbles: Yes

• Cancelable: No

• Context Info: result

CMSSessionConstructEvent Module
The CMSSessionConstructEvent module has the following event types:

CMSSessionConstructObject
This event occurs before an in-memory CMSObject has been constructed
corresponding to a repository object. This event is similar to the construct ACL
callback associated with the sess_add_callback function.

This event type is cancelable. If an event listener calls the preventDefault
method, the object will not be constructed. The event handler can perform a
customized construction itself and then cancel the default construction by calling
preventDefault and setting result to the result of the construction.

Events 125

Note
Setting result without calling preventDefault will cause the result to be ignored
and the default processing to proceed.

The following module properties provide the context information for this event:

logicalId
Represents the object in the repository.

relatedNode
Represents null or a Document used for contextual information during
the construction.

• Bubbles: Yes

• Cancelable: Yes

• Context Info: logicalId, relatedNode

CMSSessionPostConstructObject
This event occurs after an object has been constructed. As such, it is not cancelable.
There is no equivalent ACL hook for this event.

The following module property provides the context information for this event:

result
Represents the CMSObject which has been constructed.

• Bubbles: Yes

• Cancelable: No

• Context Info: result

CMSSessionCreateEvent Module
The CMSSessionCreateEvent module has the following event types:

CMSSessionCreateNewObject
This event occurs before a new repository object is created. This event is similar
to the create ACL callback associated with the sess_add_callback function.
Modifying the name or folderLogicalId arguments is functionally equivalent
to the ACL object naming and object location hooks specified in burst configuration
files.

This event type is cancelable. If an event listener calls the preventDefault method,
the object will not be created. The event handler can perform a customized creation
itself and then cancel the default creation by calling preventDefault and setting
result to the result of the construction.

126 PTC® Arbortext® Programmer’s Reference

Note
Setting result without calling preventDefault will cause the result to be ignored
and the default processing to proceed.

The following module properties provide the context information for this event:
name

Represents the name of the object being created.
type

Represents an adapter-specific object type string.
folderLogicalId

Represents the parent folder for the new object.
flags

Same as the flags parameter of the CMSSession.createNewObject
method.

start
Along with end, represents the content of the new object.

end
Along with start, represents the content of the new object.

version
Represents an adapter-specific version for the new object.

• Bubbles: Yes
• Cancelable: Yes
• Context Info: name, type, folderLogicalId, flags, start, end,

version

CMSSessionPostCreateNewObject
This event occurs after an object has been created. As such, it is not cancelable.
There is no equivalent ACL hook for this event.

The following module property provides the context information for this event:
result

Represents the CMSObject which has been constructed.
• Bubbles: Yes
• Cancelable: No
• Context Info: result

CMSSessionFileEvent Module
The CMSSessionFileEvent module has the following event types:

CMSSessionGetFile

Events 127

This event occurs before the content of a repository object is downloaded to a local
disk file. This event is similar to the getfile ACL callback associated with the
sess_add_callback function.

This event type is cancelable. If an event listener calls the preventDefault method,
the object will not be downloaded. The event handler can perform a customized
download itself and then cancel the default download by calling preventDefault
and setting result to specify a local disk file containing the object content.

Note
Setting result without calling preventDefault will cause the result to be ignored
and the default processing to proceed.

The following module properties provide the context information for this event:
logicalId

Represents the object whose content is desired.
notation

Represents an adapter-specific format specification.
• Bubbles: Yes
• Cancelable: Yes
• Context Info: logicalId, notation

CMSSessionPostGetFile
This event occurs after an object's content has been downloaded. As such, it is not
cancelable. There is no equivalent ACL hook for this event.

The following module properties provide the context information for this event:
logicalId

Represents the object whose content is desired.
notation

Represents an adapter-specific format specification.
localPath

Represents the local disk file containing the object content.
• Bubbles: Yes
• Cancelable: No
• Context Info: logicalId, notation, localPath

CMSSessionPutFile
This event occurs before a new repository object is created from the contents of a
local file or other resource. This event is similar to the putfile ACL callback
associated with the sess_add_callback function.

This event type is cancelable. If an event listener calls the preventDefault method,
the object will not be created. The event handler can perform a customized creation

128 PTC® Arbortext® Programmer’s Reference

itself and then cancel the default creation by calling preventDefault and setting
result to specify the logical id of the new object.

Note
Setting result without calling preventDefault will cause the result to be ignored
and the default processing to proceed.

The following module properties provide the context information for this event:

localPath
Represents the local resource whose content will go into the new object.

notation
Represents an adapter-specific format specification.

objectName
Represents the name of the new object.

folderLogicalId
Represents the parent folder of the new object.

• Bubbles: Yes

• Cancelable: Yes

• Context Info: localPath, notation, objectName,
folderLogicalId

CMSSessionPostPutFile
This event occurs after the new object has been created with the contents of a local
resource. As such, it is not cancelable. There is no equivalent ACL hook for this
event.

The following module properties provide the context information for this event:

localPath
Represents the local resource whose content went into the new object.

notation
Represents an adapter-specific format specification.

logicalId
Represents the logical id of the new object.

• Bubbles: Yes

• Cancelable: No

• Context Info: localPath, notation, logicalId

CMSSessionBurstEvent Module
The CMSSessionBurstEvent module has the following event types:

Events 129

CMSSessionBurstDocument
This event occurs before a document is burst into the repository.There is no
equivalent ACL hook for this event.

The event handler's ability to assign new values to the topLevelName and
folderLogicalId properties can replace object location and naming rule hooks,
which are implemented as inline ACL code in a burst configuration file.

This event type is cancelable. If an event listener calls the preventDefault method,
the burst will be canceled. In this case, the pending transaction (if supported) will
be rolled back.

The following module properties provide the context information for this event:
canOverride

Represents whether the event handler is allowed to override the
topLevelName and folderLogicalId properties. If canOverride
is false, then any changes to these properties will have no effect. If
canOverride is true, then the event handler can set new values for these
properties if desired.

topLevelName
Represents the name of the top-level object which will result from bursting
the document. This may be null or empty which means the name will be
auto-generated according to the bursting rules for this adapter. The event
handler can override this value if canOverride is true.

folderLogicalId
Represents the repository folder which will hold the top-level object which
will result from bursting the document. This may be null or empty which
means the folder will be chosen according to the bursting rules for this
adapter. The event handler can override this value if canOverride is true.

document
Represents the document being burst.

flags
Same as the flags parameter to the CMSSession.burstDocument method.

• Bubbles: Yes
• Cancelable: Yes
• Context Info: canOverride, topLevelName, folderLogicalId,

document, flags

CMSSessionPostBurstDocument
This event occurs after a document has been burst. As such, it is not cancelable.
There is no equivalent ACL hook for this event.

The following module property provides the context information for this event:
document

Represents the document which has been burst.
• Bubbles: Yes

130 PTC® Arbortext® Programmer’s Reference

• Cancelable: No

• Context Info: document

CMSSessionDisconnectEvent Module
The CMSSessionDisconnectEvent module has the following event type:

CMSSessionPreDisconnect
This event occurs before a a user logs off the repository. There is no equivalent
ACL hook for this event. This event type is not cancelable.

The following module property provides the context information for this event:

currentUser
Specifies the current CMS user name. This will normally match the
loginId parameter to the CMSAdapter.connect method which established
this session.

• Bubbles: Yes

• Cancelable: No

• Context Info: currentUser

CMSAdapterConnectEvent Module
The CMSAdapterConnectEvent module has the following event type:

CMSAdapterPreConnect
This event occurs before the adapter's connect method is invoked. An associated
event handler can ensure any resource dependencies are satisfied.

This event type is cancelable. If an event listener calls the preventDefault method,
the adapter’s connect method will not be called.

No context information is provided for this event.

• Bubbles: Yes

• Cancelable: Yes

CMSAdapterDisconnectEvent Module
The CMSAdapterDisconnectEvent module has the following event type:

CMSAdapterPostDisconnect
This event occurs after a session has successfully logged off the CMS, and as such
is not cancelable. An associated event handler can be used to clean up any resource
dependencies. The event CMSSessionPreDisconnect occurs before the user
logs off the repository. When CMSAdapterPostDisconnect occurs, the
session is invalid, and thus appears in a separate interface.

Events 131

The following module property provides the context information for this event:
currentUser

Specifies the current CMS user name. This will normally match the
loginId parameter to the CMSAdapter.connect method which established
this session.

• Bubbles: Yes
• Cancelable: No
• Context Info: currentUser

DLMEvent Module
The DLMEvent module has the following event types. Refer also to the PTC Arbortext
Dynamic Link Manager Javadoc available in the PTC Arbortext Editor Help Center.

DLMAfterDocValidation
This event is fired immediately after the links in a document or region are validated.
It can be used to perform any cleanup necessary. The target of the event is the
DLMDocument whose links are being validated.
• Related Object: Null
• Related Node: The DOM Document.
• Bubbles: Yes
• Cancelable: No

DLMBeforeDocValidation
This event is fired immediately before the links in a document or region are
validated. It can be used to perform any overall set up, such as cache initialization,
before validation begins. The target of the event is the DLMDocument whose links
are being validated.
• Related Object: Null
• Related Node: The DOM Document.
• Bubbles: Yes
• Cancelable: No

DLMIdAssignment
This event is fired immediately before PTC Arbortext Dynamic Link Manager
assigns an XML ID to a target node in a document. The target of this event is the
DLMDocument object containing the element being assigned an XML ID. Note that
canceling this event during registration effectively cancels the registration of the
target. This event bubbles from the DLMDocument to the DLMClient.
• Related Object: None
• Related Node: The element being assigned an ID value.
• Bubbles: Yes

132 PTC® Arbortext® Programmer’s Reference

• Cancelable: Yes

DLMBeforeTargetRegistered
This event is fired before a target from a PTC Arbortext Dynamic Link Manager
document is added to a registration pass. Note that this is also called for atidlm:link
nodes, since the source resource of all of a link's resource pairs is the link markup
itself. Canceling the event for atidlm:link elements means that the link represented
by the markup will not be considered for registration. The target for this event is the
DLMTarget being registered.

