Programming with GNU Software

Edition 2, 4 September 2002
$Id: gnuprog2.texi,v 1.22 2002/08/15 19:41:25 rmeeking Exp $

2 Programming with GNU Software

Copyright (© 2000, 2001 Gary V. Vaughan, Akim Demaille, Paul Scott, Bruce Korb, Richard
Meeking

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later version published by the Free
Software Foundation; with the no Invariant Sections, with no Front-Cover Texts, and with
no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free
Documentation License".

Table of Contents

Forewordou ittt ittt ettt ettt 1
1 Introductionc..oeiiiiiiineeneneeneeneenennns 3
1.1 what this booK 1S 3
1.2 What the GDE IS NOb.t 3
1.3 AUdience 4
1.4 this book’s organization.t 4
1.5 What You Are Presumed to Know............ 4
1.6 Conventions Used in This Book. 6
2 The GNU CLibrary.......cooiiiiiiiieeeeeeeennnnnns 7
2.1 Glibc Architecture OVerviewt 7
2.2 Standards Conformance. 9
2.3 Memory Management.o.iiiii e 9
2.3.1 AlloCa . ..ot 9

2.3.2 0bStacko 11

2.3.3 ATGZ .o 14

2.4 Input and Outpub 14
241 SIgnals. ... 14

2.4.2 Time Formats 17

2.4.3 Formatted Printing o 22

2.5 Error Handling.o 22
2.6 Pattern Matching 24
2.6.1 Wildcard Matching 24

2.6.2 Filename Matching 27

2.6.3 Regular Expression Matching 27

3 libstdc++ and the Standard Template Library 29
3.1 How the STL is Structured. 29
3.2 Containers and Iterators e 31
3.2.1 Preliminariesouii 33

3.2.2 A Crash Course in Iterators ... 35

3.2.3 VeCtOr . oo 37

3.24 Deque . ..o 42

B.2.0 LS. ot 44

B.2.6 Sl et 46

3.2.7 Multiset 48

B3.2.8 MaD .ot 50

3.29 Multimap 51

3.3 Generic Algorithms and Function Objects 52
3.3.1 Function Objects - in a Nutshell 52

3.3.2 Some Predefined Function Objects 55

3.3.3 Function Adaptors...... ... 55

3.3.4 Introducing Generic Algorithms............. 57

3.3.5 foreach....... 58

3.3.6 AAnd. ... 59

3.3.7 transform 61

ii Programming with GNU Software
3.3.8 partitiono 62

3.3.9 accumulate....... .. 63

3.3.10 Other Generic Algorithms i, 64

B SETIIIES .« e 64
3.4.1 Basic String Usageoooiiiiii 64

3.4.2 Tterators and Generic Algorithms 68

3.5 STL Reference Section......... ... 68
3.5.1 Container SUIMIMATY\ttt ettt 68

3.5.2 Function Object Summaryooiiiiiiiiiiiinnnnnea... 71

3.5.2.1 Standard Function Objects 71

3.5.2.2 Function Adaptor Reference 72

3.5.3 Generic Algorithm Summary 72

3.5.4 SEring SUMMATY . . .ot o vttt ettt 72

3.6 Further Reading....... ... 72
4 The GNU Compiler Collection......................... 75
4.1 An Introduction to GCC 75
4.1.1 History of GCC. 75

4.1.2 Where to get GCC. ... 76

4.1.3 A Brief Overviewo 76

4.1.3.1 The Broad Picture i 76

4.1.3.2 Front and Back Ends........... 7

4.2 GCC Commandsttt 78
421 OVEIVIEW . o oottt et e e e e e e e e e 78

4.2.2 Basic Compilation Options 78

4.2.3 The Preprocessorou it 79

4.2.4 The Compiler 80

4.2.5 The Assembler 81

4.2.6 Link Editing And Libraries.............oiiiiiineii. .. 81

4.2.7 Passing Arguments to the Assembler and Linker 82

4.2.8 Useful GCC Optionsottt e 82

4.2.8.1 C Language Features............. 82

4.2.8.2 Defining Constantsc.ooviiiiiniiiinn. .. 83

4.2.8.3 Default File Renaming................................... 83

4.2.8.4 Verbose Outputo 84

4.2.8.5 Including Directories i, 84

4.2.8.6 PIpes. ..ot 84

4.2.8.7 Debug Information.............. 85

4.2.8.8 Optimizationueeiiine e, 85

4.2.9 WarnINGS . ..ottt e 85

4.3 GCC Internals 86
4.4 Integrated Languagest 88
4.4.1 How GCC deals with languages............... 89

4.4.2 Objective C ... 89

443 Gt 90

QA4 JAVA . oot 91

445 Fortran 94

4.4.6 Other GCC Frontends.co i, 95

4.5 Pulling it Together 95
4.5.1 Preparation 95

4.5.2 Preprocessingooiiii 96

4.5.3 Compilation o 97

4.5.4 Assembling. 98

4.5.5 LinkKing 98

4.5.6 And Finally... ... 99

4.6 Reference SeCtion 99
4.6.1 Standard Compilation Options.iiieineeenea.... 99

4.6.2 Linking and Libraries i 100

4.6.3 Warning Optionsttt 101

4.6.4 Language Optionsttt 101

4.6.4.1 Objective C Command Summary........................ 101

4.6.4.2 C++ Command Summaryoouuuunnnnnee.... 101

4.6.4.3 Java Command Summary..............c..uuuuunnnneo.... 101

4.6.4.4 Fortran Command Summary 102

AT SUIMIMATY . o oottt et e e e e e e e e e e e e e e e 102
5 Automatic Compilation with Make.................... 103
5.1 The Make Utility e 103
5.1.1 Targets and Dependencies.............. 103

5.1.2 A Refreshing Change, 104

5.2 The Makefile. o 105
5.2.1 Make Rules 106

5.2.2 Make Variables 109

5.2.3 Make Comments.ooo i 112

5.3 Shell Commandst 112
5.3.1 Command Prefixes.......... ... 113

5.4 Special Targets.o 114
54.1 Suffix Rules..... ... 114

5.4.2 Automatic Variables.............. 117

5.4.3 Phony Targets.o 117

5.5 Make Conditionals 118
5.5.1 Make Include Directive.......... ... i 120

5.6 Multiple Directories 121
5.7 Imvoking Makeo 123
5.7.1 Environment Variables........... 124

5.8 Further Reading 125
6 Scanning with Gperfand Flex 127
6.1 Scanning with Gperf. 127
6.1.1 Looking for Keywords......... i 127

6.1.2 What Gperfis. 130

6.1.3 Simple Uses of Gperf...... 131

6.1.4 Using Gperf. 133

6.1.5 Advanced Useof Gperf....... 135

6.1.6 Using Gperf with the GNU Build System......................... 140

6.1.7 Exercises on Gperf..... 141

6.2 Scanning with Flex 141
6.2.1 Looking for Tokensiiiiin ... 141

6.2.2 What Flex is 145

6.2.3 Simple Uses of Flex 146

6.2.4 Using Flexo 147

6.2.4.1 Flex Directives..........oooiiii ... 147

6.2.4.2 Flex Regular Expressions 148

6.2.4.3 Flex ACtiONSnir 150

6.2.5 Start Conditions. 150

6.2.6 Advanced Use of Flex 151

6.2.7 Using Flex with the GNU Build System 154

6.2.8 Exerciseson Flex 155

iv Programming with GNU Software

T Parsing.........o.ueiiiiiiiiiiniiiiiiiiiiiitnnnnnnas 157
7.1 Looking for Balanced Expressions i 157

7.2 Looking for Arithmetics 159

7.3 What is BisOn.o 162

7.4 Bison as a Grammar Checker........ i 162

7.5 Resolving Conflicts 165

7.6 Simple Uses of BiSONot 168

77 USING ACLIONS . . .ottt e 171

7.8 Advanced Use of Bison 175

7.9 The yleval Module....... ... o 180

7.10 Using Bison with the GNU Build System................................. 185

7.11 Exercises on Bison 185

7.12 Further Reading On Parsing 186

8 Writing M4 Scripts........coviiiiiiiiiiiiiiiinnnn. 187
9 Source Code Configuration with Autoconf............. 189
9.1 What is Autoconf 189

9.2 Simple Uses of Autoconf.......... i 190

9.3 Anatomy of GNU M4§ ‘configure.ac’............., 193

9.4 Understanding Autoconf....... 199

9.4.1 Keep It Stupid Simple ... 199

10 Managing Compilation with Automake............... 203
11 Building Libraries with Libtool 205
12 Software Testing with Autotest 207
12,1 Why write tests? . . oot 207

12.1.1 Joe Package Version 0.1 207

12.1.2 Fortran, Antennae and Satellites................................ 209

12.1.3 Ariane 501 210

12.2 Designing a Test Suite...........oo 211

12.2.1 Specify the Testing Goals 211

12.2.2 Develop the Interface 212

12.2.3 Look for Realism 212

12.2.4 Ordering the Tests.t 213

12.2.5 Write tests! . ..o 214

12.2.6 Maintain the Test Suite............ 215

12.2.7 Other Uses of a Test Suite........ ..., 216

12.3 What is Autotest. 216

12.4 Running an Autotest Test Suite............... i 217

12.5 Stand-alone Test Suite............ i 219

12.5.1 Simple Uses of Autotest...............oo i, 219

12.5.2 Writing Autotest Macros. ... 223

12.5.3 Checking dnl and define, 226

12.5.4 Checking Module Support i 230

12.5.5 Testing Optional Features............ 233

12.6 Autotesting GNU M4. 235

12.6.1 The GNU M4 Test Suiteoouiie . 236

12.6.2 Using Autotest with the GNU Build System 240

13 Source Code Management with CVS................. 243
13.1 Why the bother....... ... 243
13.2 Creating a new CVS repository...... ..., 244
13.3 Starting a new Projectoo it 245
13.4 Installing a pre-existing project.......... ... 245
13.5 Extracting a copy of the source......... 245
13.6 Returning changes to the repository 245
13.7 Marking the revisions in arelease........... 245
13.8 Bibliographyo 245
13.9 Other ReSoUrces 246

14 Debugging with gdband DDD....................... 247
14.1 Why Do I Want A Debugger? 247
14.2 How to Use a Debugger......... i 247

14.2.1 A Program With Bugs i 247
14.2.2 Compiler Options. ...t 248
14.2.3 The First Attempt 249
14.3 An example debugging session using gdb............ L 249
14.3.1 Attaching to an Already Running Program 249
14.3.2 Running the Executable............, 250
14.3.3 Taking Control of the Running Program - Breakpoints 250
14.3.4 One Step at a Time - Step+Next 251
14.3.5 Examining Variables - Print 251
14.3.6 The First Bug....... ... i 252
14.3.7 Try AGain... ..o 252
14.3.8 Core Dumps - What Are They?................. 252
14.3.9 HowtoUsea Core Dump.......... ..., 253
14.3.10 Finding Out Where You Are - Backtrace 254
14.3.11 Moving Around the Call Stack - Up+Down 254
14.3.12 The Third Bugoooo e 255
14.3.13 Fun With Uninitialised Variables 255
14.3.14 Try Again - Again... ... 258
14.3.15 Success! ...or IS 167 258
14.3.16 The Fourth Bug....... 258
14.3.17 One More Time....ooo e 259
14.3.18 So What Have We Learned?............... 260
14.4 Debugging the Pretty Way - GUI Front ends 260
14.4.1 Why a GUI? ... 260
14.4.2 Whats the choice? 260
14.4.3 DDD - Some History 260
14.4.4 Revisiting the same example............. 260
14.5 More complicated debugging with ‘gdb’......... 261
14.6 Other debugging aids. ... 261
14.6.1 Memory checkers 261
14.6.2 Debugging uncooperative programsoueeeo... 261

15 Profiling and Optimising Your Code.................. 263

vi Programming with GNU Software

16 Source Code Browsingcccvvvvveeeneeeeenn. 265
16.1 cscope, a text base navigator.............. .. 265

16.1.1 special editor features.............. . 265

16.1.2 acquiring and installing 266

16.1.3 configuring an editor........... 266

16.1.4 SIMPle USAZE . .« . oo et 267

16.2 Source Navigator, a GUI browser................oi i, .. 267

17 State of the World Address.......................... 269
GNU Free Documentation License........................ 271
Preamble o 271
APPLICABILITY AND DEFINITIONS 271
VERBATIM COPYINGo e e 272
COPYING IN QUANTITY ..ottt e e 272
MODIFICATTIONS . ..o e e e e e 273
COMBINING DOCUMENTSo e 274
COLLECTIONS OF DOCUMENTSo 274
AGGREGATION WITH INDEPENDENT WORKS 274
TRANSLATION ..o e e 275
TERMINATION ... e e e 275
FUTURE REVISIONS OF THIS LICENSEo e 275
ADDENDUM: How to use this License for your documents...................... 275
Example Indexciiiiiiiiiiiiiiiiiiiinnnnnn. 277
Macro Indexttt i iinennananns 279
IndexX . ..o it i i i e e e 281

Foreword

Foreword

Programming with GNU Software

Chapter 1: Introduction 3

1 Introduction

The GNU Software Development Environment (GDE) is a full-featured and often coordinated
development environment. It consists of a wide variety of largely independently developed tools
that, as a whole, provide an environment that eases the tasks involved in producing high quality
professional software. And, by the way, it happens to be freely down-loadable. Most of these
tools have been developed by and for professionals and have been provided to the programming
community for a wide variety of reasons. This book will generally ignore the reasons why people
would develop these tools, and instead focus on why you would want to use them.

1.1 what this book is

This book is neither a comprehensive reference, nor a light weight novella. It is intended to be
a learning guide for the GDE. The reader is presumed to be familiar with software development
processes in general. That is, they are expected to be familiar with edit-compile-debug cycles
on some sort of platform, whether that be UNIX or Windows or even something else. We will
attempt to guide you through the process of choosing, configuring and using GNU tools. We
will do this by developing an example project demonstrating the actual use of each tool.

There is an immense variety of tools available that can be classed as part of the GDE. Since
this is not an encyclopedia of GNU tools, this book will be constrained to a small core set
that serves as the foundation for GNU development: compilers, editors, build tools, source
management tools and development libraries.

We will do this by introducing you to selected tools. The same ones the GNU developers use
themselves. Each tool-based chapter will tell you how to obtain, configure, install and use the
basic features of each of the tools it describes. This book is not intended as a long-term reference
text for them, but it will get you through the basic introduction and fundamental usage of each
one.

1.2 What the GDE is not

The GDE works on an amazingly wide variety of highly dissimilar platforms. This means it
is likely to work on whatever platform you might have available, and it means it likely works
on whatever platform you may wind up working on. This is a direct consequence of its history.
The GDE tools began on a DEC Vax nearly 20 years ago. However, all the world is not a Vax;
all the world is not a Sun; and Linux is a Johnny-come-lately. Many people in many places have
been working out problems on many platforms for many years. The result is a robust collection
of tools that could never have been developed by any one manufacturer and that provide a fairly
uniform development environment for all these dissimilar platforms.

The net result is that we do not have an IDE (Integrated Development Environment). What
we do have is a Non-Integrated Development Environment that works similarly across this
variety of platforms yielding an integrated development experience. And, we have tools that
release on their own schedules, which can sometimes cause problems. They do, generally, work
together, but their separateness is both a strength and weakness. It is not always seamless.
Interdependency is reduced, reducing overall complexity and schedule/release issues.

Not to say they don’t play together, however. They build on each other and often do include
cooperation hooks. Not always, though. Some Linux distributions supply a packaging layer that
superimposes some interdependency checks. This vastly simplifies package upgrades.

Now that you know how widely usable the GDE is, this is a warning that we will not be
dealing with portability issues. The tools do not mask over everything and the focus of this

4 Programming with GNU Software

book is the tools, not cross platform portability. Our primary example platform will be Linux,
but very little will be said that is not directly relevant to using GDE on other platforms.

1.3 Audience

This book in intended for software developers who are unfamiliar with GDE tools and want
to understand how to use them. They will find this book very useful. The reader is expected
to know how to use a text editor, understand the C and C++ languages, but it should not be
necessary to understand the UNIX build environment. To take full advantage of this book,
however, it would be very helpful to have access to a UNIX or Linux machine with the GDE
installed.

1.4 this book’s organization

This book is not organized along the lines of "how to set up a development project." This
book presumes the reader is moderately proficient in the skills of software development. Instead,
the chapters are grouped by areas of relevance and ordered to the extent that if one chapter
depends upon knowledge from another, it will generally follow the other chapter.

That said, this book does not need to be read sequentially. In fact, I don’t recommend it.
Each chapter will introduce you to one or a few tools that make up the core of the GDE and
will not rely heavily on material from preceeding chapters. The first (this) chapter and the last
chapter are the only departures from this scheme. The last chapter will be used to help guide
you to and through the labyrinth of GDE software not covered here, but available on the net.

A reasonable approach to this book might be to skim the introductory paragraphs of each
chapter, getting a clearer picture of what you can learn from each. Then, as you acquire, install
or have need of specific tools, go back and read the chapter as you concurrently work with the
tool. Instant feedback is a great way to reinforce learning and comprehension.

1.5 What You Are Presumed to Know

If you are familiar with unpacking a tarball’ and configuring and building the result, then
you can skip this section.

This book will deal with source code distributions. Some distributions are made as pre-
packaged binary (pre-compiled) distributions, ready for installation on your system. We will
not be covering those, as your distribution is likely to describe the installation in careful detail.
Since the following chapters presume you have the knowledge, we describe the methods and
requirements here as an introductory section.

First, to unpack and build a tarball, you must have the following development tools installed
on your system.

‘tar’ This is an archiving and archive retrieval program. Basically, it stores a collection
of file names, data and attributes in a single larger file. The data format is almost
universally understood and comes as a standard utility on nearly all POSIX systems,
Windows excepted.

cc All of the packages we deal with in this book are either interpreted programs (i.e.,
not compiled), or they require a C compiler. If your system does not come with a
C compiler, you will have to obtain a pre- built one, even if it is non-ANSI. Once

L A tarball is a compressed ‘tar’ archive, generally compressed with the ‘gzip’ or ‘bzip2’ utilities. ‘gzip’
compression is far more common.

Chapter 1: Introduction 5

you have at least a rickety compiler, you will be able to build Gcc, See Chapter 4
[The GNU Compiler Collection], page 75. Most compiled packages require an ANSI
compiler, though Gcc carefully does not.

‘make’ Most packages will build with a reasonably conventional MAKE program. If you do
not have MAKE or if it is very old, you may have to download a pre-built binary for
this program, too.

‘sh’ You cannot do much of anything without a Bourne-compatible shell program. All
of the packaging and building requires such a shell program to process various com-
mand line commands in an automated fashion. ZSH is pretty close and often can
work, but C¢SH and TCSH are sufficiently peculiar that they are very tricky to get
working correctly, so they are not used in the scripts. You need to have available a
tried and true Bourne derived shell, viz., SH, KSH, or BASH.

All of these tools can be obtained by going to this web site:
http://www.gnu.org/software/software.html#HowToGetSoftware

and following links to the source or binaries you need. However, if you have trouble obtaining
or building these tools, there are several purveyors of GNU pre-built tools that will make your
life much easier.

Once these tools are installed, then it becomes possible to build and install the various tools
described in this book. Using the tools will also require PERLS, though, if you do not already
have it. Since most programmers don’t have strong need of Perl programming, it will not be
covered in this book, but autoconf and automake require the Perl-5 interpreter for preparing
your development project for building. Note: Perl is not required for actually building your
product, unless you are using Perl sources yourself. Perl is only used to construct the make files.

Now, you have all your tools in place. Even Perl. To build and install any of the other tools
described in this book, you need to perform the following steps:

e Acquire the ‘mumble-1.2.3.tar.gz’ package for version 1.2.3 of the ‘mumble’ tool and put
it somewhere.

e Decide where you want to build and where to install the built product and do the following;:
e ‘cd /path/to/source’
e ‘gunzip -c /path/to/tarball/mumble-1.2.3.tar.gz | tar xvf -’

The ‘tarball’ has now been unpacked into your source directory. You may build here if

you wish, though it is often convenient to separate the source and build directories so that
it is easy to distinguish between built files and source files.

e ‘cd /path/to/build/dir’

e ‘prefix=/path/to/install/dir’

e ‘sh /path/to/source/mumble-1.2.3/configure --prefix=$prefix’
The product build instructions have now been customized for building on the current plat-
form. (Many products can be cross built for alternate platforms. We won’t be covering
that here.)

e ‘make’
If this step completes successfully, congratulations! You probably have a working product.
“Probably” because there are so many platforms that it is possible yours was inadequately
tested. This is actually highly unlikely for the widely used tools discussed in this book,
but it is good practice to sanity check the product before installing it. Nearly all GNU-type
products have a sanity check available:

e ‘make check’
If this is successful, then we are now pretty sure it really does work the way it is supposed
to.

6 Programming with GNU Software

e ‘make install’
If you do not specify ‘~-prefix’ or specify a root-owned directory, you will likely need to
perform this last step as the super user (root). Just make sure the ‘$prefix/bin’ directory
is in your ‘PATH’ environment variable.

That’s it. Now you can MUMBLE on your platform.

1.6 Conventions Used in This Book

The following conventions are used:

‘Italic’ Represents file and directory names, function names, program variables, names of
books and of chapters in this book, and general emphasis. In examples, it is used
to insert comments that are not part of the text you type in. This is in italics.

‘Bold’ Represents command names, options, keyboard keys, user names and C preprocessor
directives, such as #if.

‘Constant Width’
Represents programming language keywords such as int and struct. In exam-
ples, it is used to show program code, input or output files, and the output from
commands and program runs.

‘Constant Width Bold’
Used in examples to show commands or input that you enter at the terminal. e.g.,
Lt$ 1877

‘Constant Width Italic’
Used in examples to show generic (variable) portions of a command that you should
replace with specific words appropriate to your situation. For example:

rm filename

means to type the command rm, followed by filename, the name of a file.

‘¢’ Used to show the shell prompt. The default shell prompt is different for different
shells and can be changed by the user.

Two different notations are used in this book to represent the use of control keys. One is
more familiar to most readers: the notation CTRL-X means you must hold down the Control
key while typing the character “x”. When discussing editor usage, we use the notation that its
documentation uses: C-x means the same as CTRL-X. The shift key is irrelevant when you type

a letter along with the Control key.

We denote other keys similarly (e.g., Return indicates a carriage return). All user input
should be followed by a Return, unless otherwise indicated.

Chapter 2: The GNU C Library 7

2 The GNU C Library

The beating heart of the entire GNU system is the GNU C language runtime: glibc. All of the
various applications that comprise the GNU development environment (indeed the entire GNU
system) call upon the services of the GNU C library one way or another. In this chapter we will
talk about some of the GNU extensions to the usual C APIs that you have access to only when
you use the GNU C library. We do not aim to be exhaustive, and we won’t even cover all of the
GNU extensions, but the reference manual that ships with GNU libc has details of every function
and macro that glibc implements. Our aim here is to give you a flavour of the extra functionality
you get when you use the GNU implementation of the C runtime library.

Throughout this book we talk about various extensions implemented by the GNU system, by
which we mean additional features or programming interfaces you will have access to when you
use a GNU system, beyond those available in a vanilla UNIX environment. More specifically, in
this chapter we will be describing mostly glibc extensions, which are some of the extra features
the gNU C library gives you access to.