The DLMTarget instance attached to the event will be discarded after registration is
completed, so attaching event listeners to this object should be avoided.
• Related Object: The DLMTarget.
• Related Node: The target element.
• Bubbles: Yes
• Cancelable: Yes

DLMBeforeLinkRegistered
This event is fired before a link in a PTC Arbortext Dynamic Link Manager
document is added to a registration pass. The target for this event is the DLMLink
being registered.

The DLMLink instance attached to the event will be discarded after registration is
completed, so attaching event listeners to this object should be avoided.
• Related Object: The DLMLink.
• Related Node: The atidlm:link element.
• Bubbles: Yes
• Cancelable: Yes

DLMLinkCreated
This event is fired when a DLMDocument creates a new DLMLink object. The
target for this event is the DMLink object. Because the link is not yet present in the
document, there is no node associated with this event.
• Related Object: The DLMLink.
• Related Node: None
• Bubbles: Yes
• Cancelable: No

DLMTargetCreated
This event is fired when a DLMSession creates a new DLMTarget object. The target
for this event is the DLMTarget object.
• Related Object: The DLMTarget.
• Related Node: None
• Bubbles: Yes

Events 133

• Cancelable: No

DLMLinkCommittingToDocument
This event is fired when a DLMLink is updated within a document's markup. Note
that if the link is being inserted into the document for the first time, as opposed to
being updated, the related node will be null.
• Related Object: The DLMLink.
• Related Node: The link node if present. Otherwise, null.
• Bubbles: Yes
• Cancelable: No

DLMTargetCommitted
This event is fired when a DLMTarget has its changes committed to the repository
(most often from DLM Explorer). The target of this event is the target being
committed. Note that this event is not fired during document registration.
• Related Object: The DLMTarget.
• Related Node: None
• Bubbles: Yes
• Cancelable: Yes

DLMLogin
This event is fired immediately after a session is established with PTC Arbortext
Dynamic Link Manager. The target of this event is the new DLMSession.
• Related Object: None
• Related Node: None
• Bubbles: Yes
• Cancelable: No

DLMLogout
This event is fired immediately before a session is closed with PTC Arbortext
Dynamic Link Manager. The target of this event is the DLMSession being closed.
• Related Object: None
• Related Node: None
• Bubbles: Yes
• Cancelable: No

DLMWorkOffline
This event is fired when a user enters offline mode with PTC Arbortext Dynamic
Link Manager. The target of this event is the DLMClient object.
• Related Object: None
• Related Node: None
• Bubbles: Yes

134 PTC® Arbortext® Programmer’s Reference

• Cancelable: No

Events 135

14
Working with Tables

Working with Tables Overview... 138
Example: Inserting and Modifying a Table .. 138
Example: Inserting a Column Based on the Current Selection 140
Example: Identifying a Document Type's Table Model Support 142

137

Working with Tables Overview
The AOM contains interfaces that provide access to more than 100 PTC Arbortext Editor
table functions. With these interfaces, you can programmatically create and modify tables
in any PTC Arbortext Editor document using Java, JavaScript, VB, or VBScript. The
entire PTC Arbortext Editor table object model is exposed through the following set
of interfaces:

Interface Description
TableCell A cell in a table.

TableColumn A column in a table.

TableException The Exception type thrown when an error is encountered.

TableGrid In the Oasis Exchange Table model, a table consists of one or
more grids, each of which can have a unique number of rows
and columns. In the HTML and PTC Arbortext table models,
the grid is the sum of all the table rows and columns. This
interface allows operation on those grids.

TableMulticell A rectangular array of spanned cells in a table.

TableObject The superinterface for TableCell, TableColumn, TableGrid,
TableObjectStore, TableRow, TableRule, TableSet, and
TableTilePlex.

TableObjectStore A collection of TableObjects.

TableRectangle A rectangle of contiguous cells.

TableRow A row in a table.

TableRule A rule in a table.

TableSet A collection of one or more TableGrids.

TableTilePlex A collection representing a table selection.

The following three code samples illustrate the basics of inserting and manipulating tables
using these interfaces. The sample code is in JavaScript. The code will also work using
the Microsoft JScript Engine with the noted modifications.

Example: Inserting and Modifying a Table
This example uses the function addTable to perform the following actions:

• Insert a six-row five-column table into the first paragraph of a PTC Arbortext XML
Docbook template.

• Span cells 1-2 and 3-5 of the first row and add text to the spanned cells.

• Convert the first row to a header row.

• Turn off rules for the entire table.

138 PTC® Arbortext® Programmer’s Reference

The function appendText is a utility function for adding text to a cell.

To run this sample code:

1. Copy addTable and appendText to a file named addtable.js in
Arbortext-path\custom\scripts.

2. Start PTC Arbortext Editor, open a PTC Arbortext XML Docbook template, and
enter the following commands at the PTC Arbortext Editor command line:

source addtable.js
js addtable

//---

// Function: appendText

//

// Description: A utility function called by addTable.

// Adds text to a cell

//

// Parameters: cell: the target for the added text

// text: the text to be added

//

//---

function appendText(cell, text)

{

var cellRange = cell.contents;

cellRange.collapse(false);

var textNode = cell.document.createTextNode(text);

cellRange.insertNode(textNode);

}

//---

// Function: addTable

//

// Description: Add a table to the first para in a document

//

// Parameters: NONE

//

//---

function addTable(){

var doc = Application.activeDocument;

var para = doc.getElementsByTagName("para").item(0);

try{

var set = para.insertTable("OASIS Exchange", "table", 5, 6, null);

}

catch(e){Application.alert("Exception " + e.code() +

Working with Tables 139

" caught in insertTable");

return 0;}

var grid = set.grids.item(0);

var firstRow = grid.row(1);

// Span cells 1-2 and 3-5

firstRow.cell(1).span(firstRow.cell(2));

firstRow.cell(3).span(firstRow.cell(5));

appendText(firstRow.cell(1), "Cells 1 and 2");

appendText(firstRow.cell(3), "Cells 3-5");

// Change first row to a header row

firstRow.setAttribute("header_level",1);

//turn off the table rules

var rules = grid.rules;

for (i = 0; i < rules.length; i++) {

rules.item(i).setAttribute("style", "blank");

}

}//end of addTable

Example: Inserting a Column Based on
the Current Selection
This example uses the function tbl_insert_column to insert a column to the left of the
current selection. If the selection is invalid, that is, it is discontiguous or not a rectangle, a
message is displayed in a dialog box and tbl_insert_column returns zero.

To run this sample code:

1. Copy the tbl_insert_column code to a file named insertcol.js in
Arbortext-path\custom\scripts.

2. Start PTC Arbortext Editor, open a PTC Arbortext XML Docbook template, insert a
5x5 table, and enter the following command at the PTC Arbortext Editor command
line:

source insertcol.js

3. Select a portion of the table.

4. Enter the following command at the PTC Arbortext Editor command line:

js tbl_insert_column()

140 PTC® Arbortext® Programmer’s Reference

//---

// Function: tbl_insert_column

//

// Description:

// Inserts one or more columns into a document

//

// Parameter:

// insertLeft: if true (nonzero), adds columns to the left of

// the target

//

// Returns:

// 0 if the insert failed, 1 if it succeeded

//

//---

function tbl_insert_column(insertLeft)

{

if(insertLeft == undefined){insertLeft = 0;}

var doc = Application.activeDocument;

//Check to see that there's either a table selection, or that the

//cursor is in a table cell.

//To see of a cursor is in a cell:

//get the range that is the cell containing the cursor

//get the cell node

//get the cell containing the caret

if((doc.selectionType != doc.TABLE_SELECTION) &&

((cell = doc.insertionPoint.endContainer.enclosingCell) == null)){

Application.alert("No table object is selected");

return 0;

}

//get the table selection from the active document

var tilePlex = doc.tableSelection;

//if the selection is empty, i.e., just a cursor in a cell,

//add that cell to the tableTilePlex to create a 1x1 rectangle

if(tilePlex.empty){

tilePlex.addObject(cell);

}

//ensure table selection will accept inserted columns

if(!tilePlex.modifiable){

Application.alert("table cannot be modified");

return 0;

}

Working with Tables 141

//ensure table selection is contiguous and does not cross

//grid boundaries

var validRectangle = tilePlex.pasteRectangle;

if(validRectangle == null){

Application.alert("The table selection is discontiguous or crosses grid boundaries");

return 0;

}

//At this point, the selection is valid and can be modified, add the

//columns to the grid.

//A new column is added for each one that the user has selected.

var newGrid = validRectangle.lowerLeft.grid;

for(i = 0; i < validRectangle.width; i++){

try{

if(insertLeft){

newGrid.addColumn(validRectangle.lowerLeft.column);

}

else{

newGrid.addColumn(validRectangle.upperRight.column.columnRight);

}

}

catch(e){Application.alert("Column insertion failed because " + e.code);}

}

//success

return 1;

}//end of tbl_insert_column

To implement the previous example using JScript, change the line:

if((doc.selectionType != doc.TABLE_SELECTION) &&

to be:

if((doc.selectionType != 2) &&

Example: Identifying a Document Type's
Table Model Support
This example uses the function tableModelInfo to print all the available information
on the current document type's supported table model(s) to the PTC Arbortext Editor
message window.

To run this sample code:

1. Copy the tableModelInfo code to a file named tableinfo.js in
Arbortext-path\custom\scripts.

142 PTC® Arbortext® Programmer’s Reference

2. Start PTC Arbortext Editor, open a PTC Arbortext XML Docbook or an XHTML
v1.0 template, and enter the following commands at the PTC Arbortext Editor
command line:

source tableinfo.js

js tableModelInfo

//---

// Function: tableModelInfo

// Description: Print all information about the current table models

// Parameters: NONE

//---

function tableModelInfo()

{

var docType = Application.activeDocument.doctype;

var tblModels = docType.tableModels;

Application.alert("Table model information for the " +

docType + "doctype");

Application.alert("Number of table models = " + tblModels.length);

for (var i = 0; i < tblModels.length; i++) {

Application.print(" [" + i + "] = '" + tblModels.item(i) + "'");

Application.print(" Supports multiple grids = " +

docType.tableModelSupport(tblModels.item(i), "multiplegrids"));

Application.print(" Supports headers = " +

docType.tableModelSupport(tblModels.item(i), "HeaderRows"));

Application.print(" Supports footers = " +

docType.tableModelSupport(tblModels.item(i), "FooterRows"));

var wrappers = docType.tableModelWrappers(tblModels.item(i));

Application.print(" Number of wrapper tags = " + wrappers.length);

for (var j = 0; j < wrappers.length; j++) {

Application.print(" [" + j + "] = '" + wrappers.item(j) + "'");

}

var tags = docType.tableModelTags(tblModels.item(i));

Application.print(" Number of table model tags = " + tags.length);

for (j = 0; j < tags.length; j++) {

Application.print(" [" + j + "] = '" + tags.item(j) + "'");

}

}

}//end of tableModelInfo

Working with Tables 143

15
Working with XSL Composition

Overview.. 146
Related AOM Interfaces and Methods .. 146
Example: Composing an HTML File ... 147

145

Overview
XSL composition refers to PTC Arbortext Editor's ability to transform a document using
XSL or XSL-FO stylesheets. XSL composition is defined by a composer. A composer is a
configurable processor that transforms a document by passing it through one or more SAX
filters in a filter pipeline.

Filters are classes written in Java that process an input data stream into an output data
stream. The data to be processed is represented as a series of SAX events.

A pipeline is a sequence of filters. Each filter takes inputs and produces outputs that get
passed to the next filter in the pipeline. A running pipeline is a closed system with a
well-defined input (the source) and a well-defined output (the sink).

You specify the parameters for a composer in a composer configuration file (.ccf). The
.ccf file defines composer parameters, including filter resources and the processing
sequence.

You can create and edit .ccf files using the DCF Editor in PTC Arbortext Architect
(Edit ▶▶▶CCF). Several .ccf files are distributed with PTC Arbortext Editor. They are
located at Arbortext-path\composer.

Related AOM Interfaces and Methods
You can use the following AOM interfaces and methods to obtain information about a
composer:

Interface Description
Application The createComposer method returns a composer object.

Composer The getDefaultParameters method returns a property map of
composer parameters in the pipeline definition.
The runComposer method runs a pipeline associated with the
composer object.
The getParameterLabel method returns the label for the given
pipeline parameter.
The getParamDocumentation method returns the
documentation for the given pipeline parameter.
The getParamType method returns the type for the given
pipeline parameter.
The getParamEnumerationValue method returns all possible
values for the enumeration as a string list.
The isParamRequired method determines if the given
parameter is required.

146 PTC® Arbortext® Programmer’s Reference

Example: Composing an HTML File
The following example calls the composition pipeline for an HTML file composition.

/*

* ComposerExample is an example of calling the Composition pipeline

* using the AOM Composer. In this example, an XML document is

* composed into an HTML file. The source document can exist in one

* of 2 places:

* - in Arbortext.

* - in a file.

* The Composition uses the htmlfile pipeline defined in htmlfile.ccf

* in the composer directory.

*/

import com.arbortext.epic.*;

import org.w3c.dom.*;

import java.io.File;

public class ComposerExample {

/**

* Used internally to access the composer configuration file.

*/

private static final String HTMLFILE_CCF =

File.separator + "composer" + File.separator + "htmlfile.ccf";

/**

* Used internally to access the entity substitution file.

*/

private static final String HTMLENTSUBFILE =

File.separator + "composer" + File.separator + "htmlEntSub.xml";

/**

* Produces HTML from an in-memory XML file and an XSL stylesheet.

*

* @param docId Id of document to process.

*

* @param stylesheet Fully-pathed XSL stylesheet.

*

* @param outputFile Fully-pathed HTML output filename.

*/

public static void composeToHtmlFromDoc(int docId, String stylesheet,

String outputFile) {

Working with XSL Composition 147

boolean calledStartJob = false;

try {

String installPath = Acl.eval("main::aptpath");

//Create the Composer object for the HTML composition process.

Composer composer = Application.createComposer(installPath +

HTMLFILE_CCF);

PropertyMap params = Application.createPropertyMap();

//Set up the parameters .

params.putString("stylesheet", stylesheet);

params.putString("document", Integer.toString(docId));

//the entity substitution file for HTML

params.putString("html.entSubFname", installPath + HTMLENTSUBFILE);

params.putString("outputFile", outputFile);

//The following sets up the directory where any graphics would

//be placed and the associated href in the HTML document.

params.putString("graphicsHref", (new File(outputFile)).getName()

+ ".graphics/");

params.putString("graphicsPath", outputFile + ".graphics/");

// Let the composer know we are using an XSL stylesheet as opposed

// to a FOSI ("fosi").

params.putString("stylesheetType", "xsl");

//The Acl.* methods perform some initialization that needs to

//happen for the Composer Log.

Acl.execute("require _composerlog");

Acl.execute("require _eventlog");

//The start_job method MUST be called before the composition process

//is run.

Acl.func("_composerlog::start_job", "ComposerExample");

calledStartJob = true;

//Set the log level to info.

String SEVERITY_INFO = Acl.func("eval", "_eventlog::SEVERITY_INFO");

Acl.func("_composerlog::set_log_severity", SEVERITY_INFO);

//runPipeline returns a boolean indicating success or failure.

if (composer.runPipeline(params)) {

Acl.func("_composerlog::add_record", SEVERITY_INFO, "Success.");

148 PTC® Arbortext® Programmer’s Reference

}

else {

// Error information will have been placed into the Composer Log.

Acl.func("_composerlog::add_record", SEVERITY_INFO, "Failure.");

}

}

catch (AclException ex) {

// Unexpected.

System.err.println("ACLException in composeToHtmlFromDoc: " + ex);

ex.printStackTrace(System.err);

}

catch (AOMException aomex) {

// Unexpected.

System.err.println("AOMException in composeToHtmlFromDoc: " + aomex);

aomex.printStackTrace(System.err);

}

finally {

//Cleanup code to tell the ComposerLog that processing is over.

// This MUST be called if start_job was called.

if (calledStartJob) {

Acl.func("_composerlog::end_job");

}

}

}

/**

* Produces HTML from an on-disk XML file and an XSL stylesheet.

*

* @param inputFile Fully-pathed XML filename.

*

* @param stylesheet Fully-pathed XSL stylesheet.

*

* @param outputFile Fully-pathed HTML output filename.

*/

public static void composeToHtmlFromFile(String inputFile,

String stylesheet, String outputFile) {

ADocument doc = null;

try {

doc = (ADocument) Application.openDocument(inputFile);

composeToHtmlFromDoc(doc.getAclId(), stylesheet, outputFile);

}

catch (AOMException aomex) {

System.err.println("AOMException in composeToHtmlFromFile: " + aomex);

aomex.printStackTrace(System.err);

}

finally {

Working with XSL Composition 149

if (doc != null) {

doc.close();

}

}

}

}

150 PTC® Arbortext® Programmer’s Reference

16
Line Numbering in PTC Arbortext

Editor and the PTC Arbortext
Publishing Engine

Line Numbering Overview ... 152
Applying Line Numbers ... 152
Building a Basic Line Numbering Application .. 154
Line numbering application building reference.. 155

151

Line Numbering Overview
PTC Arbortext Editor and the PTC Arbortext Publishing Engine provide a framework for
building a custom application to add line numbers to XML documents. Line numbers and
page numbers can be displayed in the Editor view as well as composed print output.

Applying Line Numbers
PTC Arbortext Editor and PTC Arbortext Publishing Engine provide a framework for
building a custom application to add line numbers to XML documents. Line numbers and
page numbers can be displayed in the Edit window as well as composed print output.

Note
Using line numbering with the Advanced Preference deepcontentsplitting set to
on may produce unexpected results. It is recommended that you do not use line numbering
with deepcontentsplitting enabled.

Line Numbering Sample Application
A sample line numbering application can be found in the samples\linenumbering
folder in your installation directory. Use the following procedure to view an example of
line numbering using this sample application. You'll need to have either PTC Arbortext
Styler or Print Composer installed and licensed to perform the following procedure:

To Apply Line Numbers to a Sample Document:
1. Choose File ▶▶▶New, select the Sample check box, and choose Arbortext Simplified

XML DocBook Article.