Although glibc works best in conjunction with Goc, the library is carefully written to be used
with almost any modern, standards conformant C compiler. Where we mention GCC extensions,
we are referring to additional C language features you will have access to only when you use
GCc; if, for some reason, you are using glibc but not GCc, you will of course be able to use glibc
extensions in the context of the C language features provided by your own compiler, but not
have the advantage of using any GCC extensions.

Historically, the fundamental design for the APis that comprise the standard C library was
set out in the late 1960’s. Since then, not only has computer science come a long way, but the
operating environment that the library codifies has changed considerably. The GNU C library
authors have added features to address these changes to some extent, but also to make glibc
somewhat more pleasant to use than it would be without the extensions they have added. If it
is important that your code needs to compile and build in a non-GNU environment, then using
the glibc extensions could give you a headache in the long run. This is certainly mitigated to a
very large extent by the fact that glibc itself is extremely portable: installing glibc on the target
machine is often an easier option than trying to write your code without the benefits gained
from the glibc extensions.

2.1 Glibc Architecture Overview

Depicted in example 2.1 is a diagram that is all too familiar to anyone who has studied
CS101. Tt stretches the metaphor of ‘a nut’ somewhat: the user interacts with the shell, which
calls applications on the user’s behalf, where the applications in turn call upon services tendered
by the kernel.

User

1 Other text books depict the kernel entirely within applications. Strictly, by virtue of being an application

itself, the shell does have access directly to the kernel, so we have shown that in our diagram.

8 Programming with GNU Software

Example 2.1: Simplified system architecture component relationships

Traditionally, the shell is represented by the command line interface that the user manipulates
to control their machine — effectively your login shell, probably ‘/bin/bash’, on a GNU/Linux
system; or even DOS on a Windows machine. In reality graphical user shells are rife in modern
computing, and much of the work of a traditionalist’s shell is performed graphically. If you
have GNU/Linux, then you almost certainly use either the GNOME or KDE desktops as your
shell. Alternatively, if you use a Microsoft system, you might have noticed that DOs has been
superceded by Windows as the dominant user shell in recent years...

At the centre of any ‘nut’ is, of course, a kernel. Again, on a GNU/Linux system, the
metaphorical nut that is your computer system might have Linux as its kernel, or as another
example: BSD UNIX if you run Mac OS X. Each of the many flavours of Windows also contain
a kernel, but it is harder to draw a dividing line between shell and kernel in this case, since the
Windows kernel provides both system services and graphical desktop management.

The applications are the flesh of our ‘nut’, and thus lie between the kernel, which controls the
hardware in your computer, and the shell, which you interact with. Traditionally, an application
accepts input text from a keyboard, and displays output text to a monitor screen. These days,
applications tend to come with more sophistacted interfaces, and could accept input from a
variety of devices: a mouse, a stylus or a scanner for instance. Equally, the output from an
application likely involves not only displaying high resolution graphics on the monitor screen,
but maybe also output to, among others, an LED display or a network interface card. The shell
is itself really just another application that is specialised for helping a user to control and receive
responses from other applications.

User

~
®
=
[=}
®
'_I

Example 2.2: Simplified component relationships with glibc

Here, in example 2.2 we show where glibc fits in to all of this. Fundamentally, it provides a
higher level API for interacting with the machine than the low level system calls implemented
by the kernel. But more importantly than that, it supplies a standard interface to many of the
common facilities used by the applications. It would be perfectly possible to write an application
that does not use glibc, but implements everything from first principles in terms of the system
calls provided by the kernel®>. And yet, it would be a rare program that is designed in this way
when the higher level interface of glibc requires fewer lines of source code to achieve the same
ends.

2 As a matter of fact, the kernel itself is one such application.

Chapter 2: The GNU C Library 9

2.2 Standards Conformance

Over the years UNIX has undergone many revisions, and on occasion has split into independent
developments from the common base line. One of the most fundamental of these historical code
forks was between what we call BSD, the academic Berkeley System Distribution of UNIX, and the
commercial System V distribution described by the System V Interface Definition (SVID). Each
of these developments introduced new features to the C library that were not necessarily mirrored
in the other: BSD developed APIs for sockets and signal handling for example; among others
SVID introduced APIs for inter-process communication (1PCs), and shared memory management.
Luckily, with a few exceptions, the new APIs written by these two developments are not mutually
exclusive, and thus modern UNIx C libraries, including the GNU C library, support both.

The task of recombining the BSD and svID flavours of UNIX into a single specification was done
by the International Standards Organisation, when they ratified 150/1EC 9899:1990 (commonly
known as 150 C) from the earlier ANSI C standard of 1989. The a¢NU C library complies with
this standard wherever it is applicable to the standard C library.

More recently, the Portable Operating System Interface (POSIX) was issued as ISO /TEC 9945-
1:1996. It builds upon and is a superset of the 150 C standard, and includes a detailed speci-
fication of the requirements for a portable C library interface. Most developers who care about
the portability of their code, write to this standard. The G¢NU C library also conforms to this
standard.

Also of note is the aNU C library’s conformance to the so called 150 C99 standard. This
standard has not yet gained large scale acceptance, so although its features are available to
you if you use GCcC and the GNU C library, you may find that if you do use them, few other
environments will be able to compile your code for the time being.

This book does not aim to teach the facilities that are described in these standards documents:
See Section 5.8 [Further Reading], page 125, for details of some books we recommend if you need
to learn about the standard C library APIs.

2.3 Memory Management

One of the most error-prone aspects of programming in C is the management of memory. As
a programmer, the C language gives you very little help with tracking dynamic memory?, and
consequently you are forced to handle the low level details manually in your code.

The GNU system has a number of answers to solve a subset of the problems that normally
require you to malloc and free blocks of memory at runtime, and hence reduce the overhead
of managing memory for your application, thus reducing the complexity of your code.

2.3.1 alloca

Often, the only reason that you are forced to allocate memory from the heap? is because the
amount of memory required cannot be calculated in advance (otherwise you could just use an
array). Unfortunately, on many occasions, to prevent memory leaks, you have to remember to
release that memory just before each exit point from the function that allocated it. The GNU
system supports use of the function ‘alloca’, which works almost identically to ‘malloc’, except
that the memory it returns is automatically released when the function exits. It even works with
non-local exit functions such as ‘longjmp’.

3 Memory allocated from the heap at runtime with the malloc family of functions.

4 The heap is the pool of unused (virtual) memory that the operating system allocates to programs in pieces
on request.

10 Programming with GNU Software

void *alloca (size_t size) [glibe function]
Return the address of a block of size bytes of dynamically allocated memory.

Strictly speaking, the ‘alloca.h’ header is shipped as part of glibc, but the ‘alloca’ call is
not a glibc extension — when ‘alloca’ is encountered in your code, it is open coded by GCC.
There is also slower version written in C ((FIXME: alloca.c uri.)) that can be linked with
your application if you are not compiling with Gcc. It is good practice to ship this file with
the sources for your project so that your users will be able to compile your code even if their
compilation environment doesn’t support ‘alloca’ natively.

In ezample 2.3 there is a short function to test whether a named file exists in a particular
directory. Notice how even though there is only one exit point from the function, using ‘malloc’
to set aside some dynamic memory spoils the flow of the function. We have to save the return
value of the call to ‘access’ so that the memory can be manually released with ‘free’.

#include <stdio.h>
#include <unistd.h>
#include <string.h>

int
file_exists (const char *dirpath, const char *filename)
{
size_t len
char * filepath
int result;

1+ strlen (dirpath) + 1+ strlen (filename);
(char *) malloc (len);

if (filepath == 0)
perror ("malloc");

sprintf (filepath, "%s/%s", dirpath, filename);

/* Invert the return status of access to behave like a boolean. */
result = 1+ access (filepath, X_0K);

free (filepath);
return result;

}

Example 2.3: Checking whether a file exists — malloc version

In example 2.4 it is much easier to tighten up the code because we know the memory will be
released automatically when the function has finished?®.

#include <alloca.h>

int
file_exists (const char *dirpath, const char *filename)

{

5 ‘alloca’ uses memory on the function call stack, so that when the stack frame for the function is removed at

runtime, any additional memory set aside in that stack frame by ‘alloca’ is automatically released.

Chapter 2: The GNU C Library 11

1+ strlen (dirpath) + 1+ strlen (filename);
(char *) alloca (len);

size_t len
char * filepath

sprintf (filepath, "¥%s/%s", dirpath, filename);
return 1+ access (filepath, X_0K);

¥

Example 2.4: Checking whether a file exists — alloca version

The drawback to using ‘alloca’ is the lack of error reporting if there is insufficient memory
to fulfill the request. In the event that the operating system runs out of stack space when trying
to satisfy the ‘alloca’ call, your application will simply crash — probably with a segmentation
fault®.

2.3.2 obstack

Another problem with the traditional ‘malloc’ API is that it is very difficult to cope with
chunks of memory that may expand during runtime, or are of unknown length when the call to
‘malloc’ is made. If you need to keep the memory over a function call boundary, ‘alloca’ is of
no use.

Typically, this is a problem when reading strings into an application — either you have to
scan the string once to calculate the length and then again to copy it into a correctly sized block
of memory; or you have to call ‘realloc’ to fetch a bigger block of memory each time you detect
that you are about to go out of bounds. ezample 2.5 uses the second of these methods.

char *
read_string (FILE *input)
{
size_t i = 0;
size_t size = 10; /* Take a guess. */

char * string (char *) malloc (1+ size);

int C;

while ((c = fgetc (input)) != EOF)

{
if (isspace (c))
break;
if (i == size)
{
size *= 2;
string = realloc (string, 1+ size);
}
string[i++] = (char) c;
}

string[i] = ’\0’;

return string;

}

6 GNU/Linux has as little as 2Mb of stack space in multi-threaded applications.

12 Programming with GNU Software

Example 2.5: Reading a string into memory — malloc version

In effect ‘obstack’s manage the resizing of allocated memory for you, albeit in a far more
efficient manner than the manual ‘realloc’ation from example 2.5. All of the functions and

macros described in this section can be accessed by including the ‘obstack.h’ header in your
file.

struct obstack [data type]
An opaque handle for an ‘obstack’. All of the functions for managing ‘obstack’s take a
pointer to one of these structures. You can have as many ‘obstacks’ in your program as you
like, and each is capable of holding many strings. However there can be only one growing
string in each ‘obstack’ at any given time — when that string is complete, you can finalise it
and start another string in the same ‘obstack’. As soon as you have done that, the finalised
string cannot be changed. You are not limited to strings in fact, you can store any kind of
growing memory object in an obstack, provided that only one object in each ‘obstack’ is
active. Hence the term stack: the active object is the top “plate” on the stack and can be
accessed and changed, but you can’t get to the plates underneath.

Before you can call any of the ‘obstack’ functions, you need to decide how those functions
will allocate and release dynamic memory, and must define the following macros in your source

file:

#define obstack_chunk_alloc malloc
#define obstack_chunk_free free

You can define these macros to use any memory allocation scheme, though you must define them
before any other calls to ‘obstack’ functions. Despite our use of ‘malloc’ and ‘free’ to manage
memory, ‘obstack’s request and release memory in large chunks which is more time efficient.

int obstack_init (struct obstack*obstack_handle) [glibc function]
This function initialises the ‘obstack’ such that it is ready to have objects stored in it. This
function must always be called to initialise an ‘obstack’ before it can be used with any of
the other functions detailed in the rest of this section.

#include <obstack.h>

#define obstack_chunk_alloc malloc
#define obstack_chunk_free free

static struct obstack *string_obs = NULL;

char *
read_string (FILE *input)
{
if (string_obs == NULL)
{

string_obs = (struct obstack *) malloc (sizeof (struct obstack));
obstack_init (string_obs);

3

while ((c = fgetc (input)) != EOF)

Chapter 2: The GNU C Library 13

{
if (isspace (c))
break;

obstack_lgrow (string_obs, (char) c);

}

return (char *) obstack_finish (string_obs);

}

Example 2.6: Reading a string into memory — obstack version

In example 2.6 we keep adding characters to the growing object as soon as they are read in
from the ‘input’ stream. The ‘obstack’ takes care of ensuring that there is enough memory to
add the characters, internally fetching more memory from the system using obstack_chunk_
alloc as necessary. Consequently the object might move occasionally as it is growing, so it is
important not to rely on the address of the object before it has finished.

Remember that only one object in the ‘obstack’ can be growing at any given time. The
object is started implicitly as soon as any bytes are added to it with the following function calls,
but must be finished explicitly using ‘obstack_finish’.

int obstack_lgrow (struct obstack*obstack_handle, char ch) [glibe function]
Simply grow the current object in obstack_handle by a single byte, ch.

void *obstack_finish (struct obstack*obstack_handle) [glibc function]
Declare that the current object has finished growing, and return the address of the start of
that object. The next time one of the grow functions is called for obstack_handle, a new
object will be started.

There are also other functions for growing the current object in an ‘obstack’ by a different
size than a single byte:

int obstack_ptr_grow (struct obstack*obstack_handle, [glibe function]
void *data)
Grow the current object in obstack_handle by sufficient size to hold a pointer, and fill that
space with a copy of data.

int obstack_int_grow (struct obstack*obstack_handle, int data) [glibc function]
Grow the current object in obstack_handle by sufficient size to hold an int, and fill that
space with a copy of data.

int obstack_grow (struct obstack*obstack_handle, void *data, [glibe function]
int size)
Grow the current object in ‘obstack_handle’ by size bytes, and fill that space by copying
size bytes from data.

int obstack_growO0 (struct obstack*obstack_handle, void *data, [glibc function]
int size)
Grow the current object in ‘obstack_handle’ by size bytes, and fill that space by copying
size bytes from data, followed by a null character.

14 Programming with GNU Software

int obstack_blank (struct obstack*obstack_handle, int size) [glibc function]
Grow the current object in ‘obstack_handle’ by size bytes, but leave them uninitialized.
You can also shrink the current object by passing a negative value in size, if you are careful
not to reduce the size of the object below zero.

int obstack_object_size (struct obstack*obstack_handle) [glibe function]
Return the size of the growing object. This function is useful for ensuring that you don’t
decrease the size of an object below zero with ‘obstack_blank’. If the current object has not
yet been grown (for example immediately after a call to ‘obstack_finish’), this function
will return zero.

2.3.3 argz

2.4 Input and Output

2.4.1 Signals

UNIX systems send signals to programs to indicate program faults, user-requested interrupts,
and other situations. More generally, signals are a simple interprocess communication — an
aspect that’s taken much further with the extended signal facilities that POSIX.4 defines. For
the most part, signals are simply the way in which the operating system informs the process of
an action that requires attention — whether it’s a memory access violation or an external event.
However, processes can also signal each other when that is useful.

Many signals are purely informative; others cause the program to change its state in some
way. For example, when you enter Ctrl C at the keyboard, your shell will send the signal SIGINT
to the foreground process, which asks the program to terminate. Or, if the program attempts
an illegal memory access, the operating system sends it the signal SIGSEGV.

When a signal arrives, the program takes one of the following actions:
Ignore It ignores the signal and keeps running as if nothing happened.
Terminate It terminates, possibly leaving a core dump.

Stop It stops running, in a way that allows the program to be restarted.
Continue If the program is currently stopped, then it resumes running.

Execute handler
It executes some signal-handling routine previously installed by the program. (This
action is never the default.)

Each signal has a default action, which determines what effect the signal has when it arrives,
but a program can install a non-standard action for most signals which then overrides the default
action. The signals on any system are defined in the header file ‘signal.h’. They vary from
system to system, though most UNIX systems have some superset of 32 standard signals. The
following important signals are almost always available:

Signal Default Action Meaning

SIGHUP Terminate Hangup; sent when the system asks a program to
cleanly exit

SIGINT Terminate Interrupt; often sent when user types Ctrl C

SIGQUIT Terminate Quit; often sent when a user types Ctrl \

SIGILL Terminate Illegal instruction

Chapter 2: The GNU C Library 15

SIGTRAP Terminate Sent when a program reaches a previously set
breakpoint

SIGABRT Terminate Sent when the program calls abort

SIGFPE Terminate Floating point arithmetic error

SIGKILL Terminate Enforced program termination

SIGUSR1 Terminate User defined signal 1

SIGUSR2 Terminate User defined signal 2

SIGSEGV Terminate Segmentation violation; illegal memory access

SIGPIPE Terminate Broken command pipe

SIGALRM Terminate Alarm clock signal

SIGTERM Terminate Termination request (sent by software)

SIGCHLD Terminate Child process has stopped or terminated

SIGCONT Continue Continue processing if stopped

SIGSTOP Stop Stop processing; sent by the system

SIGTSTP Stop Stop processing; often sent when a user types Ctrl Z

SIGTTIN Stop Background program requires input

SIGTTOU Stop Background program cannot output

Of the signals listed above, SIGKILL and SIGSTOP are special: they are unblockable. That is,
a program cannot change the handling of these signals to be different from the default. When a
program receives a SIGKILL, it is always stopped dead in its tracks; similarly a SIGSTOP always
causes the program to stop processing (and wait for a SIGCONT to wake it up again.

It’s also worth noting that SIGUSR1 and SIGUSR2 are provided specifically as user-definable
signals for your applications. These signals have no predefined default meaning, and are never
sent to a process by the operating system.

There are functions for dealing with signals: raise, which a program can use to send a signal
to itself, kill for sending a signal to an arbitrary process, and sigaction” that a program uses
to change the action for any signal.

raise is very simple; it has a single argument, which is the name of a signal (i.e., one of the
constants defined above). Here’s how it is used:

#include <signal.h>
int ret;

ret = raise (SIGINT);

Example 2.7: Using the raise library call.

This function call sends the signal SIGINT. The return value, ret, is 0 if raise is successful; -1
if it fails. However, note that a signal may terminate the process — in which case, raise will
never return.

If you want to send a signal to an arbitrary process (rather than sending a signal to yourself),
you need to call kill, which has two arguments: a process ID and a signal name. It works in
much the same way as the kill command that you can run from the command line. The excerpt
in example 2.8 behaves in exactly the same way as ezample 2.7 — the program sends a SIGINT
signal to itself.

#include <signal.h>
#include <sys/types.h> /* For pid_t definition. */

" This function replaces signal, an older library call which is best avoided altogether since its behaviour varies
between systems.

16 Programming with GNU Software

int ret;

ret = kill (getpid (), SIGINT);
Example 2.8: Using the kill system call.

As with raise, when kill returns, ret will be 0 if the call was successful, or -1 if it failed. Of
course, with this example, if there is no handler installed for SIGINT, then the default action is
to terminate the process, so kill won’t actually return at all.

The function sigaction changes the action that a process takes when it receives a signal. It
uses a structure to pass information about the handling of a signal:

struct sigaction {
void (*sa_handler) (int);
void (*sa_sigaction) (int, siginfo_t *, void *);
sigset_t sa_mask;
int sa_flags;

¥

Under most conditions, the sa_handler field is used to describe the action to be taken on
receipt of a signal. Finer control can be gained by setting the SA_SIGINFO bit of sa_flags and
then using the sa_sigaction field instead of sa_handler to describe what action to take when
the signal arrives. We will describe how to use sa_handler style signal handling here: Check
your system manual pages, or the glibc manual for details of how to use sa_sigaction.

You must set sa_handler to one of the following values:
‘SIG_DFL’ Restore the handling of this signal to the default (as shown in the earlier table).
‘SIG_IGN’ Ignore any instances of this signal.

‘handler’ When this signal arrives, execute the named handler function, which must have a
prototype like this:

void handler_function (int signum) [signal handler]
The number of the signal that triggered the call to handler_function will be
passed as signum.

If the handler exits by calling ‘return’, the program continues executing after re-
ceiving the signal. If the handler calls ‘exit’ or ‘abort’, execution doesn’t continue
after receiving the signal.

While executing the action for a signal, the arrival of subsequent signals with the same number
is blocked — unless the SA_NOMASK bit of sa_flags is set to prevent that behaviour. Additional
different signal numbers can also be blocked during the execution of the action by adding them
to the sa_mask field of the struct sigaction. If you find you need to do this, your system
manual page for sigprocmask explains how to manipulate sigset_t types.

Here’s a very simple program that exercises the signal handler:

#include <signal.h>
#include <string.h>

void
sighandler (int signal)
{

Chapter 2: The GNU C Library 17

printf ("received signal %d\n", signal);
abort ();

int
main (int argc, const char *argv[])
{

struct sigaction action;

memset (&action, 0, sizeof (struct sigaction));
action.sa_handler = sighandler;

if (sigaction (SIGINT, &action, NULL) != 0)
perror ("sigaction");
sleep (60);
}

Example 2.9: Setting a simple signal handler.

The program installs the function sighandler as an interrupt handler for ‘SIGINT’; then it
sleeps, waiting for the user to type CTRL-C. When you type CTRL-C, sighandler is called; it
prints its message, then calls abort to terminate execution. Here’s how it looks:

$./a.out
CTRL-Creceived signal 2
Abort (core dumped)

$

You can install a separate signal handler for each signal that you care about; or else, since
the argument passed to the handler identifies the signal that triggered this call, you can write a
single handler function and let it figure out what to do on the basis of that argument.

2.4.2 Time Formats

Knowing the current time is important in many programs for various reasons. On UNIX
systems, the ‘time’ call gets the current time in seconds from the operating system. The time is
simply a long integer that contains the number of seconds since an arbitrary moment — midnight
at the beginning of January 1, 1970® — referred to as the epoch.

time_t time (time_t *clock) [system function]
This function returns the number of seconds elapsed since the epoch, and additionally stores
the same number in the memory pointed to by clock (unless clock is NULL).

char *ctime (time_t *clock) [glibc function]
Returns a canonical 26-character string that displays the time represented by the integer in
clock — for example ‘Tue Mar 19 19:39:46 2002’.

The ‘time’ and ‘ctime’ calls are precise enough for mundane tasks like displaying the date
and time to the user, but you have to convert the time_t into the more meaningful ‘struct tm’
format in order to measure elapsed time accurately:

8 In the unlikely event that we are still using computers that are limited to 32-bits by then, this value will
eventually wrap around one second after 3:14:07am January 19th, 2038.

18 Programming with GNU Software

struct tm {

int tm_sec; /* measured from 0 to 60 (incase of leap second) */
int tm_min; /* measured from 0 to 59 */

int tm_hour; /* measured from 0 to 23 */

int tm_mday; /* day of the month, measured from 1 to 31 */

int tm_mon; /* month, measured from 0 to 12 */

int tm_year; /* year, where zero is 1900 */

int tm_wday; /* day of the week, measured from 0 to 6 */

int tm_yday; /* day of the year, measured from 0 to 365 */

int tm_isdst; /* 1 is daylight saving time, else 0 */

char* tm_zone; /* name of timezone */

long tm_gmtoff; /* timezone’s distance from UTC in seconds */

+;
Each element of the time that you’d be interested in is contained in a separate member of

the structure. Watch those integers! They’re not consistent. The day of the month is measured
starting at 1, whereas the other integer values start at zero.

The calls listed below are used to convert from time_t to struct tm types, and then turn
them into human readable strings. They all require you to include the file ‘time.h’.

struct tm *gmtime (time_t *clock) [glibc function]
Breaks down the time reported by clock into a ‘tm’ structure, using the uTC (Greenwich
Mean time) time zone. The returned structure points to static memory which is overwritten
by subsequent calls, making this function unsafe in a multi-threaded program.

struct tm *gmtime_r (time_t *clock, struct tm xbrokentime) [glibc function]
Much the same as ‘gmtime’, except that the broken down time is stored in the memory
pointed to by brokentime, to avoid problems with multi-threaded programs. This function
conforms to the POSIX standard, and is thus supported by most modern platforms.

struct tm *localtime (time_t *clock) [glibc function]
Much the same as ‘gmtime’, except the conversion is performed for the local time zone.

struct tm *localtime_r (time_t *clock, struct tm *brokentime) [glibc function]
Again, in accordance with POSIX, as ‘localtime’, except that the broken down time is stored
in the memory pointed to by brokentime.