2. At the PTC Arbortext Editor command line, type: linenum

Line numbers will appear directly to the left of each line in your document.

3. Choose File ▶▶▶Print Preview and use the asdocbook.style stylesheet to view
the line numbers in a composed document.

4. To remove line numbers from your document, on the PTC Arbortext Editor
command line, type: layout::clear()

Line Numbering Namespace
The line numbering namespace and associated markup (atipl
tags) are described on the PTC Arbortext namespace web site at
http://www.arbortext.com/namespace/index-of-arbortext-namespaces.html.

152 PTC® Arbortext® Programmer’s Reference

http://www.arbortext.com/namespace/index-of-arbortext-namespaces.html

Line Numbering Limitations
• Line numbers cannot be added to lines that consist entirely of generated text (for

example, a table of contents or index).

• FOSI stylesheets must be used. Line numbering is not supported with XSL-FO
stylesheets.

• The same FOSI must be used to apply and view the line numbers.

• Performance on large documents will be slow and memory intensive.

• Changes made outside of PTC Arbortext Editor or PTC Arbortext Publishing
Engine may corrupt line and page markers.

• Change tracking records must be either accepted or rejected before line numbering
is applied.

• Line numbers can only be displayed on the left side of the Edit window. However,
line numbers can be set to appear on either side of a composed print document.

• There is no support for languages without spaces between words (for example,
Chinese, Japanese, and Korean).

• Line numbering is only intended to work with XML documents.

• Line numbering is not supported when using composition pipeline formatting (for
example, line numbers cannot be applied to profiled documents).

• Line numbering cannot be applied to documents that contain file entities that are
referenced multiple times in a single document. Unexpected behavior may result.

• Rules and leaders are ignored. Adjacent line breaks may not be marked up correctly.

• Documents with line numbering applied cannot be checked into the Documentum
XML repository if a validating application is being used on the Documentum XML
side. The Documentum XML parser does not recognize namespaces.

The following limitations apply to the sample application, but are not necessarily
limitations of the PTC Arbortext Editor line numbering capability

• Only single column output is supported.

• Tables are accommodated, but not algroups.

• Vertical spanning of cells is not supported.

• Only top justified text in tables is supported.

Contact PTC Inc. consulting services for help developing your customized line numbering
application.

Line Numbering in PTC Arbortext Editor and the PTC Arbortext
Publishing Engine 153

Building a Basic Line Numbering
Application
Use the following procedure to build a rudimentary application that will add line
numbers to an XML document. You can use the sample application code found in
the linenum.acl file in samples\linenumbering folder of your installation
directory as a starting point or build the application entirely from scratch.

Note
If you are editing SGML documents, remember to recompile your document type to add
the line numbering FOSI fragments (atipl-eic.fos) that are found in the \lib
directory of your installation. XML document types are automatically recompiled.

To Build a Basic Line Numbering Application:
1. Build an ACL application that will be used to define the line numbering behavior

you want to apply to the atipl tags in a document. You can provide specifications
for each of the atipl tags. Detailed descriptions of the generic attributes for each
tag are provided in the reference section of this chapter. The following list provides
suggestions for your application:
• If you want line numbers to restart at each new page, include a counter in

your code that initializes at each atipl:startpage tag.
• If you want line numbers to appear on every fifth line, include a counter in

your code that sets the attr1 on each atipl:startline tag that is divisible
by 5.

• By default, line numbers are displayed in both the Edit view and composed
print output. If you would like to limit line numbering to one media or the
other, set the atipl variable to either print or screen. For example, to
limit line numbers to composed print output, add the following line to your
code:

$atipl="print"

• Generated text must be refreshed in order for the newly applied line numbers
to be displayed in the Edit view. Add the following line to your code to
automatically refresh generated text:

set gentext=off ; set gentext=on

2. Open an XML document and call the layout::apply function, passing your ACL
application through as the first argument. The layout::apply function causes a
series of composition and layout events to occur:

A formatting pass is completed and a .layout file is generated, which specifies
the structure of the document as it will appear in composed output, and defines

154 PTC® Arbortext® Programmer’s Reference

where the atipl tags will appear. For more information about the layout file,
please refer to The Layout file and document type on page 160.

The atipl markup is added to your document.

A second formatting pass is performed, your application is called and sets a series
of common attributes on the atipl tags, which define the line numbers'
appearance.

The line numbers are displayed in your Edit view.

Line numbering ACL

Detailed information on the following ACL functions and set options can be found in
the ACL documentation.
• set pagelayoutmarkers command
• set protectpagelayout command
• oid_logical_mate function
• oid_find_valid_insert function
• layout::add function
• layout::clear function
• layout::apply function
• linenum function

Line numbering application building
reference
The following sections provide detailed information regarding the structure, conventions,
and possible customization of the PTC Arbortext line numbering framework.

Tag traversal and current tag conventions
Use the pagelayoutmarkers set option to control the display of the atipl markup,
and the protectpagelayout set option to control whether or not it can be modified.
The caret command will ignore atipl markup whenever it is not displayed, regardless
of these command settings.

oid functions (for example, oid_next and oid_prev) do not recognize atipl
markup whether or not it is displayed in the Edit window. Line numbering applications
must be written to handle cases where atipl markup may interfere with tag or oid
navigation.

The atipl singleton tags do not affect the balancing of selections, but they must be
treated as pairs in other respects by all edit operations. This markup is ignored by the spell
checking code, so that word fragments split by these tags are seen as a single word.

Line Numbering in PTC Arbortext Editor and the PTC Arbortext
Publishing Engine 155

Deletion, either forward or backward, will ignore any atipl markup to the left of the
cursor if it is not displayed. The deletion operation will fail if the markup is displayed
and protected.

In the context of line numbering applications, the current tag is defined as the tag to
the left of the cursor. The atipl tags can only be treated as the current tag when they
are displayed.

The line numbering namespace
The line numbering namespace and associated markup (atipl
tags) are described on the PTC Inc. namespace web site
at:www.arbortext.com/namespace/index-of-arbortext-namespaces.html.

The atipl layout markup
The atipl tag set does not require a separate document type definition; it
can be used with all document types. The definitions for these tags are in
Arbortext-path\lib\dtgen\atitag.cf, and the default formatting is defined in
FOSI fragment located at Arbortext-path\lib\atipl-eic.fos.

When the layout::apply function is called, a .layout file is created, using the structures
defined in the layout.dtd to specify the composed layout of the document. The atipl
singleton tags are then inserted as pairs around the document material that corresponds to
the composed output structure they describe. Although atipl tags are singletons, if a
particular tag cannot be inserted, its logical mate will not be inserted either. For example,
if a <atipl:startcolumn/> tag cannot be inserted, the <atipl:endcolumn/>
tag will also not be allowed.

Each start and end tag has a set of generic attributes. Every start tag also has a predefined
set of attributes that correspond to the declared attributes of the matching element of the
layout.dtd. For more detailed information on the layout.dtd, refer to section The
Layout file and document type on page 160. The exceptions to this correlation are that the
oid and offset attributes are not required, and the <atipl:startfloat/> tag has
page, span, and column number attributes.

The commonattr entity in the layout.dtd
Each singleton pair described below is defined in the commonattrs entity which is
declared in the layout.dtd.

type, location, error and generic attributes

<!ENTITY % commonattrs

"type (forced|discretionary) "discretionary"

location (inline|display) "inline"

xmlns:atipl CDATA #IMPLIED

error CDATA #IMPLIED

156 PTC® Arbortext® Programmer’s Reference

http://www.arbortext.com/namespace/index-of-arbortext-namespaces.html

attr1 CDATA #IMPLIED

attr2 CDATA #IMPLIED

attr3 CDATA #IMPLIED

attr4 CDATA #IMPLIED

attr5 CDATA #IMPLIED

attr6 CDATA #IMPLIED

attr7 CDATA #IMPLIED

attr8 CDATA #IMPLIED

attr9 CDATA #IMPLIED" >

The type, location and error attributes are used to control the method for
generating formatting characteristics for an element and are set during the generation of
layout markup. These attributes should not be modified.

The attributes attr1 through attr9 are generic attributes that can be used by the
application writer to customize page layout applications. By convention, attr1 is used
to display automatically generated text, such as line numbers.

startpage and endpage

<!ELEMENT atipl:startpage EMPTY>

<!ATTLIST atipl:startpage

number NMTOKEN #IMPLIED

%commonattrs; >

<!ELEMENT atipl:endpage EMPTY>

<!ATTLIST atipl:endpage

%commonattrs; >

The startpage markup indicates the start of a page, as determined by PTC Arbortext
Editor's formatting engine. The number attribute gives the sequential page number.

A folio may be set for the attr1 attribute. It will appear as part of the line number in the
format: folio,\-\,lineno.

The type of page break to force is controlled by the attr2 attribute. Valid values are
next, verso, and recto. The default is to not force a page break.

The endpage markup specifies the end of a page. If the attr2 attribute is set to the
fill, then underfull errors are not reported for this page and the page is not stretched if
it is short.

startspan and endspan

<!ELEMENT atipl:startspan EMPTY>

<!ATTLIST atipl:startspan

number NMTOKEN #IMPLIED

columns NMTOKEN #IMPLIED

Line Numbering in PTC Arbortext Editor and the PTC Arbortext
Publishing Engine 157

%commonattrs; >

<!ELEMENT atipl:endspan EMPTY>

<!ATTLIST atipl:endspan

%commonattrs; >

The start and end of a spanned column are specified by the startspan and endspan
markup. For example, a page that contains two columns of text followed by a page
wide table will consist of two spans. The span number, which is reset on every page, is
indicated by the attribute number. The number of columns is indicated by columns.

startcolumn and endcolumn

<!ELEMENT atipl:startcolumn EMPTY>

<!ATTLIST atipl:startcolumn

number NMTOKEN #IMPLIED

%commonattrs; >

<!ELEMENT atipl:endcolumn EMPTY>

<!ATTLIST atipl:endcolumn

%commonattrs; >

Columns within a span are indicated by the startcolumn and endcolumn markup.
The number attribute indicates the column number. To force a column break, set attr2
to force.

startfloat and endfloat

<!ELEMENT atipl:startfloat EMPTY>

<!ATTLIST atipl:startfloat

class CDATA #IMPLIED

flid CDATA #IMPLIED

pagetype CDATA #IMPLIED

%commonattrs; >

<!ELEMENT atipl:endfloat EMPTY>

<!ATTLIST atipl:endfloat

%commonattrs; >

Floats are parts of a document that do not appear in a set order. Rather, floats appear at the
top or bottom of a page, span, or column. The class, flid, and pagetype attributes
refer to FOSI concepts associated with every float.

158 PTC® Arbortext® Programmer’s Reference

startrow, endrow, startentry, and endentry

<!ELEMENT atipl:startrow EMPTY>

<!ATTLIST atipl:startrow

number NMTOKEN #IMPLIED

%commonattrs; >

<!ELEMENT atipl:endrow EMPTY>

<!ATTLIST atipl:endrow

%commonattrs; >

<!ELEMENT atipl:startentry EMPTY>

<!ATTLIST atipl:startentry

number NMTOKEN #IMPLIED

vspan NMTOKEN #IMPLIED

hspan NMTOKEN #IMPLIED

%commonattrs; >

<!ELEMENT atipl:endentry EMPTY>

<!ATTLIST atipl:endentry

%commonattrs; >

The startrow, endrow, startentry, and endentry markup specifies the rows
and columns of a table. The number attribute of a row is reset on every page, likewise
the number attribute of an entry is reset in every row. The vspan and hspan attributes
indicate that an entry is spanning. The former indicates the number of cells spanned
vertically, the latter indicates the number spanned horizontally.

startline and endline

<!ELEMENT atipl:startline EMPTY>

<!ATTLIST atipl:startline

typemask CDATA "1"

%commonattrs; >

<!ELEMENT atipl:endline EMPTY>

<!ATTLIST atipl:endline

hyphen NMTOKEN #IMPLIED

%commonattrs; >

The startline and endline markup indicates the line breaks as defined by the
formatting engine. The type of content in a line is indicated by the typemask attribute.
The bits that may appear in a typemask indicate whether that content is plain or generated
text, and are displayed in the following table:

Line Numbering in PTC Arbortext Editor and the PTC Arbortext
Publishing Engine 159

Plain Gentext Content
0x1 0x2 characters
0x4 0x8 ruling

0x10 0x20 kern, kernto, hyphpt, hardsp, passthru
0x40 0x80 character fill (leader dots)
0x100 0x200 graphic
0x400 0x800 display equation
0x1000 0x2000 inline equation
0x4000 0x8000 forced line break

If a line ends with a hyphen, the character code of the hyphen is added to the hyphen
attribute on the end tag.

The margin where the line numbers appear in the printed output is defined by the value of
attr2. Legal values are left or right. The default is right.

The quadding of the number, relative to the page center, is defined by the value of attr3.
This value may be in or out. The default value is out.

The end of a line, where a break is no longer discretionary, may require special treatment.
Set attr2 to fill on the end tag to end a line with a filler space that prevents an
underfull error.

The Layout file and document type
The Layout document type defines the .layout file, which is produced by the PTC
Arbortext formatting engine and written to the .aptcache folder when line numbering
is applied to a document. The .layout file specifies the structure of the document as it
will appear in composed output, and defines where the atipl tags will appear.

The format of the .layout file is defined by the following document type definition. A
typical declaration would be structured in this way:

<?xml version=1.0?>

<!DOCTYPE layout PUBLIC "-//Arbortext//DTD Layout 1.0//EN"

"layout/layout.dtd">

The common entities
The following entities are declared in the Layout DTD, and are used for declaring
attributes that point back into the document or store dimensions.

<!ENTITY % oid "CDATA" > <!--vdid,df,genno-->

<!ENTITY % offset "NMTOKEN" > <!--zero based offset-->

<!ENTITY % dimen "CDATA" > <!--dimension in pt, e.g 1.25-->

160 PTC® Arbortext® Programmer’s Reference

Layout structure
A .layout file describes the page structures that result from the composition process
applied to a source document. A typical .layout file will describe one or more Page
structures.

The Layout element's date attribute holds the creation date in the form DD-MM-YYYY.
The file attribute holds the system path of the source document, if available.

<!ELEMENT Layout (Page*)>

<!ATTLIST Layout

date CDATA #IMPLIED

file CDATA #IMPLIED >

Page level structures
A Page is a vertical layout container that holds an optional header, zero or more spans,
and an optional footer. Page-top floats may appear after the header and Page-bottom
floats may appear before the footer. Pages are numbered starting with 1 for the first page.
The optional oid attribute indicates the element that forces the start of the page, if any.

Header and Footer are generated by the stylesheet. They may also contain information
that is derived from the document or from the part of the document that is currently
displayed. The header and footer are usually ignored by applications that move layout
information back to the document.

Span is a horizontal layout container that holds one or more columns. For example, a
page may have a title that spans the page, a three column span for text, and another one
column span for a table. The optional oid attribute specifies the element in the document
that forces the start of any such span.

Spans are numbered, starting with 1 for the first span on a page. The columns attribute
specifies the maximum number of columns that a span can contain. Some of the columns
in a span may be missing. The width attribute specifies the width of each column in a
span measured in points.

Column is a vertical layout container that holds lines of galley material or tables.
Columns are numbered, starting with 1 for the first column in a span. The oid attribute
indicates the element that forces the start of any such column.

<!ELEMENT Page ((Header? , Float*, (Span+, Float*)?, Footer?))>

<!ATTLIST Page

oid %oid; #IMPLIED

number NMTOKEN #IMPLIED >

<!ELEMENT Header ((Line | Row)*)>

<!ELEMENT Footer ((Line | Row)*)>

<!ELEMENT Span (Float*, (Column+ , Float*)?)>

<!ATTLIST Span

Line Numbering in PTC Arbortext Editor and the PTC Arbortext
Publishing Engine 161

oid %oid; #IMPLIED

number NMTOKEN #IMPLIED

columns CDATA #IMPLIED

width %dimen; #IMPLIED >

<!ELEMENT Column (Float*, ((Line | Row)+, Float*)?)>

<!ATTLIST Column

oid %oid; #IMPLIED

number CDATA #IMPLIED >

Floating structures
A float is a vertical container. It holds galley material that does not appear in sequence
with the galley but rather in one of the many float areas available in the page layout.
These areas are the top or bottom of the page, the top or bottom of any span, and the top
or bottom of any column.

Floating material belongs to one of many float classes, and within a class multiple floats
retain their galley order. For example, footnotes are floats that belong to the footnote
class, and they appear in the page layout in the same order as they originally appeared
in the instance.

The oid attribute indicates the element that starts the float.

The class attribute indicates the float class. The class also contains a float occurrence
modifier. Repeating floats may appear many times, while once floats may only appear
once. Applications may be written to ignore repeating floats and process once floats
according to the class name.

The flid attribute (float identifier) provides a unique number for each float in a class.

The pagetype attribute defines the relationship between a float and its point of reference.

The width attribute specifies the width of the content.

<!ELEMENT Float ((Row | Line)*)>

<!ATTLIST Float

oid %oid; #REQUIRED

class CDATA #IMPLIED

flid CDATA #IMPLIED

pagetype CDATA #IMPLIED

width %dimen; #IMPLIED >

Galley structures
Galley refers to the running text and tables that are laid out into columns during page
composition.

Row is a horizontal container associated with tables that hold one or more entries. A table
is made up of rows, some of which are header rows and some of which are footer rows.
The oid attribute indicates the element that starts the row.

162 PTC® Arbortext® Programmer’s Reference

Entry is a vertical container that holds the material that appears in a table cell. This
material is typeset using the width of the entry (given by the width attribute). An entry
may span columns (hSpan) and rows (vSpan). The oid attribute indicates the element
that starts the entry.

Line is a horizontal container that holds text, graphics, or equations. Line numbering
applications focus on the start and end of each line. If an element forced the start of a
line, this is indicated by the oid attribute.

<!ELEMENT Row (Entry+)>

<!ATTLIST Row

oid %oid; #IMPLIED

number NMTOKEN #IMPLIED >

<!ELEMENT Entry ((Line | Row)*)>

<!ATTLIST Entry

oid %oid; #IMPLIED

number NMTOKEN #IMPLIED

hSpan NMTOKEN #IMPLIED

vSpan NMTOKEN #IMPLIED

width CDATA #IMPLIED >

<!ELEMENT Line ((Text | Graphic | Equation)*)>

<!ATTLIST Line

oid %oid; #IMPLIED

y %dimen; #IMPLIED >

Text level structures
Text level structures are the visible objects that appear on the page. They include text,
graphics, and equations. Rules and leaders are ignored by line numbering applications.

Text refers to a sequence of characters that are displayed one font. The concept of a word
does not exist, because a string of characters includes space characters. If implemented,
the text element may contain a string of characters as PCDATA, otherwise it is empty.