Universal Coordinated Time or UTC [sic] used to be known as Greenwich Mean Time. It’s
the worldwide standard for reporting the time, using the local time in Great Britain and not
recognizing daylight saving time. If you want to get UTC (we don’t know why you would) you
can call ‘gmtime’ or ‘gmtime_r’. For local time, use ‘localtime’ or ‘localtime_r’.

Here is some simple code that retrieves the time by calling ‘time’ and passing its return value
to ‘localtime_r’. Then the code extracts the hour and minute and displays the time.

#include <time.h>
#include <stdio.h>
#include <strings.h>

int
main (int argc, const char *argv[])
{

struct tm brokentime;

Chapter 2: The GNU C Library 19

time_t clock;
char buffer[6];
char time_tmp[3];

/* Fetch the current time. */
time (&clock);

/* Convert it to a broken down time. */
localtime_r (&clock, &brokentime);

/* Start filling buffer with the hour. */
sprintf (buffer, "%2d", current_struc->tm_hour);

/* Add a colon. */
strcat (buffer, ":");

/* Finish with the minute, always making it two digits. */
sprintf (time_tmp, "%2.2d", current_struc->tm_min);
strcat (buffer, time_tmp);

printf ("Time is (or was, 6 calls back) %s\n", buffer);

return O;

}
Example 2.10: Simple use of the time call.

In the example 2.10 we’ve done this the long way, grinding out a format manually, so you’ll
appreciate being able to use ‘strftime’:

int strftime (char *buf, int bufsize, char *fmt, [glibc function]
struct tm *brokentime)
Converts the time contained in the brokentime structure to a string of no more than bufsize
characters and stores it in buf, using the format specified by fmt.

char *strptime (char *buf, char *fmt, struct tm *brokentime) [glibc function]
The converse of ‘strftime’. Converts the time contained in buf to the brokentime structure,
parsing buf in the format specified by fmt.

Now let’s use ‘strftime’ to create a string suitable for display. The first argument is a buffer
to put the string in, and the second argument is the size of this buffer. You have to choose a
format — here we’ve chosen hh:mm — and specify it in the third argument. The fourth argument
is the “tm’ structure.

(void) strftime (buffer, sizeof (buffer), "¥%H:%M", brokentime);

printf ("Time is %s\n", buffer);
Example 2.11: Simple use of the strftime call.

In the format we chose, %H stands for the hour and %M for the minute. We put a colon between
them, which comes out literally in the display. You can format your string any way you want,
putting in spaces, commas, and special characters like \n for newline.

20

Programming with GNU Software

Now that you see the concept behind the format, you can look at all the available specifiers
in ‘strftime’ and ‘strptime’. If you don’t want to mess with individual specifiers, just use %c
and you’ll get the date and time in a reasonable format. If you check the %R entry, you'll see
that we didn’t even have to do all the work that was in the previous example.

‘%a,
L%A?

‘%b,
‘%h,

‘%B’
L%C’

‘%C,

‘%d’

4%D7

4%67

(%F?
L%H?
Uon?
(%j)
6%m7
‘%M’
L%n7
‘%p,
4%P7
4%r7
(%R?
6%37
‘%t’
L%T?

Uyou?

‘%U’

Abbreviated day of the week in local format (for example Tue).

Full day of the week in local format (Tuesday).

Abbreviated month name in local format (Mar).
Full month name in local format (March).
Date and time in local format (Tue 19 Mar 2002 01:02:03 GMT).

The century number, either 19 or 20 considering the range of dates covered by the
32-bit epoch offset in seconds.

Day of the month as an integer that can contain a leading zero to make up two
digits, measured from 01 to 31.

Date in the format ‘%m/%d/%y’ (03/03/02)°.

Day of the month as an integer that can contain a leading blank if it is only one
digit, measured from 1 to 31.

Date in the format ‘%Y-%m-%d’'°.

Hour as a two-digit integer on a 24-hour clock, measured from 00 to 23.
Hour as a two-digit integer on a 12-hour clock, measured from 00 to 11.
Day of the year as a three-digit integer, measured from 001 to 366.
Month as a two-digit integer, measured from 01 to 12.

Minute as a two-digit integer, measured from 00 to 59.

Newline, equivalent to ‘\n’.

‘AM’ (morning) or ‘PM’ (afternoon).

‘am’ (morning) or ‘pm’ (afternoon).

Time in the preferred local 12-hour clock format ‘%4I:%M:%S %p’.

Time in the 24-hour clock format ‘%4H:%M’.

Second as a two-digit integer, measured from 00 to 59.

Tab, equivalent to ‘\t’.

Time in the 24-hour clock format ‘%4H:%M:%S’.

The day of the week as an integer, measured from 1 to 7, where Monday is the first
day of the week.

Week of the year as a two-digit integer, measured from 00 to 53, where the first
Sunday of the year is the first day of week ‘01’, and any days in the preceding
partial week are in week ‘00’.

9 Outside of America “%d/%m/%y’ is more common, so this specifier is ambiguous at best. ‘%F’ is the preferred

format.

10 Ag specified by the 150 8601 standard.

Chapter 2: The GNU C Library 21

AR Week of the year, measured from 01 to 53, where Monday is the first day of the
week, and week 1 is the first week that has at least 4 days in the current year.

ow’ Day of the week, measured from 0 to 6.

WAK Week of the year as a two-digit integer, measured from 01 to 53, where the first

Monday of the year is the first day of week ‘01’, and any days in the preceding
partial week are in week ‘00’.

%’ Date in the preferred local format (Here in Britain that would be ‘%d/%m/%y’).
%X’ Time in the preferred local format (Here in Britain that would be ‘%h:%m:%s’).
“hy’ Year of the century as a two-digit integer, measured from 00 to 99.

Y’ Year, as a four-digit integer.

“%hz’ The time zone as an offset from UTC in hours!!.

“hz Time zone abbreviation (BST).

Wk Produces a percent sign (%) in the output.

Example 2.12: strftime format specifiers

In addition to the standard set of format specifiers in example 2.12, the GNU C library provides
a small number of additional specifiers:

‘K’ Hour as an integer that can start with a blank, on a 24-hour clock measured from
00 to 23.

‘R’ Hour as an integer that can start with a blank, on a 12-hour clock measured from
00 to 11.

‘“%s’ Number of seconds since the epoch.

Example 2.13: a&NuU C library extensions to strftime format specifiers

The aNU C library

An integer value should be useful for calculating elapsed time, but most timing you’d want
to do (in order to schedule tasks in your program, for instance) requires better accuracy than to
the nearest second. The ¢NU C library also provides functions to manipulate ‘struct timeval’
times with finer granularity than one second:

struct timeval {
time_t tv_sec; /* Seconds */
time_t tv_usec; /* Microseconds */

};

The ‘timeval’ structure is defined in the ‘sys/time.h’ header file.

int gettimeofday (struct timeval *tv, struct timezone *tz) [glibc function]
This function is similar to the ‘time’ function we described earlier, except that it fills in a
‘struct timeval’ with the time elapsed since the epoch to the nearest microsecond, rather
than setting a simple ‘time_t’. The tz parameter is obsoleted by the ‘tm_zone’ member of
the broken down time structure, but is retained for backwards compatibility: You should
always pass a ‘NULL’ for this argument.

L Rprc 822 timestamps are ‘%a, %d %b hY 4T %z’.

22 Programming with GNU Software

Here is a simple program that demonstrates both the use of microsecond accuracy, and
timezone information:

#include <stdio.h>
#include <time.h>
#include <sys/time.h>

int
main (int argc, const char *argv[])
{

struct timeval tv;

struct tm brokentime;

char buffer[80];

/* Fetch the current time to the nearest microsecond. */
gettimeofday (&tv, NULL);

/* Convert the whole seconds component to broken down time. */
localtime_r (&tv.tv_sec, &brokentime);

/* Generate the majority of the time display format. */
strftime (buffer, sizeof(buffer), "%a, %d %b %Y %T", &brokentime);

/* Display with microseconds, and timezone. */
printf ("%s.%d %s\n", buffer, tv.tv_usec, brokentime.tm_zone);

return O;

}

Example 2.14: Demonstrating use of timezones and microsecond accuracy.

When you compile and run this program, you will see something akin to the following;:

$ gcc -o usec usec.c

$./usec
Tue, 19 Mar 2002 19:36:40.474770 GMT
$

2.4.3 Formatted Printing

Formatted printing from

2.5 Error Handling

UNIX programs always return an exit code. Exit codes usually go unnoticed, but are always
present. They are most often used by shell scripts and by make, which may take some alternative
action if the program doesn’t finish correctly.

By convention, most programs return an exit code of zero to indicate normal completion.
Nonzero exit codes usually mean that an error has occurred. There are some notable violations
of this convention (e.g., cmp and diff), but we recommend you obey it. C shell users can print
exit codes by entering the command:

Chapter 2: The GNU C Library 23

% echo $status

If you use the Bourne shell (sh) or a derivative like bash, you can print the exit code with
the command:

$ echo $7

When you are writing a program, to have it return an error code, call the function exit, with
the error code as an argument:

int code;

exit (code);
Although the error code is an int, its value should be between 0 and 255.

Functions aren’t that different from programs: their returned value indicates whether they
succeeded or failed. If you want to write healthy code, you should always check the value
returned from a function. The code below shows one way to test for an error:

#include <stdio.h>

/* write to standard output and check for error */
if (printf (...) == EOF) exit (1); /* output failed; terminate */
/* normal processing continues */

The manual page for printf says that it returns the constant ‘EOF’ if it fails; if it succeeds,
it returns the number of bytes transmitted. If you look in ‘stdio.h’, you’ll see that ‘EOF’ is
defined as -1. As a rule, a positive or zero return value indicates success; a negative value
indicates failure. However, there are many exceptions to this convention. Check the manual
page, and if a symbolic constant (like ‘EQF’) is available, use that rather than a hard-wired
constant.

If you want more information about what went wrong with your function, you can inspect the
errno variable. When a system call fails, it stores an error code in errno. UNIX then terminates
the system call, returning a value that indicates something has gone wrong — as we just discussed.
Your program can access the error code in ‘errno’, figure out what went wrong, and (possibly)
recover, as in the example below:

#include <stdio.h>
#include <errno.h>

FILE *fd;
int fopen_errno;

main (int argc, char **argv)
{
/* try opening the file passed by the user as an argument */
if ((fd=fopen (argv[1], "r")) == NULL)
{
/* test errno, and see if we can recover */
fopen_errno = errno; /* save errno */
if (fopen_errno == ENOENT) /*no such file or directory*/
{

/* get a filename from the user and try opening again */

24 Programming with GNU Software

/* otherwise, it’s an unknown error */
else
{
perror ("Invalid input file");
exit (1);
}
}
/* normal processing continues */

}
Example 2.15: Use of errno

On UNIX systems, the header file ‘errno.h’ defines all possible system error values. Note
that this code immediately copies errno to a local variable. This is a good idea, since ‘errno’ is
reset whenever a system call from your process fails, and there’s no way to recover its previous
value.

Another way to use the error number, without examining it yourself, is to call ‘perror’,
which sends a message describing the error to the standard error I/O stream. It’s used like this:

#include <stdio.h>

perror ("prefix to message");

The ‘prefix to message’ given as an argument to ‘perror’ is printed first; then a colon;
then the standardized message. For example, if the previous function call failed with the errno
‘ENAMETOOLONG’ because the user passed a long string of garbage as an argument, the function
call ‘perror ("Invalid input file");’ would result in the output:

Invalid input file: File name too long

void error (int status, int errnum, const char xformat, ...) [glibc function]
void error_at_line (int status, int errnum, const char *filename, [glibc function]
unsigned int lineno, const char *xformat, ..)

2.6 Pattern Matching

In this context, a pattern is a way of expressing a set of strings, and pattern matching is the
act of determining whether a particular string is in the set described by the pattern. For example,
some matches for the set of strings containing digits would be “7”, “123” and “November 4th”.
But not “November” or “fourth”.

The aNuU C library supports a number of pattern matching concepts, from very basic wildcard
matching, through to extended regular expression matching. In this section we will describe each,
and provide annotated examples.

Pattern matching is a concept that is central to the operation of modern operating systems.
The GNU system provides several tools that use pattern matching: grep, sed and even the shell
itself. The GNU C library provides the APIs for employing pattern matching techniques in your
own programs.

2.6.1 Wildcard Matching

This is the kind of pattern matching will be immediately familiar if you have ever used a
UNIX command shell. Here is a short snippet of shell code you might use to add a new directory
to your PATH, unless that directory was already included:

Chapter 2: The GNU C Library 25

case :$PATH: in
x:/opt/gnu/bin:*) ;;
*) PATH=/opt/gnu/bin:$PATH ;;
esac
The Bourne shell ‘case’ construct tries to match the argument string, expanded from : $PATH:’,
against each of the patterns that follow, and executes the code in the first matching branch.
Specifically, if the expansion of ‘:$PATH:’ already contains the substring ‘:/opt/gnu/bin:’,
then the first empty branch is executed. Otherwise, the second branch is executed, and
‘/opt/gnu/bin:’ is prepended to the existing value of ‘PATH’.

There are, then, two patterns in this ‘case’ statement, the first describes the set of all
strings that contain the substring ‘:/opt/gnu/bin:’, and the second describes an infinite set
that will match any string at all! Except for a few special wildcard characters, each character
in the pattern must match itself in the test string in order for the pattern as a whole to match
successfully.

As evidenced by the second pattern in the example above, the ‘*’ wildcard character will
match successfully against any string of characters, or indeed against no characters at all. And
hence the other pattern in the example could be read as: “The set of strings which begin with
zero or more characters followed by the substring ‘: /opt/gnu/bin:’, followed by zero or more
characters”.

The idiom of adding an extra delimiter at either end of a test expression, for example the
extra ‘:” in ‘:$PATH:’ saves you from having to worry about needing to match the first and last
items in the expansion of ‘$PATH’ explicity. Without the extra ‘:’s, you would need to write this:

case $PATH in

/opt/gnu/bin: *) HH

x:/opt/gnu/bin:*) ;;

x:/opt/gnu/bin) 03

*) PATH=/opt/gnu/bin:$PATH ;;
esac

In addition, wildcard patterns have a number of other special characters:

‘P This wildcard will successfully match any single character.
3 [a b] ?
‘[x-y1’ Square brackets describe character sets which will successfully match against any

one of the characters listed explicitly, or within a range bounded by ‘x-y’. For
example ‘[0-9]" will match against any single digit.

To match the character ‘]’ with a character set, it must be the first character listed.
Similarly, to match a literal ‘=’ the ‘=’ must be the first or last character listed in
the set.

‘[:class:]’
As an alternative to listing character sets explicitly, wildcard patterns can also spec-
ify some commonly used sets by name. Valid names are ‘alnum’, ‘alpha’, ‘ascii’,
‘plank’, ‘cntrl’, ‘digit’, ‘graph’, ‘lower’, ‘print’, ‘punct’, ‘space’, ‘upper’ and
‘xdigit’, which correspond to the C functions ‘isalpha’, ‘isascii’ etc.

Each of these is an example of an atom, as are each of the non-wildcard self-matching charac-
ters. In the context of pattern matching, an atom is any minimal constituent part of the pattern
that potentially matches one or more characters. For example ‘a’ is an atom that matches
the character ‘a’; ‘[0-9]’ is an atom that matches any of the characters ‘0’ through ‘9’ (so is
‘[[:digit:1]’); and so on. None can be broken down into smaller valid sub-patterns.

Sometimes the set of strings you are trying to describe with a pattern should include a literal
‘' or another of the characters that are interpreted as wildcards when you use them in a

26 Programming with GNU Software

pattern. By prefixing those characters with a ‘\’ character, the special meaning is turned off
(or escaped) allowing the character to be matched exactly. Hence, ‘\’ is not an atom, since it
cannot match anything by itself. Rather, ‘\’ might modify the meaning of the character that
comes right after it: ‘*’ is an atom that matches only the character ‘*’; ‘\a’ will match only
the character ‘a’; and ‘\\’ matches the character ‘\’.

(FIXME: ISTR some pecularity with “ and character sets.)

The GNU C library provides a function which will tell you whether specific strings match
against a given pattern:

int fnmatch (const char *pattern, const char *string, int flags) [Function]
This function returns zero if pattern describes a set that contains string. Conversely, if
pattern does not match string, this function returns non-zero.

The flags argument is a bit field built by bitwise oring of the various options that tweak the
behaviour of the matching process. Some of the values you could pass are as follows:

‘FNM_NO_ESCAPE’
Normally, if you want to match a ‘\’ character, you must write ‘\\’ in pattern be-
cause the normal behaviour of ‘\’ is to escape any special behaviour of the following
character. Passing this flag makes ‘\’ behave like a normal character, but leaves you
with no way to escape special characters in pattern.

‘FNM_CASEFOLD’
Passing this flag causes the pattern to make no distinction between upper and lower
case characters when deciding whether pattern matches string.

‘FNM_EXTMATCH’
When you pass this flag, you can use the following additional atoms in pattern to
help describe the set of matching strings, where pattern-list is a list of ‘|’ delimited
patterns:

‘I (pattern-list)’
This pattern matches if none of the patterns in pattern-list could match
string.

‘*(pattern-list)’
This pattern matches if zero or more occurences of the patterns in
pattern-list match string.

‘?(pattern-list)’
This pattern matches if zero or one occurences of the patterns in pattern-
list match string.

‘Q(pattern-list)’
This pattern matches if exactly one occurence of any pattern in pattern-
list match string.

‘+(pattern-list)’
This pattern matches if one or more occurences of the patterns in
pattern-list match string.

There are other flags that can be added to the flags argument of ‘fnmatch’, which you can find

in your system documentation.

#include <stdio.h>
#include <fnmatch.h>

Chapter 2: The GNU C Library

int
main (int argc, const char *argv[])
{

const char *pattern;

int count;

int arg;

if (argc < 3)
{
fprintf (stderr, "USAGE: %s <pattern> <string> ...\n", argv[0]);
return 1;

}
pattern = argv[1i];

for (count = 0, arg = 2; arg < argc; ++arg)
{
switch (fnmatch (pattern, argv[arg], FNM_CASEFOLD|FNM_EXTMATCH))

{
case FNM_NOMATCH:
break;

case O:
printf ("\"%s\" matches \"%s\"\n", pattern, argv[argl);
++count;
break;

default:
perror ("fnmatch");
return 1;
}
}

if (!lcount)
printf ("\"%s\" does not match any of the other strings.\n");

return O;

}
Example 2.16: Using fnmatch

2.6.2 Filename Matching

$ rm *~

The ‘*~’ in this example is a wildcard pattern, which describes the set of all strings

2.6.3 Regular Expression Matching

27

28

Programming with GNU Software

Chapter 3: libstdc++ and the Standard Template Library 29

3 libstdc++ and the Standard Template Library

This chapter introduces ‘libstdc++’. Well, almost; ‘libstdc++’ incorporates many things,
one of which is the GNU implementation of the Standard Template Library (STL). So instead
we’ll be looking at a small, concentrated part of ‘libstdc++’, in the form of the STL - justifiably
so, given only one chapter. The Standard Template Library is very large and complex area of
study; even reference books on it contain hundreds of pages. Therefore, this chapter looks at
some of the more obvious uses of the STL, and detailed use is left for you to explore.

Why the sTL? The STL is a large collection of useful programming utilities created to make
programmers lives a lot easier. There are implementations of different containers that can hold
data (such as lists, sets etc.), as well as generic algorithms that can be used with many of these
containers. The STL is also standardised, meaning that wherever it is implemented, the interface
and the results will be the same (unless the implementing parties didn’t keep to the standard. . .).
Also, the GNU project has worked hard at bringing it’s implementation in accordance with the
standard.

This chapter assumes that you already have knowledge of c++ and a fairly good understanding
of object-oriented concepts. A good understanding of templates will also be useful.

Section 3.1 [How the STL is Structured], page 29 introduces the some of the basic components
we’ll be looking at, and how all these components work together. If you are new to STL, this
is the place to start. We'll then look at practical use of containers (that store collections of
objects) and iterators (used to traverse containers) in Section 3.2 [Containers and Iterators],
page 31. We'll then look at Section 3.3 [Generic Algorithms and Function Objects], page 52 and
see how we can combine algorithms and function objects with containers to provide a powerful
set of programming tools to work with. Section 3.4 [Strings|, page 64 shows us how STL provides
an easy-to-use interface to strings, and how we can use STL strings with generic algorithms. A
reference section is also provided, see Section 3.5 [STL Reference Section], page 68, giving a
breakdown of all the commands used in this chapter as well as many more besides. Finally,
Section 5.8 [Further Reading], page 125 provides a list of books and links for further reading.

The source code examples in this chapter all invoke g++, the GNU Cc++ compiler. Full details
about compilation are given in Chapter 4 [The GNU Compiler Collection|, page 75, although
the examples given throughout this section will be easy enough for you not to have to worry
about reading ahead. For example, the compilation command for the vectorl.cc source file
(given in Section 3.2.3 [Vector], page 37), is:

g++ vectorl.cc -o vectorl

This means that you should type this into the command prompt in the directory where
‘vectorl.cc’ is located, hit <ENTER>, and it will compile the source file ‘vectorl.cc’ and pro-
duce a binary named ‘vectorl’ (-o vectorl means name the output file, or binary, ‘vector1’);
you’d run the binary by typing

$./vectorl

at the command prompt in the directory where ‘vectorl’ is located.

3.1 How the STL is Structured

If you are not already familiar with the general layout of STL, we’ll look briefly here at the
overall view of it without too much attention to detail.

The sTL is made up of a number of different components: containers, iterators, generic
algorithms, function objects, adaptors and allocators. Here’s a brief description of each of them:

30

Containers

Iterators

Generic
algorithms

Function
objects

Strings

Adaptors

Allocators

Programming with GNU Software

Store collections of objects. Without being specific, think of any of the classic
computing data structures: lists, sets: these are some of the containers of the
SsTL. Containers can either store primitive data types - integers, characters etc.
- or objects that we define ourselves.

Provide a means of traversing forwards (and possibly backwards) through con-
tainers. Think of them as objects that encapsulate pointers to the objects
within a container: we create a container, like a list of characters, and then
provide iterators to be able to traverse from beginning to end of the container,

for example.
Enable us to apply a number of different algorithms (such as sorting, replacing,

performing calculations etc.) on the elements within containers, and for that
matter, any data set. The whole idea of the STL is genericity and extensibility.
Thus, given some algorithm - like finding an item in a container - we would
expect to find a way of using the find method with any kind of object within
a container. This is provided by STL generic algorithms, using iterators to
manipulate and view the elements of the container.

Given our list of characters mentioned previously, we can now use an algorithm
to sort, replace, reverse - in fact do anything that is computationally possible
(...using c++!) in terms of an algorithm. We could use STL defined algorithms,
or even provide our own. Even better (and this is the crux of the illustration)
- we can use these algorithms on any container of strings, integers, objects...

Function objects enable us to use classes as functions by overloading the func-
tion operator, operator (). We can create many different instances of a func-
tion object (as you'd create many instances of an object), which means that
we can maintain an internal state for each function object. If you’re familiar
with function pointers, the principle is pretty much the same. Moreover, we
can also use function objects in association with generic algorithms, passing
function objects as arguments to the algorithm.

Provide a useful interface to using C++ strings. For a long time, C-like string
handing has had a bad press usually to do with memory issues; class string
provides a simple interface which guards us from the nasty low-level details.
Strings encapsulate iterators just like containers, and so we can also use generic
algorithms and function objects just like we can with containers.

An adaptor lets us modify the interface to some STL component. For example,
although we may be able to make a vector act like a stack (pushing and popping
elements), it is still not ’a stack’, it’s a vector. Adaptors let us modify the
interface to vector, so that we can make our own stack class by modifying the
interface to vector.

Allocators describe the memory model used with your program, providing in-
formation about pointers, references, sizes of objects etc..

In fact, that isn’t all there is to the STL. There’s a lot more besides; there’s also a lot of
support for streams, but we do not have enough space here to talk about these things. In
this chapter, due to space and time, we’ll only look at containers, iterators, generic algorithms,
function objects and strings - and even then briefly. If you feel like finding out more, the books
given in Section 5.8 [Further Reading], page 125 contain a wealth of information.

This is a very brief (and raw) introduction to some of the components we’ll be looking at.
Let’s move ahead and see them being used.

Chapter 3: libstdc++ and the Standard Template Library 31

3.2 Containers and Iterators

Here we introduce the different containers available, as well as talk briefly about how iterators
work with regard to containers. There are two groups of containers to be aware of: sequence
and sorted associative containers (we’ll look at iterators in a minute).

Sequence containers are exactly what they say - a sequence of elements. The elements are
stored according to how they are inserted, or until you make some change (like performing a
sort) to the ordering of elements. So creating a sequence container with ten elements means
that when you access the first element, you are looking at the first element that was inserted;
the second position is the second element you inserted, and so on.

Three sequence containers are provided: vector, deque! and list. vectors and deques
store elements contiguously in memory, so inserting elements can be expensive because (for
example) if an element is inserted at the start of a vector, the remaining elements have to be
reallocated. The advantage of this is that elements can be accessed very quickly via their index
(like an array).

For example, consider the following vector containing characters ’a’ through ’e’:

. a | b | ¢ | 4 | e | ... memory

Index: 0 1 2 3 4

Suppose that we want to insert a new character, 'z’, between elements 2 and 3; to do so would
involve reallocating memory from element 3 onwards to cope with the new insertion because
elements are stored contiguously. This takes time of course; the elements that sit to the right
of the newly inserted element need to be reallocated. Thus, the more elements you have, the
longer it takes to insert new elements near the start of the vector. Inserting the new character
is represented diagrammatically below:

elements ’d’ and ’e’
need to be reallocated
new element |

V V' v
|l a | b | ¢ | z | 4 | e | ... memory
—_————)) e —) e —) e —) e —) e —) -
Index: 0 1 2 3 4 5

...and because the elements have been reallocated (’d’ is now located at index 4 etc.), we
can retrieve them via their index in constant time. Deleting elements is also costly, for the
same reason - if you take out element 3 (’z’), ’d’ and ’e’ need to be reallocated so that they
occupy their old positions again. As compensation however, if we want element 3, we know
exactly where it is (just like using an array), so although it may take time to insert and remove
elements, retrieval is fast.

TODO: deque explanation w. diagrams etc.

lists on the other hand provide quick insertion and deletion times because elements are not
stored contiguously in memory, but as a consequence you cannot access elements via an index -
you have to move through the list looking at each element to determine what it contains.

1 deque stands for double-ended queue and is pronounced deck as in ’deck of cards’.

32 Programming with GNU Software

TODO: list explanation w. diagrams etc.

Sorted associative containers on the other hand are stored via keys which aim to make
retrieval quicker than sequence containers. You do not access them by their location (as you
would a sequence container), but instead access them by their key. So if you had a sorted
associative container with the key being a string and the value being an integer (for example a
name:phone-number pairing), you would retrive the integer value by accessing the relevant key.
For example if you had an element that had the key "John Smith" and the value 456123, you
get the number by asking for the element with key "John Smith".

There are four sorted associative containers available, split into two categories: set and map.
With sets, the data items are the keys themselves; maps on the other hand store data as a
key:value pairing. set and map allow unique keys only; multiset and multimap allow duplicate
keys.

TODO: set explanation w. diagrams etc.

TODO: map explanation w. diagrams etc.

Before we proceed, a note about time complexities. In the following table, we use the term
O to represent big-oh notation. That is, we use O to represent the worst-case scenario for some
computation. For example, if you have a dynamic array of characters and you want to search
for an element in the array, the time complexity for the search will be O(n) - or linear time -
in otherwords, we know that we’ll not have to make more than n tests to find some arbitrary
element. The different concepts that we’ll refer to at various points in this chapter involve
looking at constant, linear and logarithmic time. Here’s a brief explanation of each one:

Time Discussion

Constant The best time we can hope for and acheive; constant time operations are
performed in O(1) time.

Linear Achieved in O(n) time - for example, searching an unordered linked list
for an element would take linear time.

Logarithmic Operations are performed in O(logn) time. This is an improvment on
linear time operations, and a classic example would be a binary tree.

Now time complexity is out of the way, the following table summarises the different containers
available along with their benefits:

Container Insertion Time Deletion Time Reference Inval- Retrieval
idation? Time
vector For elements at the end: For elements at the end - Yes Constant

O(n) if there is no space constant O(1) time; for all
for the element, and all other elements: O(n)
elements need to be re-
allocated; O(1) otherwise.
For all other elements:
O(n)

deque For elements at the be- For elements at the begin- Yes Constant
ginning and end: O(n) if ning and end: O(1). For
there is no space for the all other elements: O(n).
element, and all elements
need to be reallocated;
O(1) otherwise. For all
other elements: O(n).

Chapter 3: libstdc++ and the Standard Template Library 33

list Constant: elements can be Constant: elements can be No O(n)
inserted anywhere in O(1) deleted anywhere in O(1)
time. time.
set, O(log n) Where there are i ele- No O(log
multiset ments to be deleted, the n)
time complexity is O(log
n+i)
map, O(log n) Where there are i ele- No O(log
multimap ments to be deleted, the n)
time complexity is O(log
n+i)

Before moving on, let’s look at some real-world examples of practical applications that would
use STL containers.

Application Container(s) Explanation
Telephone map, A simple telephone directory would contain an address with a
Directory multimap corresponding telephone number. You’d search the directory for

an address, and the address would give you the phone number.
Simple, really, but the important reason for using map is that it
enables us to search in logarithmic time. For a telephone direc-
tory of many entries, this is very important: a directory holding
16 million entries would require no more than 24 steps.

Order vector, Consider a simple order processing system where orders are re-
Processing deque ceived and placed in some kind of queue. vector and deque are
System perfect for the job: they enable us to store elements contigu-

ously and as a result, we can model the way in which orders are
received by queuing them. deque would probably be our best
solution: we add order placements to the end of the deque in the
order that they arrive; and we remove them from the front, like
a FIFO (first-in, first-out) queue.

The following sections provide programming examples for each of these containers. Depend-
ing on what problem you are working with, different containers will provide different advantages.
Just for the record, STL provides a number of container adaptors, namely stack, queue and
priority_queue - the names of which should give you some idea of what they do. A special
container is also provided called bitset. However, none of these containers are dealt with in
this chapter; see Section 5.8 [Further Reading], page 125 for reference material.

3.2.1 Preliminaries

Throughout this chapter we’ll focus on using objects as elements of containers. Instead of
demonstrating the different containers and algorithms (etc.) using primitive data types, we’ll
instead use a simple C++ class (although, initially with vector, we’ll begin with primitive data
types).

The examples will revolve around using an address class - albeit very simple (and unrealistic!).
Here’s the header file, ‘Address.hh’:

/* Address.hh */
#ifndef Address_hh
#define Address_hh

34

Programming with GNU Software

#include <string>

class Address
{
public:
Address () {name=street=city=""; phone=0;}
Address(string n, string s, string c, long p);
void print() const;
bool operator < (const Address& addr) const;
bool operator == (const Address& addr) const;
string getName() const {return name;}
string getStreet() const {return street;}
string getCity() const {return city;}
long getPhone() const {return phone;}
private:
string name;
string street;
string city;
long phone;
s

#endif
Example 3.1: Address.hh

. and the definition, ‘Address.cc’:

/* Address.cc */
#include "Address.hh"

Address::Address(string n, string s, string c, long p)

{
name = n;
street = s;
city = c;
phone = p;
s
void Address::print() const
{
cout <<
"Name: " << name << ", " K
"Street: " << street << ", " K
"Clty: n <L Clty << ||, n <<L
"Phone: " << phone << endl;
s
bool Address::operator < (const Address& addr) const
{

if (name < addr.getName())
return true;
else
return false;
};

bool Address::operator == (const Address& addr) const

Chapter 3: libstdc++ and the Standard Template Library 35

{
if (name == addr.getName())
return true;
else
return false;

};

Example 3.2: Address.cc

We’ve added operators because they’ll be useful later when we come to sort the elements
using different containers. The equality operators are not very strict; we’re only interested in
comparing names, and consider that two people with the same name to the same person; this
isn’t really important, given the limited nature of the examples to follow.

In addition, we’ll be using a header file to keep a number of different Address objects in:

/* AddressRepository.hh */
#ifndef Address_Repoditory_hh
#define Address_Repoditory_hh

#include "Address.hh"

Address addri("Jane", "12 Small St.", "Worcs", 225343);
Address addr2("Edith", "91 Glib Terrace", "Shrops", 858976);
Address addr3("Adam", "23 Big St.", "Worcs", 443098);
Address addr4("Jane", "55 Almond Terrace", "Worcs", 242783);
Address addr5("Bob", "2 St. Annes Walk", "Oxford", 303022);

#endif

Example 3.3: AddressRepository.hh

3.2.2 A Crash Course in Iterators

Before continuing with containers, we’d better pause briefly to explain iterators. Iterators
are important because they allow us to move through elements of a container. There are a few
kinds of iterators, so we’ll discuss each of them in turn briefly now - the purpose here is to merely
describe the different kinds of iterators available, to prepare you for the succeeding sections.

It is very important to understand the capabilities of each iterator because each container uses
a certain type of iterator, and generic algorithms require certain iterators. Because containers
can be used with generic algorithms to search or replace an element (for example), it is important
to be able to distinguish which iterators can be used with which algorithms (more on this later
- Section 3.3.4 [Introducing Generic Algorithms|, page 57).

An iterator is a smart pointer; it enables us to keep track of where we are in a container. We
can use operators, like ++ to move forward one element, as well as the usual operators that we’d
use for pointer arithmetic. Well, almost; the kind of iterator we’re using determines exactly
what operators can be used. There is a hierarchy of iterators to be aware of that will carry us
through the rest of this chapter - certain containers and algorithms have to use certain iterators,
which we have to be strict about to avoid compile errors.

36 Programming with GNU Software

The different iterators available are described hierarchically below in figure (FIXME: fig. ref.

to do.):
e =

Forward ++

Bidirectional / - - \
Eandom a.ccess/ + - 2 4= = a= = \

Each level possesses all the abilities of any iterators that are above it; so bidirectional iterators
posses the abilities of forward and input/output iterators, whereas random access iterators
possess all of the abilities of input/output, forward and bidirectional iterators, as well as its own
operators.

Let’s look at these each in turn:

Input iterators read elements they encounter element by element. Input iterators can read
an element only once, thus if you attempt to reread the same position, it is not gauranteed that
you’ll read the same element. A good example of an input iterator would be reading characters
from a stream, like when you read characters from the keyboard.

Similar to input iterators, output iterators write elements out element by element, and you
cannot re-iterate over the same range of elements once you have started traversing them. Again,
a good example of an output iterator would involve writing characters out to a stream - for
example writing characters from the keyboard to standard output.

Forward iterators, as well as having all of the operations of input iterators and some of the
operations of output iterators, can also refer to the same element more than once. Thus, you
could traverse the range of elements from start to end, and then re-iterate over that range - for
example finding an element in a vector. We can search for the first occurence of some value,
and then search the container again starting from where we left off.

As well as having the properties of forward (and therefore, input and output) iterators,
bidirectional iterators can also move backwards through a range of elements. Thus instead
of being restricted to only searching forwards (as in the previous example), we can also step
backwards through the container of elements.

Random access iterators have all the properties of bidirectional iterators (and therefore all
of the properties of forward and input/output iterators), but can also access elements without
having to traverse them in an element by element fashion. In addition, <, <=, > and >=
operators are also provided for. Random access iterators are very powerful because they allow
to do things like make binary searches.

A note about iterators and containers. Containers provide two member functions, begin()
and end (), to enable us to see the start and end of the range. However, whilst begin() points

Chapter 3: libstdc++ and the Standard Template Library 37

to the first element of a container (if there exists at least one element), end() points past the
last element of the container. This is represented diagramatically below for n elements:

0 1 - PP n-1
beginl) aend()

Thus, for any container - vector, map, set, etc., providing there is at least one element, you
can be assured begin() will point to the first, and end() will point past the last element. The
reason for end () pointing past the last element is practicality; for example, the £ind algorithm
returns an iterator to an object in the container (if it found one), else it returns end(), thus
enabling us to check to see if the find failed or not (that is, if end() is returned, the element
we're looking for does not exist within that container).

This concludes our (very) brief tour of iterators. Reference texts contain much more infor-
mation (see Section 3.5 [STL Reference Section], page 68), although we’ll not look any further
at iterators. The following sections explore the various containers available, which make use of
iterators.

3.2.3 Vector

A vector is like a dynamic array. Thus, you can add elements to the vector, and access them
in constant time - being able to access each element as you need. Insertion and deletion of
elements at the start or middle of the vector takes linear time; elements at the end take constant
time. Think of a vector as a dynamic array of elements; you can change the size as you see fit and
insert and retrieve elements according to an index. Inserting and deleting elements anywhere
other than the end is costly in terms of time because the elements need to be reallocated -
because container elements are stored contiguously in memory, inserting and deleting elements
means that succeeding elements need to be reallocated. To use a vector in your program, you
must include <vector>.

Let’s take a look at a simple source file that uses a vector:

/* vectorl.cc
Compiled using g++ vectorl.cc -o vectorl x/
#include <vector>

int main()

{
std::vector<int> v;
for (int i=0; i<10; i++)
v.push_back(i);
cout << "v now contains " << v.size() << " elements:" << endl;
for (int i=0; i<v.size(); i++)
cout << "M << y[i] << " om;
cout << endl;
exit (0);
}

Example 3.4: wectorl.cc

which produces the following output:

38 Programming with GNU Software

$./vectorl

v now contains 10 elements:

)O))1))27)3))4) J57)6’)7) 78))9)

$

First, we declare that we’ll be using a vector with the declaration #include <vector>. The

declaration std: :vector<int> v creates an empty vector named v with no elements whatsoever,
which will contain elements of type int. We then iterate through a loop ten times, using the
push_back(elem) method.

push_back is an efficient means of insertion for vector - each element is pushed onto the
back of the vector without any need of reallocating previous elements, which as we’ve already
mentioned can be costly.

We then utilize the size () method to print the amount of elements the vector contains, and
then loop through the elements from 0 to v.size () -1, using the array subscript operator. Note
that we can use array subscript operators to access elements of a vector, and thus avoid the use
of iterators.

That’s OK, but we can rewrite the above example to produce the same result but using
essentailly different code and making use of iterators:

/* vector2.cc
Comiled using g++ vector2.cc -o vector2 */
#include <vector>

int main()
{
std: :vector<int> v(10);
/* Declare an iterator to work with: */
std::vector<int>::iterator pos;
cout << "v now contains " << v.size() << " elements:" << endl;
int counter = 10;
for (pos = v.begin(); pos !'= v.end(); ++pos)
{
—--counter;
*pos = counter;
}
pos = v.begin();
while(pos != v.end())
{
cout << *pos <<’ 7
++pos;
}
exit (0);
}

Example 3.5: wvector2.cc

The output to this is obvious: we inform the user that the vector contains 10 elements, and
then print them out one by one which involves printing out the numbers 9 down to 0.

This time we opt to declare a vector named v, reserving 10 elements of type int with the dec-
laration std: :vector<int> v(10). In addition, we also declare an iterator to work by declaring
std::vector<int>::iterator pos. We couldn’t have just declared an iterator on it’s own, like
iterator pos, for example; the reason being is that each container has it’s own iterator (and as

Chapter 3: libstdc++ and the Standard Template Library 39

a consequence we didn’t need to declare #include <iterator> because vector already includes
it). Let’s look at how the iterator works.

Recall from Section 3.2.2 [A Crash Course in Iterators], page 35 that there are many kinds of
iterators, suited to different containers. Vector uses a random access iterator; this contains all
of the properties of a bidirectional iterator, as well as being able to use random access. Thus, we
can use all of the comparison operators with pos, as well as pre- and post-increment operators.

An iterator enables us to maintain track of where we are in a container much the same way
we use pointer arithmetic. Therefore, if we set pos at the beginning of a container of objects,
we’d expect ++pos to point to the next element (if it exists...), and pos += 3 to point to the 3rd
element after the current object. Therefore, the for loop

for (pos = v.begin(); pos != v.end(); ++pos)
{

—-—counter;

*pos = counter;

¥

takes advantage of the begin() and end() methods of vector. The begin() method allows
us to access the first element of the vector; the end () method points past the last element of the
vector. Each of these methods return an iterator. This is represented in figure (TODO: figure
no.):

beginl) end()

The ++pos statement in the for loop sets pos to the next element in the container using the
pre-increment operator. Using pre-increment generally offers better performance - using pos++
returns the old position of the iterator, whereas ++pos returns the new position of the iterator.
The decision to use a while loop and a for loop in the example was arbitrary; it was merely to
demonstrate the different ways in which iterators could be used with a loop. Declaring a vector,
adding elements and then reading them back are very simple, so let’s look at some other vector
operations we can perform. The following example illustrates how we can use different ways
to access elements as well as some other methods of inserting and removing elements. We’ll
concentrate on using objects as elements rather than primitive data types:

/* vector3.cc
* Compiled using g++ vector3.cc Address.cc -o vector3 x/
#include <vector>
#include "AddressRepository.hh"
int main()
{
vector<Address> v;
/* Add all of the address objects to the vector: */
v.push_back(addrl) ;
v.push_back(addr?2) ;
v.push_back(addr3) ;
v.push_back(addr4) ;
v.push_back(addrb) ;
/* Declare an iterator to work with: */
std::vector<Address>::iterator pos;
/* Loop through the vector printing out elements: */

40 Programming with GNU Software

cout << "First iteration" << endl;
for (pos=v.begin(); pos<v.end(); ++pos)
{
pos—>print();
}

/* Remove the last element: */
v.pop_back();
/* Create and insert a new Address object: */
Address addr6("Reggie", "1 Card Rd.", "Hamps", 892286);
v.insert(v.begin(), addr6);
cout << "Second iteration" << endl;
for (pos=v.begin(); pos<v.end(); ++pos)

{

pos—>print();

}

exit (0);
}

Example 3.6: wvector3.cc

and when compiled and run produces the following output:

$./vector3

First iteration

Name: Jane, Street: 12 Small St., City: Worcs, Phone: 225343
Name: Edith, Street: 91 Glib Terrace, City: Shrops, Phone: 858976
Name: Adam, Street: 23 Big St., City: Worcs, Phone: 443098

Name: Jane, Street: 55 Almond Terrace, City: Worcs, Phone: 242783
Name: Bob, Street: 2 St. Annes Walk, City: Oxford, Phone: 303022
Second iteration

Name: Reggie, Street: 1 Card Rd., City: Hamps, Phone: 892286
Name: Jane, Street: 12 Small St., City: Worcs, Phone: 225343
Name: Edith, Street: 91 Glib Terrace, City: Shrops, Phone: 858976
Name: Adam, Street: 23 Big St., City: Worcs, Phone: 443098

Name: Jane, Street: 55 Almond Terrace, City: Worcs, Phone: 242783

This example isn’t too different from the last, although there are a few important points to
make.

The push_back method inserts elements at the end of the vector; this method of insertion is
extremely fast and should be preferred if you are looking for fast insertion - none of the elements
need to be reallocated. Notice that we declare the iterator to have type Address, rather than
int as in the previous examples. Since pos is an iterator, and is a smart pointer to the
containers element under scrutiny, we can simply access the Address objecct directly with a call
to pos->print (), because pos points to each element in the vector.

After adding 5 Address objects, v.pop_back() removes the last element of the vector; so at
this point in the execution of the binary, there will only be four elements in the vector, since
Edith - the last element in the vector - has been removed. Again, removing the last element of
a vector is also fast and achieved in constant time.

We also insert an element into the vector using the line v.insert(v.begin(), addr6). In-
serting addr6 at v.begin() results in addr6 being inserted at the start of the vector. This is
costly in terms of time; all of the remaining elements need to be reallocated after inserting an

Chapter 3: libstdc++ and the Standard Template Library 41

element at the start of the vector. Finally, the second loop prints out the vector of Address
objects.

As you can see the interface to using vector is very simple, and the difference between using
primitive datatypes and objects as vector elements is trivial.

There are a few points to make before we finish and move on to deque. We haven’t dealt with
deletion yet, and there are a number of consequences when deleting elements from a vector.
We'll also focus briefly on reallocation and capacity of vector.

Since vector stores elements contiguously, if we delete an element, an important conse-
quence follows: that all previously assigned references, iterators and pointers to any succeed-
ing elements in the vector are invalidated. By invalidated, we’re really saying that, "this
(pointer /reference/iterator) is no longer reliable". Let’s look at a simple example.

/* vector 4.cc

Compiled using g++ vector4.cc -o vectord */
#include <vector>
#include "AddressRepository.hh"

int main()

{
int *ill_ptr;
std::vector<int> v;
for (int i=0; i<10; i++)

v.push_back(i*100) ;

std: :vector<int>::iterator pos = v.begin();
pos += b;
ill_ptr = pos;
cout << "Element 5: " << *ill_ptr << endl;
/* Erase the first element: */
v.erase(v.begin());
/* Now print out the old ’pos’: */
cout << "... after reallocation: " << *ill_ptr << endl;
exit (0);

}

Example 3.7: wvector4.cc

The output of the program is fairly predictable:

Element 5: 500
. after reallocation: 600

The above program pushes ten integers onto the vector, so that it stores the values 0, 100,
200 and so on up to 900. At the point where we find the element 500, we assign i1l_ptr to the
iterator already pointing to 500. The result is that we perform v.erase(v.begin()) to delete
the first element, all of the elements of the vector are reallocated. Consequently, instead of
ill_ptr pointing to the value 500, it instead contains 600. Although the address of the pointer
points to the same location, the contents of where the pointer points to has changed due to the
reallocation, and has been invalidated.

Another point to be aware of when using vector is capacity and reallocation. So far vector
seems to lack because of the issues of inserting and deleting elements, which can be time con-
suming if you insert or delete any elements other than the last element. If speed is an important

42 Programming with GNU Software

factor, then we need to avoid reallocation where necessary because reallocation takes time. OK;
so is there a way around this? Luckily there is, and it is down to the capacity and reserve
methods.

capacity tells us how many elements we could place in a vector. This is pretty useful; it
means that we can create a vector and tell it how much space to reserve for us, using the reserve
method (see Section 3.5.1 [Container Summary|, page 68 for details). Because space has been
stored for the elements (providing a constructor is provided for the elements we’re inserting),
when we come to insert elements, no reallocation is necessary unless the capacity is exceeded.
The reserve (n) method ensures that we can create a vector with at least n elements. Providing
your objects have a default constructor, you could just call std::vector<Type> v(n), where
Type is the data type, and n is the number of elements you wish to create using the default
constructor of data type Type. Extra time will have to be taken to instantiate the objects
however, so reserve () will probably a better option.