The oid, sOffset, and eOffset parameters can be used to locate the exact substring
in the source document that corresponds to a text element. If the text fragment ended
in a discretionary hyphen (inserted by the formatting engine), the hyphen character is
indicated by the hyphen attribute.

Graphic is an object that will be rendered as an image based on data outside of the
document instance (for example, a .gif file). The file attribute gives the location
of the file.

Equation is an object that will be rendered as a mathematical equation by the PTC
Arbortext formatting engine. Equations may be of two types, either display or inline.

<!ELEMENT Text (#PCDATA) >

<!ATTLIST Text

oid %oid; #REQUIRED

Line Numbering in PTC Arbortext Editor and the PTC Arbortext
Publishing Engine 163

sOffset %offset; #IMPLIED

eOffset %offset; #IMPLIED

hyphen NMTOKEN #IMPLIED

x %dimen; #IMPLIED >

<!ELEMENT Graphic EMPTY>

<!ATTLIST Graphic

oid %oid; #REQUIRED

x %dimen; #IMPLIED

file CDATA #IMPLIED >

<!ELEMENT Equation EMPTY>

<!ATTLIST Equation

oid %oid; #REQUIRED

x %dimen; #IMPLIED

type (display|inline) #IMPLIED >

164 PTC® Arbortext® Programmer’s Reference

IV
Interfaces

165

17
Interface Overview

The AOM supports most of the DOM interfaces developed by the W3C, several PTC
Arbortext extensions to the DOM interfaces, and many additional PTC Arbortext
interfaces for features that are not part of the DOM. Refer to Introduction to the Document
Object Model (DOM) on page 18 for a list of supported DOM specifications.

The interface descriptions use the DOM conventions in presenting a language-neutral
definition of the list of constants (enumerations), attributes (properties), and methods
implemented for each interface. For some language bindings, the enumeration (constant)
names are available as global typedefs (for example, COM C++), as static final
constants (Java, JavaScript), or only available as numeric values (JScript and VBScript,
currently). Attributes (or properties) in some language bindings are translated to setXxx
and setXxx methods. For example, the Application.activeDocument attribute is obtained
by calling the Application.getActiveDocument()method in Java. Read-only attributes, as
noted in the Access table entry of each attribute description, only have a getXxx method
in these language bindings. (Refer to the Index terms “attributes”, “enumerations”, and
“methods” for alphabetical listings of each, respectively.)

The descriptions of the W3C interfaces in the following chapters are taken from their
respective W3C specifications. Each description provides a reference to its W3C
specification.

In the W3C interface descriptions, the DOMString type is a string of 16-bit Unicode
characters, the same as the String type in the other interface descriptions. Throughout the
documentation consider references to HTML or XML to also include SGML.

Square braces ([]) denote optional trailing parameters which may be omitted in most
script bindings. Also, the AOM provides method overloads in the Java binding so that
optional parameters may be omitted.

The AOM supports the following interfaces:

167

Interface Description
AbstractView (W3C) A base interface that all views shall derive from.

Acl

Represents the ACL (Arbortext Command Language)
interpreter, allowing the AOM programmer to request that
a string be executed as an ACL command or evaluated as
an ACL function.

ActivexEvent
Provides specific contextual information associated with
Activex events.

ADocument
The PTC Arbortext extension to the W3C DOM Document
interface.

ADocumentType
PTC Arbortext extensions to the W3C DOM
DocumentType interface

AEditEvent
Provides specific contextual information associated with
the EditEvent extension.

AElement
The PTC Arbortext extension to the W3C DOM Element
interface.

AEvent
The PTC Arbortext extension to the W3C DOM Event
interface.

ANode
The PTC Arbortext extension to the W3C DOM Node
interface.

Application

Provides access to PTC Arbortext Editor and PTC
Arbortext Publishing Engine global functionality. (That
is, features that are not associated with any document,
document type, or document component.) There is only
one Application object instantiation in existence.

ARange
The PTC Arbortext extension to the W3C DOM Range
interface.

Attr (W3C) An attribute in an Element object.

CDATASection
(W3C) Used to escape blocks of text containing characters
that would otherwise be regarded as markup.

CharacterData
(W3C) Extends Node with a set of attributes and methods
for accessing character data in the DOM.

Comment

(W3C) Inherits from CharacterData and represents the
content of a comment, for example, all the characters
between the starting <!-- and ending -->.

Component The base interface for all window components.

Composer
Represents a composition pipeline defined by a Composer
Configuration File (CCF).

168 PTC® Arbortext® Programmer’s Reference

Interface Description

ControlEvent
Provides specific contextual information associated with
Control events.

Dialog Extends the Window interface.
Document (W3C) Represents the entire HTML or XML document.

DocumentEvent
(W3C) Provides a mechanism by which the user can create
an Event of a type supported by the implementation.

DocumentFragment (W3C)A "lightweight" or "minimal" Document object.

DocumentRange
(W3C) Provides a mechanism to create Range objects for
a document.

DocumentType
(W3C) Each Document has a doctype attribute whose
value is either null or a DocumentType object.

DocumentView
(W3C) Implemented by Document objects in DOM
implementations supporting DOM Views.

DOMImplementation

(W3C) Provides a number of methods for performing
operations that are independent of any particular instance
of the document object model.

Element
(W3C) The Element interface represents an element in an
HTML or XML document.

Entity
(W3C) This interface represents an entity, either parsed or
unparsed, in an XML document.

EntityReference

(W3C) EntityReference objects may be inserted into the
structure model when an entity reference is in the source
document, or when the user wishes to insert an entity
reference.

Event
(W3C) Used to provide contextual information about an
event to the handler processing the event.

EventListener (W3C) The primary method for handling events.

EventTarget

(W3C) Implemented by all Nodes in an implementation
which supports the DOM Event Model. Also implemented
by all Components in the AOM implementation.

MenuBar Represents a menu bar.

MenuEvent
Provides specific contextual information associated with
Menu events.

MenuItem Represents a menu item.

MouseEvent
(W3C) Provides specific contextual information associated
with Mouse events.

Interface Overview 169

Interface Description

MutationEvent
(W3C) Provides specific contextual information associated
with Mutation events.

NamedNodeMap

(W3C) Objects implementing the NamedNodeMap
interface are used to represent collections of nodes that can
be accessed by name.

Node
(W3C) The primary datatype for the entire Document
Object Model.

NodeList

(W3C) Provides the abstraction of an ordered collection of
nodes, without defining or constraining how this collection
is implemented.

Notation (W3C) Represents a notation declared in the DTD.

ProcessingInstruction

(W3C) Represents a processing instruction. Used in XML
as a way to keep processor-specific information in the text
of the document.

PropertyMap
Provides the abstraction of a collection of typed objects
associated with string keys.

Range
(W3C) Represents a range of content in a Document,
DocumentFragment, or Attr.

ScriptContext

Provides methods to load and run scripts using the
Microsoft Windows Scripting engine in separate contexts.
This interface is only available in the COM binding of the
AOM.

StringList

Provides the abstraction of an ordered collection of Strings,
without defining or constraining how this collection is
implemented.

TableCell Represents a single cell in a table.
TableColumn Represents a column of cells.
TableGrid Represents a table grid which is a rectangular array of cells.
TableMulticell Represents a rectangular array of spanned cells in a table.
TableObject Base class for all table objects.

TableObjectStore
A TableObjectStore contains a collection of TableObjects
all from the same document.

TableRectangle Represents a rectangle of cells.
TableRow Represents a row of cells.
TableRule Represents a rule.

TableSet
A collection of one or more TableGrids, each of which is a
rectangular array of TableCells.

170 PTC® Arbortext® Programmer’s Reference

Interface Description
TableTilePlex Used to represent a table selection.

Text

(W3C) Inherits from CharacterData and represents the
textual content (termed character data in XML) of an
Element or Attr.

ToolBarEvent
Provides specific contextual information associated with
ToolBar events.

UIEvent
(W3C) Provides specific contextual information associated
with User Interface events.

View
A subclass of AbstractView, representing a view of an
associated Document.

Window
Represents a top level window frame which is created by
PTC Arbortext Editor.

WindowEvent
Provides specific contextual information associated with
Window events.

The AOM supports the following Arbortext PE Application interfaces:

Interface Description

CCComposer
Describes a single composer (.ccf file) installed on the
PTC Arbortext Publishing Engine server.

CCCompositionParameter
Describes a single parameter to a PTC Arbortext Content
Pipeline composer (.ccf file).

CCDoctype
Describes a single document type installed on a PTC
Arbortext Publishing Engine server.

CCDocumentComposer
Describes a composer associated with a document type
installed on a PTC Arbortext Publishing Engine server.

CCFrameset
Describes a frameset that is installed on a PTC Arbortext
Publishing Engine server.

CCPathEntry Describes a single directory on a server path list.

CCStylesheet
Describes a stylesheet installed on the PTC Arbortext
Publishing Engine server.

CompositionConfiguration
Provides information about a PTC Arbortext Publishing
Engine server's composition capabilities.

E3Application

Creates an object that runs in each Arbortext PE
sub-process and is called by the PTC Arbortext Publishing
Engine to process HTTP requests.

E3ApplicationRequest
Provides request information for a PTC Arbortext
Publishing Engine Application.

Interface Overview 171

Interface Description

E3ApplicationResponse

Provides an object to assist a PTC Arbortext Publishing
Engine Application in sending a response to the HTTP or
SOAP client.