There are too many methods to illustrate using just examples, and the preceeding examples
are simple enough for you to be able to use vector on a basic level. All of the available member
functions of vector are detailed in Section 3.5.1 [Container Summary|, page 68. More complex
examples will be seen when we explore Section 3.3 [Generic Algorithms and Function Objects],
page 52.

3.2.4 Deque

deque® provides the same functionality as do vectors (linear time insertion and deletion in
the middle of the container, constant time insertion and deletion at the end), and in addition
provide constant time insertion and deletion of elements at the start of the deque. To use a
deque in you program, you’ll have to include <deque>.

This is the only advantage that deque offers over vector. You should only use them if you
will definately be performing regular insertions or deletions at the start and end, and time is an
important factor for such modifications.

There is little other difference between a vector and a deque, other than performance. The
following example is just a re-work of the example given for vector3.cc; the only difference is
that all occurrences of vector are replaced with deque, and we’ve renamed vector<Address v>
to deque<Address> d.

/* dequel.cc
Compiled using g++ dequel.cc Address.cc -o dequel */
#include <deque>
#include "AddressRepository.hh"
int main()
{
deque<Address> d;
/* Add all of the address objects to the deque: */
d.push_front (addrl) ;
d.push_front (addr2) ;
d.push_front(addr3);
d.push_front(addr4) ;
d.push_front (addr5) ;
/* Declare an iterator to work with: */
std::deque<Address>::iterator pos;
/* Loop through the deque printing out elements: */
cout << "First iteration" << endl;

3 Short for "double-ended queue" and pronounced deck as in deck of cards.

Chapter 3: libstdc++ and the Standard Template Library 43

for (pos=d.begin(); pos<d.end(); ++pos)
{
pos—>print () ;
}

/* Remove the first element: */
d.pop_front();
/* Create and insert a new Address object: */
Address addr6("Reggie", "1 Card Rd.", "Hamps", 892286);
d.pop_front (addr6) ;
cout << "second iteration" << endl;
for (pos=d.begin() ; pos<d.end(); ++pos)

{

pos—>print () ;

}

exit (0);
}

Example 3.8: dequel.cc

The output’s a little different, because we used push_front and pop_front instead of push_
back and pop_back respectively:

$./dequel

First iteration

Name: Bob, Street: 2 St. Annes Walk, City: Oxford, Phone: 303022
Name: Jane, Street: 55 Almond Terrace, City: Worcs, Phone: 242783
Name: Adam, Street: 23 Big St., City: Worcs, Phone: 443098

Name: Edith, Street: 91 Glib Terrace, City: Shrops, Phone: 858976
Name: Jane, Street: 12 Small St., City: Worcs, Phone: 225343
second iteration

Name: Reggie, Street: 1 Card Rd., City: Hamps, Phone: 892286
Name: Jane, Street: 55 Almond Terrace, City: Worcs, Phone: 242783
Name: Adam, Street: 23 Big St., City: Worcs, Phone: 443098

Name: Edith, Street: 91 Glib Terrace, City: Shrops, Phone: 858976
Name: Jane, Street: 12 Small St., City: Worcs, Phone: 225343

You'll agree that the code isn’t to different from ‘vector3.cc’, but we’ve already mentioned
that vector and deque are similar. Let’s look at a few of the main differences between these
two containers.

Inserting elements at the front of a deque is the primary advantage over vector. In the
example above, we’ve demonstrated this by using the push_front member function. By contrast
however, performing push_front operation with a vector would have been very costly.

Insertions at the beginning or end of a deque invalidate all (previously allocated) pointers,
iterators and references. By contrast, vector pointers, iterators and references are invalidated
anytime an element with a smaller index is inserted or removed, or the capacity changes due
to reallocation. You should consider this carefully if you’re going to use a deque; reallocating
memory every time you make a non-ended insertion or deletion could seriously slow things up,
especially for large collections of elements.

Generally, the similarities between vector and deque mean that you should really consider
using a deque over vector when elements will be added and removed at both ends of the
container, with little insertion or removal in the middle.

44 Programming with GNU Software

3.2.5 List

The list container is a very different sequence container compared to vector and deque.
list does not use random access iterators, but as a trade-off allow constant time insertion and
deletion at any point in the list, instead of reallocating memory to cope with the locations of
elements in the container. Elements are just inserted into the list by providing a link from the
element it was inserted after and a link to the element it was inserted before. It is much like a
naive linked-list data-structure in which each time elements are added, instead of reordering the
data, you just slip them in to wherever they need to be, ignoring the overall structure and order
of the list. The same is true of element deletion. The consequence of this is that we can insert
or remove elements quickly, but as a forfeit sacrafice the ability to use random access iterators
(we’ve given up the ability to recall where element i is). Lists are included in your program by
including <list>.

With no need to worry about reallocation of elements within the list, insertions do not
invalidate iterators, and deletions only invalidate elements which are being referred to.

The lack of random access also means that a few key generic algorithms will not work. These
are instead defined as member functions of list.

Let’s look at a few examples of using a list.

/* listl.cc
Compiled using g++ listl.cc Address.cc -o listl */
#include <list>
#include "AddressRepository.hh"
int main()
{
list<Address> listl;
/* Add all of the address objects to the list: */
listl.push_front(addri);
listl.push_front(addr2);
listl.push_front(addr3);
listl.push_front(addr4);
list1.push_front(addr5);
/* Declare an iterator to work with: */
std::1list<Address>::iterator pos;
/* Loop through the list printing out elements: */

cout << "Iterating through listl: " << endl;
for (pos=listl.begin() ; pos!=listl.end(); ++pos)
{
pos—>print () ;
3

/* Create a new list to work with: x/
list<Address> list2;
for (pos=listl.begin(); pos!=listl.end(); ++pos)
{
list2.insert(list2.begin(), *pos);
}

/* Create and insert a new Address object: */

Address addr6("Reggie", "1 Card Rd.", "Hamps", 892286);
list2.push_front (addr6) ;

cout << "Iterating through list2:" << endl;

for (pos=list2.begin() ; pos!=list2.end(); ++pos)

Chapter 3: libstdc++ and the Standard Template Library 45

{
pos—>print();
}
exit (0);
}

Example 3.9: listl.cc

A few changes have been made since the deque and vector examples that also utilised the
Address class. However, it’s been modified to create a copy of list 1istl using the insert
function to add elements to 1list2:

list<Address> list2;
for (pos=listl.begin(); pos!=listl.end(); ++pos)
{
list2.insert(list2.begin(), *pos);
}

This doesn’t really demonstrate anything unless we actually time it; recall that inserting
elements into a list is extremely fast. Thus, whereas with a vector or deque we can use
insert as needed, it is extremely inefficient becuase memory needs to be reallocated each time.
Our 1list does not suffer from this restriction, so we insert elements at will knowing that it will
be fast.

Using algorithms to sort data in containers is discussed in Section 3.3 [Generic Algorithms and
Function Objects|, page 52. However, these sorting algorithms will not work with 1ist because
we need random access iterators to be able to sort data. Therefore, a number of member
functions are defined that enable us to take advantage of a number of algorithms denied to
us. These are sort to sort data using the less-than equality operator and unique to remove
duplicate elements in a list (Section 3.3.2 [Some Predefined Function Objects], page 55 discusses
how you can alter the default sorting criterion on a list). They’re trivial to use, as can be seen
in the example below:

/* list2.cc
Compiled using g++ list2.cc Address.cc -o list2 */
#include <list>
#include "AddressRepository.hh"
int main()
{
list<Address> listil;
/* Add all of the address objects to the list: */
listl.push_front(addrl);
listl.push_front(addr2);
listl.push_front(addr3);
list1.push_front(addr4);
listl.push_front(addr5);

/* Sort the list: =/
listl.sort();
/* Remove any duplicate names: */
listl.unique();
std::1list<Address>::iterator pos;
for (pos=listl.begin() ; pos!=listl.end(); ++pos)
{
pos—>print();

46 Programming with GNU Software

}
exit (0);
}

Example 3.10: [list2.cc

The result is fairly predictable; the elements are sorted according to the < operator, and
then any unique elements are removed - in this instance, Address objects that have matching
names "Jane". Here’s the output:

$./list2

Name: Adam, Street: 23 Big St., City: Worcs, Phone: 443098

Name: Bob, Street: 2 St. Annes Walk, City: Oxford, Phone: 303022
Name: Edith, Street: 91 Glib Terrace, City: Shrops, Phone: 858976
Name: Jane, Street: 55 Almond Terrace, City: Worcs, Phone: 242783

3.2.6 Set

Sets enable you to declare store data collections as individual items, although no duplicate
elements are allowed (all elements must be unique). Unlike our previous examples of sequence
containers (vector, deque and list), we can retrieve elements from a set (as we can from
all sorted associative containers) rapidly - in logaritmic time - in comparisson with sequence
containers, which are much slower. You use a set in your code by including <set>.

Inserting elements into a set is a little different to normal; a pair object is returned from
an insertion, the first parameter being an iterator and the second being a boolean value, which
determines if there were any duplicates or not. If there were, then the element is not inserted
(only unique elements are allowed). Here’s a simple example:

/* setl.cc

Compiled using g++ setl.cc Address.cc -o setl */
#include <set>
#include "AddressRepository.hh"

int main()
{
set<Address> setl;
if (!setl.insert(addrl).second)
cout << "Failed to insert addrl" << endl;
if (!setl.insert(addr2).second)
cout << "Failed to insert addr2" << endl;
if (!setl.insert(addr3).second)
cout << "Failed to insert addr3 " << endl;
if (!setl.insert(addr4).second)
cout << "Failed to insert addr4 " << endl;

std::multiset<Address>::iterator pos;

cout << "setl now contains: " << endl;
for (pos=setl.begin(); pos!=setl.end(); ++pos)
{
pos—>print () ;
}
exit (0);

Chapter 3: libstdc++ and the Standard Template Library 47

Example 3.11: setl.cc

The program produces the following output:

$./setl

Failed to insert addr4

setl now contains:

Name: Adam, Street: 23 Big St., City: Worcs, Phone: 443098

Name: Edith, Street: 91 Glib Terrace, City: Shrops, Phone: 858976
Name: Jane, Street: 12 Small St., City: Worcs, Phone: 225343

Notice that elements are printed ascending alphabetically. This is because the default sorting
criterion for a set uses < (Section 3.3.2 [Some Predefined Function Objects|, page 55 discusses
how to change this ordering). Obviously, the Address object with the name Jane is not inserted
It’s not because addr1 and addr4 have identical values such as street address, phone number etc.;
this is incidental. Recall from Section 3.2.1 [Preliminaries], page 33 that we defined a < operator
for class Address, which tests only for names. Thus, when addr4 is about to be inserted, the
insert operation finds that "Jane" already exists within the set and as a consequence addr4 is
not inserted. The pair objects values can be accessed using the member variables first and
second. As mentioned previously, when used with insert, first returns the iterator from the
inserted element, and second returns whether the element was inserted or not.

Like list, set provides a number of searching methods that enable you to perform
logarithmic-time complexity operations. This is in preference to the linear-time complexity
of the searching algorithms provided by generic algorithms (see Section 3.3 [Generic Algorithms
and Function Objects], page 52).

We'll only use a few searching methods with set; the others are easier used with multiset.

/* set2.cc

Compiled using g++ set2.cc Address.cc -o set2 */
#include <set>
#include "AddressRepository.hh"

int main()

{
set<Address> set2;
set2.insert(addrl);
set2.insert (addr2);
set2.insert(addr3);
set2.insert (addr4) ;
set2.insert (addrb);

std::set<Address>::iterator pos;
cout << "Found " << set2.count(addr4) << " elements with name \""
<< addr4.getName() << "\"" << endl;
pos = set2.find(addr4);
if (pos != set2.end())
{
cout << "Found: ";
pos—>print () ;

else

{

cout << "Could not find ";

48 Programming with GNU Software

pos—>print();
}
exit (0);
}

Example 3.12: set2.cc

Notice to start with that count takes an element of the set as an argument; it looks through
the set and counts how many occurrences there are of that element. So set2.count(addr4)
returns how many occurrences of addr4 there are in set2. Obviously in our case we’ll only
find one, because sets do not allow duplicates. Finding the element addr4 is easy, and can
be achieved in logarithmic time using find. Although trivial for this example, it is extremely
useful for much larger collections of objects to be able to make searches so quickly. find takes
an element as an argument and returns an iterator to it. So in the section of code

pos = set2.find(addr4);
Address addr;
if (pos != set2.end())
{
cout << "Found: ";
pos—>print();
}
we first use an iterator to be assigned the location of the result of the find method (a failure
returns end ()) in the call pos = set2.find(addr4), and then if pos isn’t equal to set2.end(),
we print out the result of the find.

Here’s the output:

$./set2
Found 1 element with name Jane
Found: Name: Jane, Street: 12 Small St., City: Worcs, Phone: 225343

3.2.7 Multiset

Since the only difference between set and multiset is whether or not duplicates are allowed,
we’ll focus only for a moment about the implications this brings to multisets. Like set, you
use a multiset by including <set>.

Because elements are ordered by their key with sorted associative containers, we need some-
way of dealing with duplicate elements regarding multiset. The concept of looking for duplicate
elements is fairly simple; to look at the first element of a set of duplicates, we make a call to
lower_bound(e), which finds the first occurrence of element e. Finding the upper bound is
done by calling upper_bound(e), which points past the last occurrence of element e*. Both
methods return an iterator to the position of element e with some multiset m. Let’s take a
look at some examples of using a multi set:

/* multisetl.cc

Compiled using g++ multisetl.cc Address.cc -o multisetl */
#include <set>
#include "AddressRepository.hh"

int main()

{

multiset<Address> msetl;

4 Much the same as the end function points past the last element as described in Section 3.2.3 [Vector], page 37

Chapter 3: libstdc++ and the Standard Template Library 49

msetl.insert(addrl);
msetl.insert(addr2);
msetl.insert (addr3);
msetl.insert(addr4);
msetl.insert (addr5);

Address addr("Jane", "33 Trimpley Close", "Kidderminster", 997331);
msetl.insert(addr);
std::multiset<Address>::iterator pos;
cout << "Found " << msetl.count(addr4) << " elements with name "
<< addr4.getName() << endl;
for(pos = msetl.lower_bound(addr4);
pos != msetl.upper_bound(addr4) ;

++pos)
{
cout << "Found: ";
pos—>print () ;
}
exit (0);

}

Example 3.13: multisetl.cc

This example isn’t really different from set2.cc, except that we’re now using upper_bound
and lower_bound, two functions which are only useful when we’re dealing with duplicate ele-
ments. Address objects addrl and addr4 are considered duplicates because the names are the
same, and we’ve added a new Address object to be a duplicate with addr1l and addr4 also. The
net result is that we end up with a multiset with 6 Address objects, three of them duplicates
with the name variable set to "Jane".

The section

for(pos = msetl.lower_bound(addr4);
pos != msetl.upper_bound(addr4) ;

++pos)

{
cout << "Found: ";
pos—>print();

}

enables us to loop move through the multiset, from the first occurence of an Address object
with the name "Jane", to the last occurrence of an object with the name of "Jane". Once again,
the output is fairly obvious:

Found 3 elements with name Jane

Found: Name: Jane, Street: 12 Small St., City: Worcs, Phone: 225343
Found: Name: Jane, Street: 55 Almond Terrace, City: Worcs, Phone: 242783
Found: Name: Jane, Street: 33 Trimpley Close, City: Kiddy, Phone: 997331

Note that upper_bound returns an iterator to the position past the last element e. We could
have used find in place of lower_bound in the for loop, since find returns an iterator to the
first element found, if it exists within the container.

50 Programming with GNU Software

3.2.8 Map

map stores elements via a key:value pairing. The key can be any data type, providing there
exists a sorting criterion for it. The elements themselves do not need to have any such ordering
since they are inserted and ordered depending on their key. So whereas with the previous
examples regarding sets, we ordered elements via the name of each Address, because the key
was the Address object itself, now we can store the Address objects via some independent key.
For example, we could provide an identification number for each Address inserted; or come up
with some other way of identifying a key for each element. As with set, map does not allow for
duplicate elements; you have to use multimap for this. You use map by including <map>.

Since you add a key and a value, elements are added as a pair object. Let’s begin with an
example where we insert Address objects into a map, giving them an int key based on the order
that they were inserted:

/* mapl.cc

Compiled using g++ mapl.cc Address.cc -o mapl */
#include <map>
#include "AddressRepository.hh"

int main()

{
std: :map<int, Address> mapl;
/* first way of inserting an element: */
mapl.insert(std::pair<int, Address>(1, addrl));
/* second way of inserting an element: */
mapl.insert(std: :map<int, Address>::value_type(2, addr2));
/* third way of inserting an element: */
mapl.insert(std: :make_pair(3, addr3));
/* finally, add the rest using the first method of insertion: */
mapl.insert(std::pair<int, Address>(4, addr4));
mapl.insert(std::pair<int, Address>(5, addr5));

std::map<int, Address>::iterator pos;
for (pos = mapl.begin(); pos != mapl.end(); ++pos)

{
cout << "(" << pos->first << ") ";
Address addr = pos->second;
addr.printQ);
}
exit (0);

}
Example 3.14: mapl.cc

As you can see, there are a few more complexities to deal with with map regarding inserting
elements. What exactly are we putting in the map? With the previous containers, we inserted
the object in question - for containers of integers, we used integers; for containers of Address
objects we added the Address object itself. However, since a map contains a key:value pairing,
the most obvious way to store elements is in a pair; this is achieved by using the pair class.
There are three ways to insert elements into a map (and multimap) in a pair. Let’s look at
them each in turn:

pair is defined in <utility>, although we don’t need to include the header file since map and
multimap include it. pair is used to store (not surprisingly) two values. The insert method

Chapter 3: libstdc++ and the Standard Template Library 51

for map is the same as for the other containers - in other words, it takes one value, namely an
element. However, since map has a key:value paring, we need some way to deal with this. In
this instance, when we declare

mapl.insert(std::pair<int, Address>(1, addrl));

we’re saying that the object inserted is a pair object; it takes an int and and Address
(in the declaration <int, Address>), the first element is 1 (the key) and the second element is
addr1 (the value).

Another way to insert a pair into a map is to use value_type, which is defined differently
for different containers. For map and multimap, it is a pair. So the declaration std: :map<int,
Address>::value_type(2, addr2) in the second call to insert is saying that the arguments
2 and addr2 are passed to the map container, which is implicitly a pair object per element
inserted.

The third way of inserting a pair is to call make_pair, which simply returns a pair object
from the two arguments passed to it.

So when we put objects into a map, we’ve got to put - yes, you've got it - a pair object.
That’s fine; so how do we access elements of a pair?

This is demonstrated in the for loop:

std::map<int, Address>::iterator pos;
for (pos = mapl.begin(); pos !'= mapl.end(); ++pos)
{
cout << "(" << pos->first << ") ";
Address addr = pos->second;
addr.print();
b

We first create an iterator to be able to traverse the container, and in the body of the for
loop make the usual calls to begin() and end(). The key:value pairings are stored in the
members first (for the key) and second (for the value) of the pair.

The output is obvious, so it’s been omitted here; it’s just the different Address objects
preceeded by (n) where n is the number assigned to the map for that specific element. The
Address object with the name of "Jane" exists twice within the map; this is because we are
now inserting elements according to a different sorting criterion - int - and since there are
no duplicates (our integers go from 1 to 5 in the above example), all elements are inserted
successfully. However, if we’d have decided to give each element a key value of 1 (or any other
number, providing the number’s the same), only one Address object would have been inserted.

Let’s talk about efficiency. If elements are stored as key:value pairings, it makes sense that
we’ll be able to access keys efficiently; this is true, and can be achieved in logarithmic time. This
raises an important issue: if we want to change the key, how will elements be reordered and be
consistent?

The answer is that we cannot change the key. Instead we have to remove the element with
the key we wish to change and insert a new key (the one we wish to change the old key to) with
the old value.

3.2.9 Multimap

Asmultiset is similar to set except that it allows duplicate elements, multimap is similar to
map except that it allows for duplicate keys. Like multiset (Section 3.2.7 [Multiset], page 48),
accessing ranges of pair objects is done by using lower_bound and upper_bound. The search
operations available for set are also available to multimap, so we’ll not look at them here
because the interface is exactly the same. Just be aware that since you’d do a search on (for

52 Programming with GNU Software

example) lower_bound (key), that you'll have to get the key from the pair object representing
the multimaps element using the first member of pair. Like map, you use a multimap in your
code by including <map>.

3.3 Generic Algorithms and Function Objects

We'll deal with two major topics in one fell swoop in this section: generic algorithms and
function objects. Although independent of each other, they work together very nicely and as a
result they’ve been glued into the same section.

To begin with, we’ll take a look at a few very simple examples of some arbitrary function
objects, as well as explain the basic philosophy behind them. We’ll then take a look at a few
key generic algorithms, and then combine the two concepts together, using generic algorithms
in unison with function objects.

3.3.1 Function Objects - in a Nutshell

If you are familiar with the concept of a function pointer, then function objects aren’t too
disimilar. The basic concept holds for both: we can create many different instances of the same
function, but each operating with a different state. However, the difference is that a function
object is mot a function - it is an object that behaves like a function.

We’'ll begin by describing some predefined function objects and look at how they work, and
afterwards look at how to create our own function objects. This will all tie in with the next
section, Section 3.3.4 [Introducing Generic Algorithms|, page 57, which will show you how to
exploit some of the function objects we’ll look at in this chapter - many generic algorithms
accept a function object as one of their arguments.

The STL provides a number predefined function objects. Our purpose here is to describe a
few of them; the rest will be provided in the Section 3.3.2 [Some Predefined Function Objects],
page 5.

Right. So we said that a function object is a class that behaves like a function. But it isn’t
actually a function; we’re just wrapping up functional behaviour in a class by overloading the
function call operator () so that we can call the class like we’d call a function. Let’s look at a
commonly used function, negate.

negate returns the negative value of what was passed in. Pretty simple really; let’s look at
the declaration in ‘st1_function.h’ (don’t despair at it - we’ll explain it in due course!)®:

template <class T>
struct negate : public unary_function<T, T>
{
T operator() (const T& x) const { return -x; }
};

Note that negate inherits from unary_function - in other words, it takes one parameter.
Likewise, a binary function (which we’ll meet soon) takes two parameters. negate deals with
one type, T, the type we’ll be passing in. This could be anything; an int, string, an Address
object, and so on, with the following restriction: we must be able to negate the value of what we
pass in (so for example we’d expect to get -5 if we passed in 5 as an int). We use the overloaded
function operator operator () to be able to call negate as a function. Obviously, when we pass
in x, we return -x.

5 The declaration of negate has been modified to make it a little more readable; the exact text of negate will
vary from implementation to implementation.