E3ClientCompositionExtension

Describes an object that provides composition type-specific
pre- and post-processing routines for the PTC Arbortext
Publishing Engine Composition Client.

E3Config
Passes information to a PTC Arbortext Publishing Engine
Application during initialization.

E3ServerComposer

Describes an object that handles composition operations on
a PTC Arbortext Publishing Engine server. “Composition"
includes transforming an input JAR file into an output
JAR file.

E3ServerCompositionExtension
Extends the PTC Arbortext Publishing Engine Server
Composition Application.

E3ServerCompositionParameter
Describes a parameter passed to or returned by an
E3ServerCompositionRequest.

E3ServerCompositionRequest

Describes the request for a composition operation to be
performed by the PTC Arbortext Publishing Engine server
composition application.

E3ServerCompositionResult

Describes the result of a composition operation under the
PTC Arbortext Publishing Engine server composition
application.

E3Tracer
Creates entries in the PTC Arbortext Publishing Engine
Server Composition trace files.

172 PTC® Arbortext® Programmer’s Reference

AAOM set Options

AOM set Options Overview
This appendix describes the options that can be passed as the name parameter to the
getOption and setOption methods of the following interfaces:

• Application

• ADocument

• View

• Window

The entire set of options that can be passed is listed in the Arbortext Command Language
Reference. The Arbortext Command Language Reference is available in the PTC Arbortext
Editor Help Center in PDF and HTML forms. Search the Help Center for any option by
name, or refer to the Help Center index for all options beginning with the term “set”.

Options must be of the proper scope for the interface to be passed with a method. That
is, only document scope option names can be passed with ADocument.setOption, only
window scope option names can be passed withWindow.setOption, and so on. The scope
of each option is stated at the beginning of each option's description.

Following each option name, the allowed values are listed.

• Italics represent variable values. For example,
browserpath path

• Curley braces represent a fixed set of possible values. For example,
allowinvalidmarkup { on | off}

Option values are returned as strings by the getOption() methods.

173

Refer to the Arbortext Command Language Reference for a complete list of options.

174 PTC® Arbortext® Programmer’s Reference

Index

A
ACL
calling from Acl interface, 42
calling Java interface, 44
calling JavaScript interface from, 56
calling JScript interface from, 76
calling VBScript interface from, 82
using from the AOM, 41

ACL scripts
loading automatically, 29

ADocumentEntityEvent module, 119
ADocumentEvent module, 117
AEditEvent module, 115
AOM, 17
calling ACL from, 42
COM interface, 68
compiling for Java program, 47
compiling Java programs, 49
using IDE, 50

debugging java applications, 53
DOM support, 19
extensions to the DOM, 51, 167
features, 79, 83
interface overview, 167
Java interface, 44
arrays, passing with ACL, 46
calling from ACL, 44
code sample files, 54
exceptions, 51

Java packages, 48
JavaScript interface, 56
arrays, passing with ACL, 57
calling from ACL, 56
calling Java from, 62
code sample files, 65
error handling, 64
global objects, 61
language extensions, 59

limitations, 59
JScript interface, 76
arrays, passing with ACL, 77
calling from ACL, 76
code sample files, 80
global objects, 79
limitations, 79

overview, 18
PTC Arbortext Publishing Engine
interface overview, 171
VBScript interface, 82
calling from ACL, 82
code sample files, 84
global objects, 83
limitations, 83

aom.jar file, 47
AOMCopy event type, 115
AOMCut event type, 115
AOMDeleteRegion event type, 115
AOMPaste event type, 115
AOMUndo event type, 116
application directory
structure, 33

application directory overview, 22
application files
error reporting at startup, 31
implementing custom, 32
overview of application directory, 33
overview of custom directory, 22

ApplicationClosing event type, 116
ApplicationEvent module, 116
ApplicationLoad event type, 116
Applications
line numbering, 154

Arrays
passing between Java interface and
ACL, 46

175

passing between JavaScript
interface and ACL, 57
passing between JScript interface
and ACL, 77

atipl
layout markup, 156

C
click event type, 112
closing documents, 90
CMSAdapterConnectEvent module, 131
CMSAdapterDisconnectEvent
module, 131
CMSAdapterPostDisconnecttype, 131
CMSAdapterPreConnect type, 131
CMSObjectCancelCheckout type, 124
CMSObjectCheckin type, 122
CMSObjectCheckout type, 123
CMSObjectEvent module, 122
CMSObjectPostCancelCheckout
type, 124
CMSObjectPostCheckin type, 123
CMSObjectPostCheckout type, 124
CMSObjectPostSave type, 125
CMSObjectPreCheckinevent type, 122
CMSObjectSave type, 124
CMSSessionBurstDocument type, 130
CMSSessionBurstEvent module, 129
CMSSessionConstructEvent module, 125
CMSSessionConstructObject type, 125
CMSSessionCreateEvent module, 126
CMSSessionCreateNewObject type, 126
CMSSessionDisconnectEvent
module, 131
CMSSessionFileEvent module, 127
CMSSessionGetFile type, 128
CMSSessionPostBurstDocument
type, 130
CMSSessionPostConstructObject
type, 126
CMSSessionPostCreateNewObject
type, 127
CMSSessionPostGetFile type, 128
CMSSessionPostPutFile type, 129
CMSSessionPreDisconnect, 131

CMSSessionPutFile type, 128
code sample files
COM interface, 73
Java interface, 54
JavaScript interface, 65
JScript interface, 80
VBScript interface, 84

COM C++
event handling, 109

COM interface, 68
code sample files, 73
error handling, 71

COM objects
calling from ACL, 70

COM server
registering, 68
unregistering, 68

configuration
application.xml, 34

contacting technical support, 8
conventions used in the
documentation, 12
copying document content, 96–97
custom applications
application directory, 33
application.xml startup file, 34
approach, 36
custom directory, 22
deploying as zip file, 37
Enterprise Publishing Packs, 33
error reporting at startup, 31

custom directory
custom.xml file, 22
deploying as zip file, 37
structure, 22

custom directory overview, 22
custom.xml file, 22
customizations
deploying as zip file, 37

cutting document content, 96

D
degubbing Java applications, 53
deleting document content, 94
Dialog boxes

176 PTC® Arbortext® Programmer’s Reference

creating custom
where to place files, 24

Dictionaries
custom, 25

directories
application, 33
custom, 22

DITA support
custom DITA reference path, 24

DLMAfterDocValidation event type, 132
DLMBeforeDocValidation event
type, 132
DLMBeforeLinkRegistered event
type, 133
DLMBeforeTargetRegistered event
type, 133
DLMEvent module, 132
DLMIdAssignment event type, 132
DLMLinkCommittingToDocument
event type, 134
DLMLinkCreated event type, 133
DLMLogin event type, 134
DLMLogout event type, 134
DLMTargetCommitted event type, 134
DLMTargetCreated event type, 133
DLMWorkOffline event type, 134
Document types
custom, 25

documentation conventions, 12
DocumentClosed event type, 117
DocumentCreated event type, 117
DocumentLoad event type, 117
DocumentSaving event type, 118
DocumentUnload event type, 118
DOM
AOM extensions, 167
introduction, 18
limitations, 19
programming considerations, 19
using with SGML documents, 20

DOMActivate event type, 105, 111
DOMAttrModified event type, 114
DOMCharacterDataModified event
type, 115
DOMFocusIn event type, 104, 111
DOMFocusOut event type, 105, 111

DOMNodeInserted event type, 113
DOMNodeInsertedIntoDocument
event type, 114
DOMNodeRemoved event type, 114
DOMNodeRemovedFromDocument
event type, 114
DOMSubtreeModified event type,
105, 113

E
Enterprise Publishing Packs
implementing, 33

Entities
setting paths
loading automatically, 26

EntityDeclConflictevent type, 119
error handling
COM interface, 71
Java interface, 51
JavaScript interface, 64
JScript interface, 79
VBScript interface, 84

error reporting
at startup, 31

event types
AOMCopy, 115
AOMCut, 115
AOMDeleteRegion, 115
AOMPaste, 115
AOMUndo, 116
ApplicationClosing, 116
ApplicationLoad, 116
click, 112
CMSAdapterPostDisconnect, 131
CMSAdapterPreConnect, 131
CMSObjectCancelCheckout, 124
CMSObjectCheckin, 122
CMSObjectCheckout, 123
CMSObjectPostCancelCheckout, 124
CMSObjectPostCheckin, 123
CMSObjectPostCheckout, 124
CMSObjectPostSave, 125
CMSObjectPreCheckin, 122
CMSObjectSave, 124
CMSSessionBurstDocument, 130