Chapter 3: libstdc++ and the Standard Template Library 53

Let’s see negate in use with a vector of integers, defining our own method named with_each
to be able to walk through the elements of the container:

/* functionl.cc

* Compiled using g++ functionl.cc -o functionl */
#include <vector>
#include <functional>

/* Define our own method that uses a unary function ’fn’ on
* a range of elements: */
template <class Inputlterator, class Function>
void with_each(InputIterator beg, Inputlterator end, Function fn)
{
for(; beg != end; ++beg)
cout << fn(*beg) << endl;
3
int main()
{
std::vector<int> v;
v.push_back(10);
v.push_back(2) ;
v.push_back(4) ;
with_each(v.begin(), v.end(), negate<int>());
return O;

}
Example 3.15: functionl.cc

Here’s the output:

$./functionl

-10

-2

-4

The key to understanding what is going on involves looking at the with_each algorithm.

Notice to start with that the third parameter of with_each in main takes negate<int>() as
it’s argument. This creates an instance of the negate function. The body of with_each works
as follows:

for(; beg != end; ++beg)
cout << fn(x*beg) << endl;

Here, fn is obviously negate, operating on the range of elements beg to (but not including®),
end. It takes *beg as it’s argument, which is a pointer to an integer. So all we’re doing is saying
"apply fn with argument *beg" - or, more precisely - "apply negate with argument *beg".
More generally, with_each takes a function object, fn, so we could pass any unary function
object into with_each.

negate is a unary function object. What about binary function objects? Well, there’s not
that much difference except that they take two arguments instead of one, surprise surprise. Let’s
look at a function object that takes two arguments, called greater. greater takes elements x
and y and returns true if x is greater than y, false otherwise. It’s definition is simple, and isn’t
too disimilar to negate:

6 Recall from Section 3.2.2 [A Crash Course in Iterators], page 35 that end points past the last element in a
container.

54 Programming with GNU Software

template <class T>
struct greater : public binary_function<T, T, bool>
{
bool operator() (const T& x, const T& y) const
{ return x > y;}

};

We’re going to hook greater into an example similar from earlier, using greater as an
argument to a modified with_each method:

/* function2.cc

* Compiled using g++ function2.cc -o function2 */
#include <vector>
#include <functional>

/* Define our own method that uses a binary function ’fn’ on
* a range of elements: */
template <class Inputlterator, class T, class Function, class Message>
void with_each(InputIterator beg, Inputlterator end,
T val, Function fn, Message msg)
{
for(; beg != end; ++beg)
if (fn(xbeg, val))
cout << *beg << msg << val << endl;

int main()
{
std::vector<int> v;
v.push_back(10) ;
v.push_back(2) ;
v.push_back(14) ;
with_each(v.begin(), v.end(), 7, greater<int>(), " is greater than ");
return O;

}
Example 3.16: function2.cc

Again, the output is fairly obvious:

$./function2
10 is greater than 7
14 is greater than 7

. and isn’t really anything to get excited about. We could have even passed in the pre-
defined less function object, with Message being " is less than " and the results would again
have been obvious. But the point is that function objects provide great flexibility and power,
more so when we introduce generic algorithms.

This has been a whistle-stop tour to look describe some function objects and look at the basic
principles involved. The idea is simple - create a class that does what you want it to do, placing
the functionality in the operator() body. It doesn’t need to be a template class - although
it’s always advantageous if you can do so. If you're perplexed about why we used the with_
each method with the function objects, don’t worry because we’re actually mimicing a generic
algoritm called for_each, which we’ll encounter soon - you’ll see (in Section 3.3.4 [Introducing

Chapter 3: libstdc++ and the Standard Template Library 55

Generic Algorithms|, page 57) how we’ll use function objects with generic algorithms in a similar
manner to how we just used with_each.

This may not have seemed much of an in-depth or informative explanation of function objects,
but we’re really holding back until we look at generic algorithms. All you need to remember is
that function objects wrap up functional behaviour in a class, and we can make calls to that
class by calling the overloaded operator.

3.3.2 Some Predefined Function Objects

You might actually be wondering why we should even bother using function objects, since
the examples so far have been fairly simple and non-informative. Well, you can use them with
most of the containers we have already seen. In Section 3.5.1 [Container Summary]|, page 68,
one of the constructors for set and map passed in a comparison object; list provides it’s own
sort method, which you could pass a comparrison object to tell it how to sort data. Well, we
can use any of the comparison function objects given here; so, instead of ordering using less-than
(the default ordering), we can instead use greater, for example:

/* Create a set in which we sort elements using ’greater’
* rather than ’less than’: */
std::set<int, greater<int>()> some_set;

/* Now create a list: */
std::list<int> some_list;
/* ... add some elements to the list... */

/* Sort elements from greatest to least: */
some_list.sort(greater<int>());

The above example demonstrates (without going into too much detail) how the greater
function object can be used to change the sorting criterion for a set, as well as sorting a list
using greater. greater, along with a number of other predefined function objects, are detailed
in Section 3.5.2 [Function Object Summary|, page 71.

However, there are also a few other function objects that are worth metioning here, and are
very useful. These are covered in the next section.

3.3.3 Function Adaptors

Function adpators are function objects that enable us to pass in other function objects as
arguments, and there are a few worth mentioning that are extremely useful. The first set enable
us to bind different arguments passed in (bindlst and bind2nd) to operations; the second set
let us pass member functions as arguments (mem_fun and mem_fun_ref). Let’s look at them
each in turn.

Recall from Section 3.3.1 [Function Objects - in a Nutshell], page 52 in ‘function2.cc’ we
defined our own with_each method that took an additional parameter of type T so that we
could pass in the value to make a comparison against the elements of the container, using the
greater function object. The reason we did this was because greater is a binary function
object, and it needs a second value to compare against, and so we provided it by supplying it a
parameter. But the only way of doing this would be to modify the with_each method to cope
with the extra parameter, which is what we did. But wait - look what happens if we change
with_each as follows:

/* function3.cc
* Compiled using g++ function3.cc -o function3 */

56 Programming with GNU Software

#include <vector>
#include <functional>

/* Define our own method that uses a unary function ’fn’ on
* a range of elements: */
template <class Inputlterator, class UnaryFn, class Message>
void with_each(InputIterator beg, InputIterator end, UnaryFn fn,
Message msg)
{
for(; beg != end; ++beg)
if (fn(*beg))
cout << msg << *beg << endl;

int main()
{
std: :vector<int> v;
v.push_back(10) ;
v.push_back(2) ;
v.push_back(14);
with_each(v.begin(), v.end(),
bindlst(greater<int>(), 7), "7 is greater than ");
return O;

}
Example 3.17: function3.cc

This may seem esoteric, but what’s actually happening is bind1st is transforming greater
into a unary function object. The effect of bindist (op, val) is to turn op into a unary function
object such that op will work with the parameters op(val, param). Thus, val will take on the
value 7, and param will be whatever value we’re working with inside the body of the with_each
method, in other words the value held in *beg. Thus, when fn(*beg) is called in the body of
with_each, we're calling greater with one argument (because bindist turned it into a unary
function), and the condition if (fn(xbeg)) yields true for all values that are greater than 7.

bind2nd is similar except that it binds its second parameter to be the first argument to be
used in function fn. In other words, it transforms bind2nd (op, val) into op(param, val).

Lets now look at mem_fun_ref and mem_fun.

The easiest way to describe mem_fun_ref is to revisit the Address class. First, recall from
Section 3.2.3 [Vector|, page 37 how we printed Address objects:

/* Declare an iterator to work with: */
std::vector<Address>::iterator pos;
/* Loop through the vector printing out elements: */
cout << "First iteration" << endl;
for (pos=v.begin(); pos<v.end(); ++pos)

{

pos—>print();
}

There’s an easier way to do this, using mem_fun_ref. In the following code, we’re actually
going to use with_each again, which may seem counter-intuitive; well, it is if every time we're
going to make function object calls to iterate a collection of objects we have to define code to

Chapter 3: libstdc++ and the Standard Template Library 57

do so. with_each is just a stub for a generic algorithm called for_each, which we’ll be looking
at soon. Let’s pass print to mem_fun_ref as we traverse through a vector of Address objects:

/* functiond.cc
Compiled using g++ function4.cc Address.cc -o function4d */
#include <functional>
#include <vector>
#include "AddressRepository.hh"

/* Define our own method that uses a unary function ’fn’ on
* a range of elements: */
template <class Inputlterator, class UnaryFn>
void with_each(InputIterator beg, Inputlterator end, UnaryFn fn)
{
for(; beg != end; ++beg)
fn(*beg) ;
3
int main()
{
vector<Address> v;
/* Add all of the address objects to the vector: */
v.push_back(addrl);
v.push_back(addr2) ;
v.push_back(addr3) ;
v.push_back(addr4) ;
v.push_back(addrb) ;
/* Now call ’print’ with each element, passing it by reference: */
with_each(v.begin(), v.end(), mem_fun_ref (&Address: :print));
exit (0);
3

Example 3.18: function.cc

The output is obvious: it prints out the list of Address objects. This is an extremely useful
function object, because otherwise we’d have to define our own function object (called fun_ob_
print_address within the Address class for example) which would do this work for us with the
with_each algorithm, if we weren’t happy with the pos->print () way of doing things. This
adds extra code and is uneccessary if we can use mem_fun_ref.

mem_fun isn’t too different; but instead of using a reference, mem_fun uses a pointer to an
element.

Note that with both mem_fun and mem_fun_ref, the called member functions must be con-
stant member function, otherwise a compile error will result.

These function adaptors are summarised in Section 3.5.2.2 [Function Adaptor Reference],
page 72.

3.3.4 Introducing Generic Algorithms

Although the containers available provide a number of different useful methods, there are
times when we need something a little more, when the container does not provide the necessary
facilities to perform some operation. As you’ll see, generic algorithms provide a strong set of
tools to work with.

58 Programming with GNU Software

In case you are wondering, generic algorithms are exactly what they say they are; algorithms
to provide some form of computation, available (under the right circumstances) to many types
of data. Thus, a generic algorithm to sort a set of data should be able to compute on a character
array; on an array of integers; on some container of objects, and so on.

In fact, we don’t actually use data structures directly with generic algorithms. All algorithms
accept (at the least) iterators as their arguments, and the type of iterator used with the algorithm
determines what containers (and more generally, any object that uses iterators) can be used with
the generic algorithm.

For example, consider 1ist, which uses bidirectional iterators. Can we use the sort algorithm
with 1ist? Let’s check the interface to sort:

template <typename RandomAccessIterator>
void sort(RandomAccessIterator first,
RandomAccessIterator last);

Since the interface declares that we need RandomAccessIterator, using the sort algorithm
with 1ist is impossible - a compile error will result because list uses bidirectional iterators.
This means that we can only use sort with vector and deque. This doesn’t mean that we
can’t sort a list - in fact, 1list provides it’s own sort method. If you’re wondering how to sort
set and map (because both use bidirectional iterators like 1ist), remember that elements are
inserted according to their value anyway, so are sorted automatically using a criterion defined
by yourself.

There are many algorithms available to us, far too many to describe here. So instead we’ll
look closely at a few key algorithms, providing plenty of examples, and provide a summary of
the rest of the algorithms in Section 3.5.3 [Generic Algorithm Summary], page 72, should you
wish to explore them.

We'll look at the following generic algorithms here just to get a taste of them:

e Section 3.3.5 [for_each], page 58 enables us to walk through collections of objects, enabling
us to perfrom some form of computation on each element of the collection.

e Section 3.3.6 [find], page 59 searches for some specified element.

e Section 3.3.7 [transform], page 61 let’s us take some range, and copies the result of calling
some operation op to another destination (in fact, both ranges can be the same).

e Section 3.3.8 [partition], page 62 enables us to move through a range of elements, moving
elements that satisfy some unary predicate to the start of the range, leaving the rest of the
elements to sit at the end of the range.

e Section 3.3.9 [accumulate], page 63 is a numerical algorithm that we can use to move through
a range and accumulate some sum as we move through it.

3.3.5 for_each

The for_each algorithm, as you would expect, marches through some range performing some
operation on each element as it goes. Sounds vague? That’s because we can choose to do what
we want for each element. We could march through a range printing the elements out; or modify
the contents of each element.

In fact, for_each may sound familiar. It should be! We used a function earlier called with_
each, in Section 3.3.1 [Function Objects - in a Nutshell], page 52. This may appear a bit cheaky,
but we didn’t actually know about generic algorithms when we were discussing function objects,
and instead provided a quick-stub solution.

Let’s look at the signature of for_each first:

UnaryProc for_each(InputIterator beg, InputIterator end, UnaryProc op)

Chapter 3: libstdc++ and the Standard Template Library 59

As you can see, for_each takes two InputIterators, meaning that we can use any container
or object that uses InputIterators. op is the key point to the algorithm. We use op, a unary
function to operate on each element; it is a unary operator because it takes one argument;
namely, the element under scrutiny - in almost all respects, it’s exactly the same as with_each,
with the difference that for_each is already defined for us. There is also a for_each algorithm
that accepts a binary operation op. Let’s look at a simple example.

/* genericl.cc
* Compiled using gcc genericl.cc Address.cc -o genericl */
#include <algorithm>
#include <vector>
#include "AddressRepository.hh"

int main()
{
std: :vector<Address> v;
v.push_back(addrl) ;
v.push_back(addr2) ;
v.push_back(addr3) ;
v.push_back(addr4) ;
for_each(v.begin(), v.end(), mem_fun_ref (&¥Address: :print));

¥

Example 3.19: genericl.cc - printing out elements using for_each

It’s pretty straightforward really - and looks strikingly similar to ‘function4.cc’ from Sec-
tion 3.3.3 [Function Adaptors], page 55, except that we don’t need to define our own method to
march through a range of elements because for_each does it for us (notice we utilise mem_fun_
ref to pass the member function print to for_each). Comparing this with the earlier method
of using pos->print() and using with_each, you’ll agree that it’s easy on the eyes if nothing
else.

3.3.6 find

Now that you’ve had a brief taster with for_each, everything get’s a little easier. Under-
standing the signature of different algorithms becomes instinctively easier the more you use
them. find has the following signature:

InputIterator find (InputIterator begin, InputIterator end, const T& val)

It’s very straight forward: supply some start and end range, a value to search for, and return
the position of where the element was, (find returns end() if the element was not found).
There is also another algorithm called find_if that uses some operation to perform a test on
the element being searched for:

InputIterator find if(InputIterator begin, InputIterator end, UnaryPredicate op)
Let’s look at find:
/* generic2.cc
* Compiled using g++ generic2.cc Address.cc -o generic2
* Run using ./generic2 */
#include <algorithm>
#include <list>
#include "AddressRepository.hh"

int main()

60

¥

Programming with GNU Software

list<Address> 1;
1.push_front (addrl);
1.push_front (addr2);
1.push_front(addr3);
1.push_front(addr4);
1.push_front (addr5) ;
Address addr6("Jane", "55 Almond Terrace", "Worcs", 242783);
list<Address>::iterator pos = find(l.begin(), l.end(), addr6);
if (pos != l.end())
{
cout << "Found : ";
pos—>print ();
}

return O;

Example 3.20: generic2.cc

Once again, the example is easy to follow: we just supply the populated list to the find
algorithm using begin() and end() and specify that we want to find a match with addr6. Note
that since we test only for the name of an Address object, any Address object with the name
"Jane" would have satisfied the search.

What about find_if? It’s pretty straight forward really, and involves using bind2nd ():

/* generic3.cc

* Compiled using g++ generic3.cc Address.cc -o generic3
* Run using ./generic3 */

#include <algorithm>

#include <functional>

#include <list>

#include "AddressRepository.hh"

int main()

{

list<Address> 1;

1.push_front (addrl);

1.push_front (addr2);

1.push_front(addr3);

1.push_front(addr4);

1.push_front (addr5) ;

Address addr6("Jane", "55 Almond Terrace", "Worcs", 242783);
list<Address>::iterator pos = find_if(1l.begin(), 1l.end(),

bind2nd (less<Address>(), addr6));

by

if (pos !'= 1l.end())
{
cout << "Found : ";
pos—>print();
}

return O;

Example 3.21: generic3.cc

Chapter 3: libstdc++ and the Standard Template Library 61

The code is almost the same as the previous example using £ind (), except this time we
need a unary predicate as the third argument to find_if (). We achieve this by saying that we
want to find any Address object less than addr6, in other words any Address object less than
"Jane". Since "Bob" is the first element we’ll encounter and is less than "Jane" according to
our less-than sorting criterion, pos is assigned to the iterator that points to "Bob".

3.3.7 transform

transform isn’t too disimilar to for_each, in the sense that both let us modify some range
of elements. However, whereas with for_each we are modifying the range we pass in, with
transform we can make changes to another range of elements. The signature for passing in a
unary operation is as follows:

OutputIterator transform(InputIterator begin,
InputIterator end,
OutputIterator result,
UnaryOp op);
.. .which applies op for each element in the range begin to end, writing the result of each
application of op to result. There is also a version of transform that takes a binary operation:

OutputIterator transform(InputIteratorl begini,
InputIteratorl endl,
InputIterator2 begin2,
OutputIterator result,
BinaryOp op);
.. .which, for all elements in the range beginl to endl, applies op on each element in the
range with, starting with beginl and begin2, up to endl.

Here’s a simple example:

/* genericé.cc

* Compiled using g++ generic4.cc -o genericéd
* Run using ./generic4d */

#include <algorithm>

#include <functiomnal>

#include <vector>

int main()
{
std::vector<int> vi1, v2(10, 0);
for (int i=0; i<10; i++)
v1.push_back(i*10);

transform(vl.begin(), vi.end(), v2.begin(),
bind2nd (divides<int>(), 10));
std::vector<int>::iterator pos;
for (pos = v2.begin(); pos != v2.end(); ++pos)
cout << *pos << " ";
return O;

}

Example 3.22: generic4.cc

We declare two vectors, populating v2 with 10 elements each with a value of 0. The first
vector is initialised with the values 0 through 90, incrementing by ten for each element. We use

62 Programming with GNU Software

the bind2nd function adaptor to divide each value of v1 that we encounter by 10, and the result
is copied into v2. The end result is that v2 contains copies of all the values held in v1, divided
by 10:

0123456789

3.3.8 partition

partition takes all elements in a range and moves those that satisfy some unary predicate
op to the front of the range begin; all other elements sit at the back of the range. The criterion
can be a function object that we can use to test the elements in the container. For example,
we could use less with bind2nd and some value that we want to test against for a container of
integers.

Here’s the signature of partition:

BidirectionalIlterator partition(BidirectionalIlterator begin,
BidirectionalIterator end,
Operation op);

Here’s a simple example that uses integers:

/* generich.cc
* Compiled using g++ genericb.cc -o generich
* Run using ./genericb */

#include <vector>
#include <algorithm>
#include <functional>

int main()
{
std::vector<int> v;
for (int i=9; i>-1; i--)
v.push_back(i);
std::vector<int>::iterator pos, iter;
cout << "y: ";
for (pos = v.begin(); pos != v.end(); ++pos)
cout << *pos << " ";
pos = partition(v.begin(), v.end(), bind2nd(less<int>(), 5));
cout << "\nv, after partition: ";

for (iter = v.begin(); iter != v.end(); ++iter)

cout << *iter << " ";
cout << "\nFirst element not matching in v: " << *pos << endl;
return O;

¥

Example 3.23: generics.cc

The output may seem strange at first:
v: 9876543210
v, after partition: 0 1 23 4567 89
First element not matching in v: 5
- it appears more or less as if we’ve performed a sort on the elements of the vector; and in a
sense we have. We have said that we want to partition the data into two discreet sections; that
which is less than five, and that which is greater than four. However, partition also sorts the

Chapter 3: libstdc++ and the Standard Template Library 63

elements, and as a result the ordering of the original elements in the partition is not preserved,
unlike with stable_partition, which is similar (and the signature is the same as partition),
but preserves the order of the elements in the partition:

/* generic6.cc
* Compiled using g++ generic6.cc -o generic6
* Run using ./generic6 */

#include <vector>
#include <algorithm>
#include <functional>

int main(Q)
{
std::vector<int> v;
for (int i=9; i>-1; i--)
v.push_back(i);
std::vector<int>::iterator pos, iter;
cout << "v: ";
for (pos = v.begin(); pos != v.end(); ++pos)
cout << *xpos << " ";
pos = stable_partition(v.begin(), v.end(), bind2nd(less<int>(), 5));
cout << "\nv, after stable_partition: ";

for (iter = v.begin(); iter != v.end(); ++iter)

cout << *iter << " ";
cout << "\nFirst element not matching in v: " << *pos << endl;
return O;

¥

Example 3.24: generic6.cc

The result is a little more predictable:
v: 9876543210
v, after stable_partition: 4 3210987 65
First element not matching in v: 9
As a result, the time complexity of stable_partition is better than that of partition;
stable_partition has linear complexity (worst-case is n log n), whereas partition has linear
time complexity, worst-case number of elements / 2 swaps.

3.3.9 accumulate

Simple numerical processing is provided by accumulate. There are two forms that we should
be aware of. The first takes some initial value, and computes the sum of this value with the
elements in the range that were passed in:

T accumulate (InputIterator beg,
InputIterator end, T val);
The second form of accumulate accepts not only an initial value and a range, but also a
binary function operator, so that we aren’t restricted to just making a sum:
T accumulate(InputIterator beg,
InputIterator end,
T val, BinaryFunc op);

Both of these algorithms are illustrated below:

64 Programming with GNU Software

/* generic7.cc
* Compiled using g++ generic7.cc -o generic7
* Run using ./generic7 */

#include <vector>
#include <algorithm>
#include <functional>
#include <numeric>

int main()

{
std: :vector<int> v;
for (int i=0; i<10; i++)
v.push_back(i+1);
cout << accumulate(v.begin(), v.end(), 0) << endl
<< accumulate(v.begin(), v.end(), 1, multiplies<int>());
return O;
}

Example 3.25: generic7.cc

The output is trivial, and involves printing out 55 (starting at 1 and adding each number
through to 10) and 3628800 (1 through to 10, but instead of adding, we use multiplication).
We’ve given 1 as the value to the second accumulate call because it’s the identity operator for
multiplication.

3.3.10 Other Generic Algorithms

for_each, find, transform, partition and accumulate are just a few of the generic algo-
rithms provided. The signatures, along with brief descriptions of all the generic algorithms, are
given in Section 3.5.3 [Generic Algorithm Summary|, page 72.

3.4 Strings

Of all the classes available to us in the STL, perhaps the most immediately useful is string.
Using strings is often a necessity in many programs, and breaking away from the traditional char
* declarations and having to worry about memory allocation and freeing are some of the many
pitfalls that can cause code to become buggy and unpredictable. The string class provides us
with an easy-to-use interface, making string-handling much less complex. In addition, it enables
us to perform many different operations that we have seen previously using iterators, function
objects and generic algorithms. Because of this we can manipulate strings in a fairly complex
way, without too much code.

There are two types of string available to us; string and wstring. wstring is the implemen-
tation of strings that use more than one byte per character, such as unicode characters. We’ll
only look at using string here.

3.4.1 Basic String Usage

Constructing a string object is easy, and the following code shows a number of different ways
to create strings, and perform some simple operations on them:

Chapter 3: libstdc++ and the Standard Template Library 65

/* stringl.cc
Compiled using g++ stringl.cc -o stringl */
#include <string>

int main()
{
char *cstring = "third=c_string\0";
string first("first");
string second("2nd string", 3);
string third(cstring);
string fourth(4, ’4’°);
string five("This is the fifth");
string fifth(five, five.find("fifth"));

cout << first << ", " << second << ", "
<< third << ", " << fourth << ", " << fifth << endl;

string line(first+", "+second+", "+third.substr(0, 5)+
", "+fourth.substr(3)+"th, "+fifth);
cout << line << endl;

¥

Example 3.26: stringl.cc: examples of creating strings

The output is as follows:

$./stringl
first, 2nd, third=c_string, 4444, fifth
first, 2nd, third, 4th, fifth

We begin by creating a € string, then follow up by creating five string objects. The first
string we create contains the character array we pass in - "first". The constructor for second
takes a character array and initialises the string to have the first 3 characters from the array, so
it contains the string "2nd". The constructor for third takes the C string "third=c_string\0".
The string variable fourth is created by passing a character and a number; the resultant string
is made up the character repeated n times (so in this case, fouth is made up of "4444". Finally,
we create a string called five from the character array "This is the fifth", and use that string
to initialise the string fifth. Notice that we are making a call to find within the constructor
to fifth; find returns the first position, if it exists, of the occurrence of the string passed in to
it. Since the string "fifth" indeed exists, the result - 12 - is passed back, and fifth is created
by taking the twelfth character (and all beyond) of string five.

We then print all of these initialised strings (see the output above), and create a new string
called 1line that will contain copies of the original strings, slightly modified. We call substr
twice within the creation of 1ine; substr, when passed 2 integers, returns the string represented
by the start of the first position, counting as many characters as are passed in for the second
argument. So calling substr(0, 5) on "third=c_string\0" will return "third". Just passing
one integer to the call to substr means that we take all characters starting from the position
passed in. So substr(3) on "4444" will return the element at index 3 and beyond, which is a
'4’. The result is that 1line, when printed comes out as

first, 2nd, third, 4th, fifth

As you can see, we’'ve performed some relatively complex string manipulations with just a
few lines of code.

66 Programming with GNU Software

Let’s look more closely now at finding items within a string. The previous example was
contrived because we planned all along for things to go our way; by this, I mean that we knew
that the find calls would return the values that we were interested in. But what value is
returned when we fail to find a position within a string? The answer lies in looking at the value
npos. npos is defined within the string namespace, and defines the maximum size a string
can be. When a search function fails to find part of a string, it returns npos, which we need to
check against in order to ascertain whether the find worked or not. At the surface level, it’s very
useful, although as we’ll see in a minute, there are a few pitfalls to be wary of. First though, an
example:

/* string2.cc
Compiled using g++ string2.cc -o string2 */
#include <string>

int main()
{

std::string::size_type i;

string sentence("Mary had a little lamb, his\
fleece was as white as snow...");

i = sentence.find("You’ll never find this...");

if (i == std::string::npos)
cout << "i == npos; failed to find string.\n";

cout << sentence.substr(0, sentence.rfind(" lamb")) << " "
<< sentence.substr(sentence.find("fleece"), 6) << endl;

cout << sentence.substr(0, sentence.rfind("Again, no such string"))
<< endl;

i = 0;
int num = 0;
/* Find out how many ’a’s there are in the string ’sentence’: */
while(i != std::string::npos)
{
i = sentence.find("a", i);
if (i !'= std::string::npos)

num++;
i++;

b

}

cout << "Found " << num << " occurrences of ’a’" << endl;
exit (0);
}

Example 3.27: string2.cc: finding things within a string

The output goes like this:
$./string2
i == npos; failed to find string.
Mary had a little fleece
Mary had a little lamb, his fleece was as white as snow...

Chapter 3: libstdc++ and the Standard Template Library 67

Found 7 occurrences of ’a’

$

Let’s discuss the code. To begin with we create a variable i of type size_type and assign
it to npos. After declaring and initialising the string sentence, we run the find function on
sentence, passing in the string "You’1ll never find this...". The result is assigned to i. If
the search would have succeeded, it would’ve returned the index of the first element of the string
we’re searching for; but since the string we’re searching for does not exist within sentence, npos
is returned, and the evaluation i == std::string: :npos will be true, since £ind returns npos
because it failed to find the search string.

The statement

cout << sentence.substr(0, sentence.rfind(" lamb")) << " "
<< sentence.substr(sentence.find("fleece"), 6) << endl;

includes a new function call to rfind, as well as doing some more substring manipulation.
rfind is similar to find, except that it searches back through the string in question instead of
forwards. It returns the first position of the string it is searching for as it occurs from the end
of the string. Since the string " lamb" exists, find returns the relevant position and "Mary had
a little" is retrieved as the substring. The second part of the cout statement uses the find
method as we’d expect it to work, and "fleece" is extracted (recall that substring returns the
string starting from the first argument and counting as many characters as there are in the
second argument). The result is that the string "Mary had a little fleece" is printed.

However, the following statement

cout << sentence.substr(0, sentence.rfind("Again, no such string"))
<< endl;

is different and deceiving; we use rfind to look for a string that clearly isn’t in the
string sentence. Since we're trying to create a substring from the start of sentence, to
sentence.rfind("Again, no such string"), what will be printed out? The answer is that
the entire sentence string will be printed, because rfind failed and as a result returned npos.
And because npos returns the maximum (unsigned) value of its type, and the length of sentence
is clearly less than that value, the cout statement just prints out the string in its entirety.

What we should have done is something like this:

long pos = sentence.rfind("Again, no such string");
/* If we’ve found what we’re looking for, print the string out,
or do whatever else we want: */
if (pos != npos)
cout << sentence.substr(0, pos)
<< endl;
else /* The find failed, so do something else ... */

So, be warned! Always check the return value of a find() or rfind() method, to see if it is
equal to npos or not. If it is equal to npos and you don’t check for it, the example code above
in ‘string?2.cc’ illustrates what could happen.

These are just a few of the operations we can perform with a string, and there are plenty of
others that are all just as intuitive to use, such as insert (), erase() and replace(), amongst
many others; since they are easy to understand they’re in the Section 3.5.4 [String Summary],
page 72, if you want to see the full range of operations you can use.

In the last section of ‘string2.cc’, we counted the number of occurrences of the character
‘a’ that occur within sentence. It’s fairly routine what we’re trying to achieve here, so no code-
breakdown is necessary. However, this section of code is undeserving; we can greatly reduce the
amount of code for such a simple operation by using string iterators and a generic algorithm. . .

68 Programming with GNU Software

3.4.2 Iterators and Generic Algorithms

In the previous section, Section 3.4.1 [Basic String Usage], page 64, the last part of the code
in ‘string2.cc’ looked at counting the number of times the letter ’a’ occurred within the string
sentence. Intuitively, it doesn’t look too harmless; it’s more than a few lines long, but such is
the price to pay for looking for the character we're interested in. However, there is no need for
this block of code; it’s wasteful and uses up far too much space. Why? Because there is a much
easier way to do this if you recall that there are a number of algorithms available to us from
the previous section; so why not use them? The algorithm of interest is count; the following
example uses count to do exactly what the previous block of code did in ‘string2.cc’:

cout << "Found " << count(sentence.begin(), sentence.end(), ’a’)
<< " occurrences of ’a’" << endl;

count is from <algorithm>, of course, and seeing it at work here makes it suddenly obvious
how generic algorithms can be very potent things to use. Remember however that we’d have to
put #include <algorithm> at the start of the source file for it to be able to use count. We're
making calls to begin and end to make use of the iterators provided by string. In one fell
swoop, we’'ve hacked down a larger piece of code into a composite call to count.

What kind of iterator are we using? In Section 3.2.2 [A Crash Course in Iterators|, page 35,
there are a number of different kinds of iterator discussed, and each kind gives us a clue as to
how we can use them. string uses a random access iterator, in the same way that vector and
deque use them. Like the container classes that use random-access iterators, invalidation occurs
when the iterators are reallocated for some reason (such as deleting elements etc.), so be careful
how you use them.

Need to reverse a string? Use the reverse () generic algorithm, given in Section 3.5.3 [Generic
Algorithm Summary], page 72. You can combine function objects with these algorithms just
like the examples in Section 3.3.3 [Function Adaptors], page 55 - you are only limited by the
type of iterator that the algorithm takes as a parameter. Note that although there are a number
of searching algorithms available, the string class already provides for these (see Section 3.5.4
[String Summary]|, page 72).

The exciting thing about this is that we’re making use of iterators and generic algorithms to
make code more readable and less dense. You'll find the large collection of predefined string
operations more than enough in most situations, so for the most part you might not need to
look at generic algorithms to do your work; we’ve mentioned it hear in passing so that you're
aware of the fact that since strings use iterators (begin() and end() are already defined for
you), we can use most generic algorithms with the string class.

3.5 STL Reference Section

This section gives an overview of all of the commands used throughout this chapter regarding
the different components of the STL that we’ve encountered.

3.5.1 Container Summary

Here is the complete list of methods available for containers (where <E> denotes that the
type of data contained within the container is of type E):

Constructors
container<E> c
Create a container with no elements

container<E> c(n)

Chapter 3: libstdc++ and the Standard Template Library 69

Create a container with n elements

container<kE> c1(c2)

Create a container which is a copy of container c2

container<E> c(n, elem)

Create a container with n elements with value elem

Size and capacity operations

size_type size() const

Returns the number of elements in this container

size_type max size() const

Returns the maximum number of elements that this container may contain
size_type capacity () const

Returns how many elements this container can possess without reallocation
bool empty() const

Returns true if this container contains no elements

void reserve(size_type num)

Reserves internal memory for at least num elements

Special associative container operations

These operations are only available to set, multiset, map and multimap.
size_type count(const T& val)

Returns the number of elements equal to val. For set and multiset, T is the type of the
elements; for map and multimap, it is the type of the key. This method has linear time complexity

iterator find(const T& val)

Returns the position of the first element with value val; if it’s not found, end () is returned.
This method has logarithmic time complexity

iterator lower_bound(const T& val)

Returns the first position where a copy of val would be inserted; if val is not found, end is
returned. This method has logarithmic time complexity

iterator upper_bound(const T& val)

Returns the last position where val would get inserted. This method has logarithmic time
complexity

pair<iterator, iterator> equal range(const T& val)

Returns the first and last positions where val would get inserted. This method has logarith-
mic time complexity

key_compare key_comp ()

Returns the comparison criteria

value_compare value_comp ()

Returns the object used for comparison criteria
Assignment operations

container& operator=(const container& c)

All elements of the container are assigned the elements of ¢
void assign(size_type num, const T& val)

Replace all elements of the container with num copies of val; this method is only available to
vector, deque, 1list and string

void assign(InputIterator beg, InputIterator end)

70 Programming with GNU Software

Replace all elements of the container with the elements in the range beg - end; this method
is only available to vector, deque, list and string

void swap (container& c)

Swap the contents of this container with container c
void swap(container& cl, container& c2)

Swaps the elements of c1 and c2

Element access operations

reference at(size_type index)

Returns the element at index; modifications to the container after using this method can
invalidate the reference. This method is only available to vector, deque, 1ist and string

reference operator[](size_type index)

Return the element with index index; the first element is index 0. This method is only
available to vector, deque, 1ist and string

T4 operator[| (const key_type& key)

Retuns the value of key in a map. Used for associative arrays with map and multimap
reference front ()

Returns the first element. This method is only available to vector, deque and list
reference back() Returns the last element. This method is only available to
Insertion and deletion operations

iterator insert(const T& val)

Insert a copy of val into an associative multiset or multimap.

pair<iterator, bool> insert(const T& val)

Insert a copy of val

iterator insert(iterator pos, const T& val)

Inserts val at position pos

void insert(iterator pos, size_type num, const T& val)

Insert num copies of value val starting at position pos

void insert (InputIterator beg, InputIterator end

Insert copies of all elements in the range beg - end into a set, multiset, map or multimap.
void void(iterator pos, iterator beg, InputIterator end

Insert at position pos copies of all elements in the range beg - end. Only provided for vectors,
deques, lists and strings.

void push_front (const T& val)

Inserts val as the first element. Only provided by lists and deques.
void push_back(const T& val)

Inserts val as the last element of the container.

void remove(const T& val)

Remove all elements with value val. Provided by lists.

size_type erase(const T& val)

Remove all elements with value val from a set, multiset, map or multimap; it returns how
many elements were deleted from the container. For maps and multimaps, T must be the key

void erase(iterator pos)

Removes the element at position pos; only available to set, multiset, map and multimap

Chapter 3: libstdc++ and the Standard Template Library 71

iterator erase(iterator pos)

Removes the element at position pos; only available to vectors, deques, lists and strings
void erase(iterator beg, iterator end)

Removes the elements in the range beg end; only available to set, multiset, map and multimap
iterator erase(iterator beg, iterator end)

Removes the elements in the range beg end; only available to vectors, deques, lists and strings
void pop_front ()

Removes the first element of the container; only available to deques and lists

void pop_back ()

Removes the last element of the container; provided by vectors, deques and lists

void resize(size_type num)

Changes the number of elements in this container to num. Only provided by vectors, deques,
lists and strings

size_type resize(size_type num, T val)

? Only provided by vectors, deques, lists and strings
void clear ()

Removes all elements from the container

List operations

Iterator methods

iterator begin()

Return an iterator to the first element of the container
iterator end()

Return an iterator to the point past the last element of the container

3.5.2 Function Object Summary

3.5.2.1 Standard Function Objects

Other than the function objects that we considered in Section 3.3.2 [Some Predefined Function
Objects], page 55, STL provides a number of different predefined function objects. Since they’re
fairly intuitive to use (as you’ve seen in Section 3.3.1 [Function Objects - in a Nutshell], page 52),
they do not require much explanation (names like multiplies and divide are self-explanatory).

Name Description Unary /binary Operator

plus Returns the sum of the two operands passed binary +

minus 1l:é)egums the sum of subtracting the second binary —
operand from the first

multiplies Returns the product of the two operands binary *
passed to it

divides Returns the result of dividing the second binary /
operand from the first

modulus Returns the result of applying the modulus binary %
operator to the two operands.

negate Returns the negated value of the operand unary —

passed to it

72 Programming with GNU Software

equal_to Returns true if the two parameters are equal binary ==

not_equal_to Returns true if the two parameters are not binary =
equal

greater Returns true if the first parameter is greater binary >
than the second

less Returns true if the first parameter is less than binary <
the second

greater_equal Returns true if the first parameter is greater binary >=
than or equal to the second

less_equal Returns true if the first parameter is less than binary <=
or equal to the second

logical_and Returns the result of and-ing the two param- binary &&
eters passed to it

logical_or Returns the result of or-ing the two parame- binary I
ters passed to it

logical_not Returns the result of not-ting the parameter binary !
passed in

3.5.2.2 Function Adaptor Reference

This completes the adaptors given in Section 3.3.3 [Function Adaptors], page 55.

Expression Effect
mem_fun(op) calls op as a constant member function for an object
mem_fun_ref(op) calls op as a constant member function for an object that has a

pointer to it

bind1st(op, val) takes a binary function object op and a value val, and returns
a unary function object with the first argument of op bound to
val. Thus bind1lst(op, val) becomes op(val, param).

bind2nd(op, val) takes a binary function object op and a value val, and returns a
unary function object with the second argument of op bound to
val. Thus bind2nd(op, val) becomes op(param, val).

3.5.3 Generic Algorithm Summary

This section lists all of the generic algorithms available from the STL.

- Sorry - you'll have to wait!!! (- Rich)
3.5.4 String Summary

The string class provides a number of useful member functions that make string manipula-
tion much easier than standard c-like library calls.

- Sorry - you'll have to wait (again)!!! (- Rich)

3.6 Further Reading

This chapter introduced, at a non-complex level, the sSTL. However, one chapter on such a
subject is not enough; you’ll realise this if you chance upon any decent books about the STL.

Chapter 3: libstdc++ and the Standard Template Library 73

As a consequence, we’ve had to forfeit quality of description, because the STL is a very complex
subject area. Many important features and notes have necessarily been missed out due to
limitations of space; the result is that we’ve not seen the whole picture, but a very limited viewa
of the sTL. The following references point to a number of different sources to which you should
turn for more elaborate descriptions of the concepts we’ve been looking at. These references are
a must if you wish to enrich your understanding of the STL.

The following documentation refers directly to GNU ‘libstdc++":

There are a number of books available for the STL:

STL Tutorial and Reference Guide, Second Edition

The c++ Standard Library: a tutorial and reference, Musser, D., Gillmer, J., Atul, S.,
Addison-Wesley

Generic Programming and the STL, Austern, M., Addison-Wesley

74

Programming with GNU Software

Chapter 4: The GNU Compiler Collection 75

4 The GNU Compiler Collection

This chapter introduces the most useful and frequently used options for source file compilation
using GcC - the GNU Compiler Collection. Using GCC you can compile ¢, Objective C, C++,
Java and Fortran source files. We’ll also look at the internal workings of gcc works at a relatively
low-level such that you will be able to understand the entire compilation process with ease.

Section 4.1 [An Introduction to GCC], page 75 introduces GCC at a very high level; if you're
a bit puzzled about how the compilation process slots together, or unsure of how GCC can
handle many different languages, this is the place to start. We’ll then look at many of the basic
commands available to us for compilation of ¢ source files in Section 4.2 [GCC Commands],
page 78. Emphasis will also be placed on what actually happens during compilation, Section 4.3
[GCC Internals], page 86, and we’ll look closely at the different steps and processes involved
with using gcc. Compiling Objective ¢, c++, Java and Fortran source files is dealt with in
Section 4.4 [Integrated Languages|, page 88. We'll then look at using some of the compilation
options with the M4 sources, providing a more pragmatic guide to the compilation steps we’ve
already seen, in Section 4.5 [Pulling it Together|, page 95. A list of books and links is provided
in Section 5.8 [Further Reading], page 125. Finally, Section 4.7 [GCC Summary], page 102
rounds off everything we’ve dealt with, and mentions some of the tools that make management
of compilation less stressful.

This chapter is not a definitive reference; it is only an introduction to well-used commands,
and if you are already familiar with gcc, you will want to skip this section and read Chapter 5
[GNU Make], page 103.

4.1 An Introduction to GCC

Here we’ll briefly outline the historical development of GCC, as well as practical aspects of
getting gece if you do not already have it. There is also a brief review of the broader picture
of GCCs components, which glosses over the overall compilation process so that you’ll have a
high-level view of what will come later.

4.1.1 History of GCC

GCC originated during the middle of the eighties with the Free Software Foundation (FSF).
It was developed and written originally as a one-man effort by Richard Stallman, founder of the
FSF. The original version contained over 110 thousand lines of code, and it took Stallman a year
to complete. The first beta release for GCC was in March 1987 - this was release 0.9; version 1
came out two months later. GCC began to develop rapidly with help coming from programmers
interested on working with compilers. GCC continued to develop until in 1997 Cygnus EGCS
began working on their version of the compiler collection.

This caused a split in the development in GCC; the Free Software Foundation development
of GCC continued, as did the EGCS project, unfortunately both in different directions. Version
1 of the an EGCS compiler was released in December 1997, and support for the FSF compiler
floundered.

In April 1999, the EGCS steering committee was appointed by the FSF as the official Gcc
maintainer. At that time GCC was renamed from the "GNU ¢ Compiler" to the "GNU Compiler
Collection" and received a new mission statement.

From this point the development became one branch again, maintained and overseen by one
group. GCC 2.95 was released shortly afterwards, and in June 2001 version 3.0 was released.
Prior to gce 3.0, Objective-c, c++, Fortran and Chill were all integrated into the collection;
version 3.0 (June 2001) saw the casting away of Chill and Java was integrated into the collection.

76 Programming with GNU Software

4.1.2 Where to get GCC

Gcc can be downloaded from <http://gce.gnu.org>; however, it comes as a package with all
popular GNU Linux distributions, so if you are running ¢GNU Linux then the chances are you’ll
already have (and be using) it. Distributions are available as tar balls in source or binary format
- check the web-site for file sizes. If you are not sure that you have GCC or not, try

$ gcc —-version
and you will either get a version number, for example:

$ gce —version
3.0

Or an error message:

$ bash: gcc: command not found

4.1.3 A Brief Overview

How does Gcc deal with compilation? How is it composed into smaller units (such as pre-
processor, compiler etc.)? What is the basic design philosophy behind ccc? We'll review each
of these questions briefly below.

4.1.3.1 The Broad Picture

Let’s first of all focus on the larger picture of how GCC deals with compilation. The overall
process of compilation involves a number of stages, shown in figure 1:

main. o main. i main. & main. o | a. out |

preprocessor compiler assenbl er e linker

Example n: Basic structure of GCC

Figure 1 describes the compilation of a single ¢ source file named ‘main.c’. It is first passed
through the preprocessor, which pipes the result to the compiler, and a parse tree is built and
the file is checked for syntactic and semantic errors. Providing the file is OK, RTL (register
transfer language) code is produced from the parse tree and passed to the assembler, after the
RTL has been turned into an assembler source file named ‘main.s’ (it’s a little more complicated
than this, but the general picture holds). The assembler then translates the file into machine
code, and ‘main.o’ is produced. This is finally given to the link/load editor which produces the
executable ‘a.out’.

Typically, we’d keep the source file, ‘main.c’; and the binary, ‘a.out’, and the temporary
files listed above (‘main.i’, ‘main.s’ and ‘main.o’) would be piped from one stage to the next,
or they’d be created as temporary files and removed when needed. However, there are plenty
of options that enable us to stop at each phase of compilation and produce the relevant file for
that stage.

Although this example illustrates the compilation of a ¢ source file, the same process holds
forward for any of the languages used with Gcc: take the source file and preprocess it if nec-
essary!; send it to the compiler which then passes the file to the assembler, which in turn is

1 Not all languages - such as Pascal - require preprocessing.

Chapter 4: The GNU Compiler Collection 7

finally passed to the linker. An important need arises from this structure, to be able to make
the compiler versatile - in the form of a front and back end of a compiler - which we’ll now turn
attention to.

4.1.3.2 Front and Back Ends

The phases of compilation warrant a further logical division; that of splitting the phases into
a front and back end. The front end is concerned with the source language, and it’s purpose
is to preprocess the source file and derive a parse tree and to perform lexical, syntactic and
semantic analysis on the code. This parse tree is then converted into the intermediate language,
which is passed to the back end. The back end, on the other hand, is concerned with taking the
(language-independent) code from the front-end, and preparing it in such a way that it can be
converted into machine-dependant code. This is represented in diagram FIXME:

Front- end Back- end
file.

Preprocesscolr P optimizer
—P & compiler for

AT Cppb]'> sach languagse ¢
l Lzzsenbl er

Languags
generation

[reglister

Linker
transfer

file. for la_ngua_ge’
RTL)

binary (a.out) |l——

Example 1: Front and back ends of a compiler

Splitting it into two such sections is an efficient way of designing a compiler. Because the
front end can pass on intermediate code to the back end, there is no need for any kind of language
dependance on the part of the back end. All it sees is the intermediate language. You can also
apply optimizations to this intermediate language. So what advantages do we gain from this?
To begin with, applying optimization to the compilers language-independent code means that
for any language you add to the compiler, all you have to do is parse it so that you can produce
the intermediate code, and thus optimization does not need to be catered for specifically for
each language. Also, it is easier to add new languages to the compiler: just write a suitable
front-end that converts the source into some intermediate language (in the case of gcc, RTL),
understood by the back end, and pass it on to the back end. The result is that you do not have
to rewrite the compiler for each new language, because you have opted to use an intermediate
language which saves you (greatly) in the long-run. For each platform you write a back end,
all you need to know about is the intermediate language, and how to perform machine-based
optimizations on it for the platform architecture.