Index 177

CMSSessionConstructObject, 125
CMSSessionCreateNewObject, 126
CMSSessionGetFile, 128
CMSSessionPostBurstDocument, 130
CMSSessionPostConstructObject, 126
CMSSessionPostCreateNewObject,
127
CMSSessionPostGetFile, 128
CMSSessionPostPutFile, 129
CMSSessionPreDisconnect, 131
CMSSessionPutFile, 128
DLMAfterDocValidation, 132
DLMBeforeDocValidation, 132
DLMBeforeLinkRegistered, 133
DLMBeforeTargetRegistered, 133
DLMIdAssignment, 132
DLMLinkCommittingToDocument,
134
DLMLinkCreated, 133
DLMLogin, 134
DLMLogout, 134
DLMTargetCommitted, 134
DLMTargetCreated, 133
DLMWorkOffline, 134
DocumentClosed, 117
DocumentCreated, 117
DocumentLoad, 117
DocumentSaving, 118
DocumentUnload, 118
DOMActivate, 105, 111
DOMAttrModified, 114
DOMCharacterDataModified, 115
DOMFocusIn, 104, 111
DOMFocusOut, 105, 111
DOMNodeInserted, 113
DOMNodeInsertedIntoDocument, 114
DOMNodeRemoved, 114
DOMNodeRemovedFromDocument,
114
DOMSubtreeModified, 105, 113
EntityDeclConflict, 119
MenuPost, 121
MenuSelected, 121
mousedown, 112
mousemove, 113
mouseout, 113

mouseover, 112
mouseup, 112
WindowActivated, 120
WindowClosed, 120
WindowClosing, 120
WindowCreated, 119
WindowDeactivated, 120
WindowLoad, 120
WindowMinimized, 121
WindowRestored, 121

events
ADocumentEntityEvent module, 119
ADocumentEvent module, 117
AEditEvent module, 115
AEVENT interface attributes, 102
AOM interfaces, 100
ApplicationEvent module, 116
CMSAdapterConnectEvent
module, 131
CMSAdapterDisconnectEvent
module, 131
CMSObjectEvent module, 122
CMSSessionBurstEvent module, 129
CMSSessionConstructEvent
module, 125
CMSSessionCreateEvent module, 126
CMSSessionDisconnectEvent
module, 131
CMSSessionFileEvent module, 127
COM C++, 109
DLMEvent module, 132
Document domain, 102
domains, 101
event handlers, 105
event modules, 103
Java, 106
JavaScript, 106
JScript, 107
limitations, 105
MenuEvent module, 121
modules, 101
MouseEvent module, 112
MutationEvent module, 113
overview, 100
UIEvent module, 111
VBScript, 107

178 PTC® Arbortext® Programmer’s Reference

Visual Basic, 108
W3C interfaces, 100
Window domain, 102
WindowEvent module, 119

F
Fonts
custom, 26

Framesets
setting paths
loading automatically, 27

G
Graphics
setting paths
loading automatically, 27

H
Hyphenation
loading custom files automatically, 27

I
Index
customized
loading custom files
automatically, 29

information resources, 12
initialization
custom files, 29
editing, 30

inserting text in documents, 93
interfaces
overview, 167

J
Java
calling from JavaScript interface, 62
debugging applications, 53
event handling, 106

Java classes

loading automatically, 24
locating, 47, 50

Java Console, 48, 52
Java interface
arrays, passing with ACL, 46
calling from ACL, 44
code sample files, 54
Java packages, 48
platform requirements, 44
to AOM, 44

Java Virtual Machine, 47
Javadoc
for the AOM and W3C DOM, 49

JavaScript
event handling, 106

JavaScript interface, 56
arrays, passing with ACL, 57
calling from ACL, 56
calling Java from, 62
code sample files, 65
exception handling, 64
global objects, 61
language extensions, 59
limitations, 59
platform requirements, 56

JavaScript interpreter, 38
for JavaScript files, 65
for JScript files, 80

JDB, 53
JScript
accessing COM using, 69
event handling, 107

JScript interface, 76
arrays, passing with ACL, 77
calling from ACL, 76
code sample files, 80
exception handling, 79
features, 79
global objects, 79
limitations, 79
platform requirements, 76

JVM, See Java Virtual Machine

L
Layout markup

Index 179

line numbering
atipl, 156

Limitations
line numbering
application related, 153

Line numbering, 152
application, 154
conventions, 155
limitations, 153
namespace, 152, 156
overview, 152
sample application, 152

Line numbers
in a document, 152

loading custom applications
using application directory, 33
using custom directory, 22

Locales
custom font and formatting files, 28

M
Macro files
loading automatically, 27

manipulating documents
using the AOM, 90

MenuEvent module, 121
MenuPost event type, 121
MenuSelected event type, 121
Merging data
where to place files, 24

Microsoft JScript interpreter, 38
mousedown event type, 112
MouseEvent module event type, 112
mousemove event type, 113
mouseout event type, 113
mouseover event type, 112
mouseup event type, 112
MutationEvent module, 113

O
opening documents, 90

P
pasting document content, 96–97
Paths
custom font and formatting files, 27
custom library files, 28
custom pdfcf files, 27

PDF
custom pdfcf files, 27

platform requirements
Java interface, 44
JavaScript interface, 56
JScript interface, 76
VBScript interface, 82

product support contact information, 8
program language support, 15
programming skill recommendations, 7
PTC Arbortext Import/Export
custom directory, 27

PTC Arbortext Object Model, 17
See also AOM

PTC Arbortext Publishing Engine
interfaces
overview, 171

PTC Arbortext Styler
modules, 29

publishing configuration file
custom, 24

publishing rules files
loading automatically, 29

PubTex
automatically loading formatter
files, 26

pubview files
loading automatically, 29

R
resources for more information, 12
Rhino JavaScript interpreter, 38

S
Sample applications
line numbering, 152
namespace, 152, 156

180 PTC® Arbortext® Programmer’s Reference

saving documents, 90
script language support, 15
Scripts
loading automatically, 29

selecting document content, 94
Set options, 173

See also setOption
SGML documents
and the DOM, 20

startup files
customizing, 29
editing, 30

support contact information, 8

T
table of supported languages, 15
Tables
identifying a document type's table
model support, 142
inserting a column, 140
inserting and modifying, 138
interface summary, 138
working with, 138

Tag
conventions, 155

Tag templates
setting paths
loading automatically, 29

.tmx files
loading automatically, 27, 29

Traversal
conventions, 155

traversing documents, 91–93

U
UIEvent module, 111

V
VBScript
accessing COM using, 69
event handling, 107

VBScript interface, 82

calling from ACL, 82
code sample files, 84
error handling, 84
features, 83
global objects, 83
limitations, 83
platform requirements, 82

Visual Basic
event handling, 108

W
WindowActivated event type, 120
WindowClosed event type, 120
WindowClosing event type, 120
WindowCreated event type, 119
WindowDeactivated event type, 120
WindowEvent module, 119
WindowLoad event type, 120
WindowMinimized event type, 121
Windowrestored event type, 121

Index 181

	About This Guide
	Prerequisite Knowledge
	Document Revision History
	Technical Support
	Documentation for PTC Products
	Global Services
	Comments
	Documentation Conventions

	The PTC Arbortext Programmer's Reference
	Conventions Used in This Guide
	Where to Get More Information

	Getting Started
	Supported Program and Script Languages
	PTC Arbortext Object Model (AOM) Overview
	Introduction to the PTC Arbortext Object Model (AOM)
	Introduction to the Document Object Model (DOM)
	Using the DOM Support in AOM

	Custom Applications
	Overview of Custom Programs and Scripts
	Description of the Custom Directory Structure
	Using the Custom Directory for Custom Applications
	Description of the Application Directory Structure
	Using the Application Directory for Custom Applications
	Deploying Zipped Customizations
	Specifying the JavaScript Interpreter Engine

	Using the AOM
	Using ACL with the AOM
	Using the Acl Interface

	Using Java to Access the AOM
	Java Interface Overview
	Java and ACL
	Java Virtual Machine (JVM) Management
	Accessing the Java Console
	AOM Packages
	Compiling Your AOM Java Program
	Using an IDE to create Your AOM Java Program
	Making Classes Available to the Embedded JVM
	Java Access to DOM Extensions
	Java Interface Exceptions
	Accessing the Java Console
	Debugging Java Applications
	Sample Java Code

	Using JavaScript to Access the AOM
	JavaScript Interface Overview
	JavaScript and ACL
	JavaScript Limitations
	JavaScript Language Extensions
	JavaScript Global Objects
	Calling Java from JavaScript
	JavaScript Interface Error Handling
	Specifying the Interpreter for .js Files
	Sample JavaScript Code

	Using COM to access the AOM
	COM Interface Overview
	Registering and Unregistering PTC Arbortext Editor as a COM Server
	Accessing COM Using JScript or VBScript
	COM Objects and ACL
	COM Error Handling
	Sample COM Code

	Using JScript to Access the AOM
	JScript Interface Overview
	JScript with ACL
	JScript Limitations
	AOM Interfaces Specific to JScript
	JScript Global Objects
	JScript Exception Handling
	Specifying the Interpreter for .js Files
	Sample JScript Code

	Using VBScript to Access the AOM
	VBScript Interface Overview
	VBScript and ACL
	VBScript Limitations
	AOM Interfaces Specific to VBScript
	VBScript Global Objects
	VBScript Error Handling
	Sample VBScript Code

	Programming and scripting techniques
	Overview of Programming and Scripting Techniques
	Basic Document Manipulation Using the DOM and AOM
	Overview
	Opening, Closing, and Saving documents
	Traversing a Document Using the DOM and AOM
	Inserting Text
	Using Range to Select and Delete Content
	Selecting, Copying, Moving Content

	Events
	Overview
	Event Interfaces
	Event Modules and Domains
	Application-Dependent Features
	Notes and Limitations
	Event Handlers
	Event Types

	Working with Tables
	Working with Tables Overview
	Example: Inserting and Modifying a Table
	Example: Inserting a Column Based on the Current Selection
	Example: Identifying a Document Type's Table Model Support

	Working with XSL Composition
	Overview
	Related AOM Interfaces and Methods
	Example: Composing an HTML File

	Line Numbering in PTC Arbortext Editor and the PTC Arbortext Publishing Engine
	Line Numbering Overview
	Applying Line Numbers
	Building a Basic Line Numbering Application
	Line numbering application building reference

	Interfaces
	Interface Overview

	AOM set Options
	AOM set Options Overview