This is the approach that Gcc uses. When the parse tree is produced, RTL is produced as the
tree is parsed. So regardless of whether we are compiling ¢, c++, Java, or any other source file
that Gcc is aware of, all the back end sees is RTL. The result is that we can provide optimizations

78 Programming with GNU Software

to RTL, thus only having to write the language-to-RTL front-end, and by providing a machine
description for each architecture, the object code can easily be produced without much bother,
from RTL. We simply apply optimizations on the RTL based on the architecture we’re using. The
end result is that for j languages and k architectures, we only need to put in j+k effort because
of the benefits of performing optimization on the intermediate language, and each architecture
will have a mapping from RTL to machine code?.

The result is that Gcc provdies a versatile collection of compilers for many different languages
and architectures, neatly modularized and packaged. The next section will deal pragmatically
with the GNU compiler collection, and emphasis will be placed on how the material here relates
to GCC.

4.2 GCC Commands

This section looks at the practical use of gcc, as well as some of the more esoteric aspects of
it’s use. We'll first look at the different commands available with gcc, and will place emphasis
on each of the different stages of compilation (Section 4.2 [GCC Commands|, page 78). The
internals of gcc are then covered (Section 4.3 [GCC Internals|, page 86), and a discussion of
the inner workings explains what happens when gcc is invoked. The different languages that
are supported by gcc are also covered, and simple compilations are explained along with more
commonly used options for each language (Section 4.4 [Integrated Languages|, page 88).

gcc supports a plethora of command options; the man and info pages contain a full listing?,
and on-line documentation can be viewed at http://gcc.gnu.org/onlinedocs. Here, attention
is drawn to the more useful and commonly used gcc commands, and compilation of C source
files is assumed. Other languages are dealt with in Section 4.4 [Integrated Languages|, page 88.
More obtuse commands (for example platform options, code generation options etc.) are not
dealt with here. You can find a summary of all the commands we’ll look at in Section 4.6
[Reference Section], page 99.

4.2.1 Overview

Here we’ll look indepth at each of the stages of compilation using gcc. It will be a very detailed
and verbose study; so if you are already familiar with the different stages of compilation, the
Section 4.6 [Reference Section|, page 99 which contains all of the options discussed here, will be
more appropriate.

However, if you have used a ¢ compiler before, but have not had to deal with the different
stages (for example, if you used an integrated development environment such as Borland’s ¢
compiler), or have only used an interpreted language such as Visual Basic, this section will
give you all the detail necessary to use gccs different compilation steps with a good degree of
confidence.

4.2.2 Basic Compilation Options

gcc can be invoked in it’s simplest form using the command:
gcc [options] source.c

where ‘source.c’ is the name of the source file. [options] can be any of the options given
in the succeeding sections. This command compiles the source file and produces an executable

2 Contrast this with having to write an optimzier for each langauge for each architecture - for j languages and
k architectures, we’ll have to put in jxk effort.

3 Type man gcc or info gee for more information.

Chapter 4: The GNU Compiler Collection 79

file named ‘a.out’ (due to historical reasons), providing there were no errors encountered in
which case gce will issue appropriate (or not as the case may be) error messages.

In this instance gcc preprocess the file and pipes it to the compiler; the compiler then
produces a temporary file named ‘source.s’ containing the assembly code; this is then passed
to the assembler and the object file ‘source.o’ is produced; finally, the executable ‘a.out’ is
produced after linking and temporary files (‘source.s’ and ‘source.o’) are removed.

The following examples assume the compilation of one file. In practice many files would
be included, in which case more versatile command line options may sometimes be required.
Including multiple files is easy; just list the files one after another. Invoking

gcc [options] sourcel [[source2] ... [sourcen]]

will compile ‘sourcel’ and optionally ‘source2’ up to ‘sourcen’ to produce the executable
‘a.out’, providing no errors occurred and all external symbols were satisfied. Listing multiple
files can be done for any of the commands discussed below with regard to the different stages
of compilation. In practice with larger projects one would use a ‘makefile’ to manage multiple
files - see Chapter 5 [GNU Make], page 103.

Although you may want to produce a binary most of the time, there are a number of options
that enable you to stop at each different of the compilation. Each of these sections - prepro-
cessing, compilation, assembly and linking - will be reviewed next, as well as some of the more
well-used options.

4.2.3 The Preprocessor

Before any stages of compilation occur, you must first create a source file. This will be some
high-level language ASCII text file containing your code. The purpose of the preprocessor is to
perform textual substitutions within the code where needed. Textual substitution can come in a
number of different forms: header file inclusion, macro substitution and comment substitution.

Produce preprocessed output by passing the -E flag to gcc. This will write to ‘stdout’
the contents of all source files after being preprocessed, stripping out comments. To produce
preprocessed output with comments (such that the preprocessor does not strip them out), include
the -C flag along with the -E option.

Although you can pass the -E flag to gcc, you can also invoke the preprocessor, ‘cpp’, directly.
Try cpp —-help for a full listing of options available for ‘cpp’.

There are a number of reasons why you may want to view the output of the preprocessor.
Firstly, it can reveal if any lines of code have been stripped out by the preprocessor due to
bad commenting. Viewing preprocessed output can also be useful when viewing the results of
expanding macros.

The preprocessed file includes a number of line numbers for any #include statements in the
source file. For example, the output of the source file below:

/* main.c */
#include <stdio.h>
int main()
{

return(0) ;

}

results in the following output for the preprocessed file when it’s been filtered (using a utility
like grep* for example) to search for all lines beginning with a '#:

4 grep is used for searching patterns in a line

80 Programming with GNU Software

gcc -E main.c > main.i

grep ’"#’ main.i

1 "simple.c"

1 "/usr/include/stdio.h" 1 3

1 "/usr/include/features.h" 1 3

138 "/usr/include/features.h" 3

196 "/usr/include/features.h" 3

1 "/usr/include/sys/cdefs.h" 1 3

71 "/usr/include/sys/cdefs.h" 3

103 "/usr/include/sys/cdefs.h" 3

250 "/usr/include/features.h" 2 3

1 "/usr/include/gnu/stubs.h" 1 3

278 "/usr/include/features.h" 2 3

27 "/usr/include/stdio.h" 2 3

1 "/usr/lib/gcc-1ib/i1486-suse-linux/2.95.2/include/stddef.h" 1 3
19 "/usr/lib/gcc-1ib/i486-suse-linux/2.95.2/include/stddef.h" 3

H OHF HF H H H HFH HEHHFEHHE H A O

(the rest is left out because of space limitations.)

$

It is worth briefly mentioning what this means, since this convention is rather hermetic unless
it has been encountered before. Such file inclusions are organised as follows:

line_number file_name flags

where the flags are defined as follows:

1 - The start of a new file

2 - Return to a new file after including another file

3 - The text included from this inclusion is a system header file; so supress certain warnings
4 - The following text should be treated as C

Thus, in the example above, # 1 "/usr/include/stdio.h" 1 3is saying "at line number 1 in
‘stdio.h’, note the start of the file and also that this is a system header file"; note that ‘stdio.h’
includes ‘features.h’ (look at the flags and compare them with the descriptions above), which
itself includes ‘cdefs.h’; which returns to ‘features.h’ and then includes ‘stubs.h’, and finally
returns to ‘stdio.h’.

Once the file has been preprocessed, and header files have been included and any macros
have been expanded, it is passed on to the compiler.

4.2.4 The Compiler

The compiler’s task is to produce assembly code from the preprocessed source file utilising
several different stages: lexical, syntax and semantic analysis, intermediate code generation,
optimization and code generation.

gcc uses an intermediate language known as RTL - register transfer language, during the
compilation stage. RTL is produced as the parse tree is built, and as functions etc. are defined,
they are turned into RTL instructions and a number of optimizations are performed on the RTL
code.

To produce a file output from the compiler, invoke gcc using the -S flag. The output will be
a number of files in assembler with the ‘. s’ extension. You can pass either a . ¢’ or preprocessed
‘.1’ file to the compiler; gcc will determine by the file extension what needs to be done in terms
of whether or not to pass the file(s) to the preprocessor first or not. Producing assembler sources

Chapter 4: The GNU Compiler Collection 81

may not seem very useful, but can be helpful if you want to write an assembler routine, and
want to see how it is done (write a ¢ program to do it, then run it through gcc with -S and
check out the assembly language produced in the corresponding ‘.s’ file).

As with the preprocessor, you don’t need to pass the file(/s) directly to gcc - you can pass
them to the compiler, ‘ccl’, passing the --help flag to the compiler if you need to know the
options available.

4.2.5 The Assembler

Since the output of the compilation process is a file (or possibly set of files) in assembly
language for a specific machine, the penultimate stage before an executable program is produced
is to take the assembler code and turn it into machine code. This is done for each source file
passed to the compiler. At this stage the files are ignorant about any other files that they may
be included with; possibly there will be a number of symbols that make references to other files.
It is the purpose of the link/load editor to resolve these external references in the next stage,
linking.

To produce the machine code file compile your program using the -c¢ command. You can
pass ‘.c’, preprocessed ‘.i’ or assembled ‘.s’ files to the gcc using the -c flag; the output will
be a file(s) with the extension ‘.o’ containing object code. Once again, like the previous stages,
you don’t have to rely on gcc - you can invoke the assembler ‘as’ directly (see Section 4.2.7
[Passing Arguments to the Assembler and Linker|, page 82 on how to do this directly from gcc).

4.2.6 Link Editing And Libraries

The linking phase is the last phase before producing the executable file. The assembler will
have taken the files in assembler and produced object files, the final stage involves linking all of
these files together into the final binary.

If there is more than one object file passed to the linker or libraries have been linked, then
there may be a number of external symbols to resolve. In fact, even if you pass one source file
through gcc, there may be unresolved symbols if you are referencing functions or variables from
libraries. An external sybmbol is simply a reference to a variable or function from one file to
another file or library. The link/load editor attempts to resolve these references by searching the
standard libraries and the object files that have been created as output from the assembler. If
there are no unresolved symbols - in other words all references to external symbols were satisfied
- an executable file is produced. Unresolved references will mean that the linker will inform you
of the references that could not be resolved and no executable will be produced.

During linking, the linker will search all of the standard directories looking for specific li-
braries. You can include a library by using

—1lname

When linking, use library ‘libname.so’. If ‘libname.so’ cannot be found, use ‘libname.a’.
By default, all libraries contain the prefix ‘1ib’ and the suffix ‘.so’ or ‘.a’; for example -1nsl
would look for ‘libnsl.so’, the network service layer.

gce will look in the standard directories looking for this library; if you want to specify a
directory to be searched, use the flag

-Ldir
which will tell gcc to also look in directory ‘dir’ when searching for libraries.

As mentioned previously, shared libraries will be linked first, unless none are found and static
libraries are linked (if found). Use

-static

82 Programming with GNU Software

to indicate that static libraries should be linked instead of shared libraries (this option has
no effect if the system does not support dynamic linking).

Like all the previous stages you can invoke the linker, ‘1d’, directly, instead of relying on gcc
(see Section 4.2.7 [Passing Arguments to the Assembler and Linker], page 82 on how to do this
from gec).

4.2.7 Passing Arguments to the Assembler and Linker

Although uncommon, you can also pass arguments directly from gcc to the assembler and
linker.

To pass arguments to the assembler, use the command
-Wa,option-list
And to pass arguments to the linker, use the command
-Wl,option-list

where option-list is a list of comma separated options (with no white-space between options
whatsoever) to be passed to either process.

A useful option to pass to the linker is when certain runtime shared libraries cannot be found;
use the —rpath PATH to set this. For example,

$ gcc -Wl,-rpath /usr/lib/crti.o

tells gcc to pass the option -rpath /usr/lib/crti.o to the linker, such that the linker
looks at ‘/usr/lib/crti.o’ to be included in the runtime search path. Since there are a variety
of useful options that you can pass to both assembler and linker, we’ll not list any here and
be satisfied with having explained that it’s at least possible. To view a full listing of either
assembler or linker, try

process —--help

where process is one of ‘as’ (the assembler) or ‘1d’ (the linker).
4.2.8 Useful GCC Options

We'’ve stepped through the commands necessary to do a basic compile and be able to pass
source files through different stages of compilation; however, these commands on their own
are not enough to be able to do anything very useful with. What follows is a list of common
commands that you will find useful in passing source files through gcc.

4.2.8.1 C Language Features

Depending on how old your code is, and how much you have stayed in line with ANSI C, there
are a number of switches to deal with compiling your ¢ source files®.

-traditional Supports the traditional ¢ language, including lots of questionable,
but common, practices. The traditional option also supports all of
the FSF’s extensions to the ¢ language.

5 The following options, -traditional, -ansi and -pedantic, are taken verbatim from the first edition. Also,
see Section 2.2 [Standards Conformance], page 9 for a little bit more about the 150 standards etc.

Chapter 4: The GNU Compiler Collection 83

-ansi

-pedantic

Supports the ANSI C standard, though somewhat loosely. The FSF’s
extensions are recognised, except for a few that are incompatible with
the ANsI standard. Thus ANSI programs compile correctly, but the
compiler doesn’t try too hard to reject non-conformatnt programs, or
programs using non-ANSI features.

Issues all the warning messages that are required by the ANSI C stan-
dard. Forbids the use of all the FSF extensions to the ¢ language and
considers the use of such extensions errors. It’s arguable whether or
not anyone wants this degree of conformity to the ANSI standard. The
FSF obviously feels that it isn’t really necessary; they write "This op-
tion is not intended to be useful; it exists only to satisfy pedants." We
feel that it’s useful to check for ANSI conformity at this level and also
that it’s useful to disable the FSF’s own extensions to the language.
As the gcc manual points out, -pedantic is not a complete check for
ansi conformance - it only issues errors that are required by the ANSI
standard.

4.2.8.2 Defining Constants

The -D option® acts like a #define in the source code, and can be used to set the value of a
symbol on the command line:

-DDEFN
-DDEFN=VAL

-UDEFN

Define DEFN to have the value 1; use with the preprocessor option #if.
Define DEFN to have the value VAL.

Undefine any constants with definition DEFN (all -D options are eval-
uated before any -U options on the command line).

For example, the command:
$ gcc -DDOC_FILE=\"info\" -DUSE_POLL file.c

sets DOC_FILE to the string "info" (the backslashes are there to make sure that they’re
interpreted part of the string). This can be useful for controlling which file a program opens,
for example. The second -D option defines the USE_POLL sysmbol to have the value 1, and you
use the #if directive to see whether USE_POLL (or any other value set by -D) is set.

4.2.8.3 Default File Renaming

To replace the name of any created default file (for example ‘a.out’ from a full compilation,
or ‘source.s’ from using -S command with a file called ‘source.c’, etc.), use the -o option:

gCccC source.Cc -0 prog

produces an executable file name ‘prog’ after compiling the source file ‘source.c’. This
replaces the default executable file named ‘a.out’.

Use the -o option in any of the stages which produce some output file to redirect the default

naming conventions (‘.0’,

¢

.s’ etc.) to any file name specified by the -o flag. Thus,

gcc source.c -3 -o newFilel

and

6 This section is adapted from the first edition.

84 Programming with GNU Software

gcc source.c —c -0 newFile2

will produce a file named ‘newFilel’ and ‘newFile2’ respectively instead of the default
‘source.s’ and ‘source.o’.

4.2.8.4 Verbose Output

Use the -v option to print verbose information to the ‘stderr’ output stream. This tells you
(among other things) about:
e the version of gcc being used;
e the search directories (user and system) to look for header and other source files to be
included during any of the stages of compilation
e the options specified (that are normally hidden fron the user) about the arguments passed
to the C preprocessor, compiler, assembler and the linker.

4.2.8.5 Including Directories

gcc searches in the default directories for include files enclosed in #include <...> brackets
(the -v flag details which directories are searched in case you do not know). For user defined
headers enclosed in quotes, gcc looks in the directory of the current source file being scanned.
Thus, the inclusion

#include "func.h"

will search in the current directory for a file named ‘func.h’. Simalarly,

#include "../../headers/func.h"

includes a file named ‘func.h’ two levels up the directory tree in a directory named ‘headers’
from the current directory of the source file declaring the inclusion. Since this introduces de-
pendance on the way in which files are placed with regard to directory structure, it is better
practice to use the -I flag which tells the compiler where to search. In the previous example,
compiling with the options

gcc mainFile.c -I../../headers

3

tells the compiler to look in the ‘../../headers’ directory for any files included by the
programmer that are not found in the current directory. Specify the -I flag as many times as
needed:

gcc mainFile.c -I../../headers -I../../defs -I../../gen

tells the compiler to search two directory levels up in the ‘headers’, ‘defs’ and ‘gen’ direc-
tories.

Using -I will not search for any #include <...> files; use the -I- flag to tell the compiler
that any -I commands following the -I- flag should also look for any #include <...>. files.

For example, the command

gcc main.c -I../../headers -I- -I../../defs -I../../gen

will seach for #include "..." files located in the ‘../../headers’ directory, and search
for #include <...> and #include "..." files located in the ‘../../defs’ and ‘../../gen’
directories. Note that the current directory will not be searched; to include the current directory,
use -I.:

gccmain.c -I../../headers -I- -I../../defs -I../../gen -I.

4.2.8.6 Pipes

By default, temporary files are created during compilation and are removed at the end of
compilation. Use the -pipe flag to pipe files through each stage rather than use temporary files.

Chapter 4: The GNU Compiler Collection 85

4.2.8.7 Debug Information

-g tells gec to provide debug information. Debuggging is covered in more detail in Chapter 14
[Debugging with gdb and DDD], page 247 and is therefore not part of this chapter.

4.2.8.8 Optimization

Chapter 15 [Profiling and Optimising Your Code], page 263 provides more information about
optimization and is not covered in this chapter.

4.2.9 Warnings

Let’s look at a few flags to control the level of warning we can control. Listed here are some of
the more useful and commonly used warning options; if you want to view the full set of warnings
available, the GCC ‘man’ pages contain much more information.

All of the warning options are prefixed by -W. So (for example) -Wall literally stands for all
warnings, and is not some euphemism for a wall!

-w
-pedantic

-pedantic-errors

-Wall

-Wimplicit-int
-Wimplicit-function-
declaration
-Wimplicit

-Wmain

-Wreturn-type

-Wunused

Inhibit all warning messages.
Print all warnings that are required by ANSI standard cC.

Like -pedantic, except that the warnings are instead treated as
errors.

This a very general warning option: it encompasses a whole range
of features, each of which are listed below in following -W. ..
options™:

Any function declarations without a return-type will be reported;
their return type will default to int.

Warns whenever a function is encountered in a block of code, but
has not yet been declared.

Same as -Wimplicit-int -Wimplicit-function-declaration.

Warns if main:
- takes any other arguments other than (a) an int followed by

char **, or (b) no arguments, or
- returns any value other than int.

This flag warns that any function not declaring a return-type
defaults to int, and also warns of any non-void functions that
do not return a value.

Warns if any:
- local variable is declared but not used;
- a static function is defined, but is not used; or
- a statement computes a result, but the result is never used.

86 Programming with GNU Software

-Wswitch Warns if
- an enumeration is used in a switch statement, but at least
one of the elements of the enumeration has not been used in the
switch; or
- some value not catered for by the enumeration is used in the
same switch statement.

-Wcomment Warns if any comment started with /* contains an inner /*; for
example, /* some comment... /* */.
-Wformat If any print-related functions are called (for example printf),

type-mismatching of arguments is reported where it occurs.
-Wchar-subscripts -
-Wuninitialized An automatic variable is used without first being initialized.

-Wparentheses Warns if parentheses are omitted in certain contexts.

4.3 GCC Internals

In practice, even a simple compilation produces half a page of text when ran with verbose
output to explain what is happening at each stage of the compile. Thus, it is necessary to
demystify this process and explain the inner workings of gcc when ran with a simple compilation.
With this knowledge, you’ll have a firmer understanding of how to examine and walk through
detailed compilations, making (and tweaking) changes if need be.

Throughout this chapter the different parts of the compiler have been unveiled; first the
preprocessor, then the compiler, and assembler, and so on. Each of these components is a
spearate process; each has its own functionality and responsibility, which we’ll now encounter
with an example of a full compile with verbose output.

There are a number of processes to make note of when invoking gcc with a ¢ source file;
the preprocessor ‘cpp’; the ¢ compiler, ‘ccl’; the GNU assembler, ‘as’; and the GNU linker, ‘1d’.
Externally it is not necessary to know about these separate processes - gcc will take care of
this without you needing to know. However, gcc supports various command line switches to
enable the control of which parts of the compilation process are used. Although it may appear
convenient to gloss over these details, knowing about them will make your awareness of how gcc
works on a relativley low level much stronger, and if errors occur you’ll be more prepared to
deal with them.

Consider the following listing of a sample compilation:

$ gcc main.c -v

Reading specs from /usr/lib/gcc-1ib/i486-suse-linux/2.95.2/specs

gcc version 2.95.2 19991024 (release)
/usr/1lib/gcc-1ib/i486-suse-1inux/2.95.2/cpp -lang-c -v -D__GNUC__=2
-D__GNUC_MINOR__=95 -D__ELF__ -Dunix -D__i386__ -Dlinux -D__ELF__
-D__unix__ -D__i386__ -D__linux__ -D__unix -D__linux -Asystem(posix)
-Acpu(i386) -Amachine(i386) -Di386 -D__i386 -D__i386__ -Di486
-D__i486 -D__i486__ main.c /tmp/ccxswtDi.i

GNU CPP version 2.95.2 19991024 (release) (i386 Linux/ELF)

#include "..." search starts here:

#include <...> search starts here:
/usr/local/include
/usr/lib/gcc-1ib/1486-suse-1linux/2.95.2/include

Chapter 4: The GNU Compiler Collection 87

/usr/include
End of search list.
The following default directories have been omitted from the search
path:
/usr/include/g++
/usr/lib/gcc-1ib/i486-suse-1linux/2.95.2/../../../../
i486-suse-linux/include
End of omitted list.
/usr/lib/gcc-1ib/i486-suse-1linux/2.95.2/ccl /tmp/ccxswtDi.i -quiet
-dumpbase main.c -version -o /tmp/ccOpQ7AA.s
GNU C version 2.95.2 19991024 (release) (i486-suse-linux) compiled by
GNU C
version 2.95.2 19991024 (release).
/usr/i486-suse-linux/bin/as -V -Qy -o /tmp/ccwiNRyM.o /tmp/ccOpQ7AA.s
GNU assembler version 2.9.5 (i486-suse-linux) using BFD version
2.9.5.0.24
/usr/1ib/gcc-1ib/i486-suse-1linux/2.95.2/collect2 -m elf_i386
-dynamic-linker
/1ib/1d-1linux.so0.2 /usr/lib/crtl.o /usr/lib/crti.o
/usr/lib/gcc-1ib/1486-suse-1linux/2.95.2/crtbegin.o
-L/usr/lib/gcc-1ib/i486-suse-1linux/2.95.2 -L/usr/i486-suse-linux/1ib
/tmp/ccwiNRyM.o -lgcc -1lc -lgcc
/usr/lib/gcc-1ib/i486-suse-1linux/2.95.2/crtend.o /usr/lib/crtn.o
$

Don’t be intimidated! Although the output may appear daunting at first, the process when
broken into logical divisions becomes much easier to understand. Since we’ve already discussed
the different phases of compilation, all we really need to do is pick out which sections of the
compilation are dealing with specific phases. It couldn’t be easier; looking at the compilation,
there are a number of points to make:

e The ‘specs’ file

The first thing that is read is the ‘specs’ file. It’s purpose is to define rules for compilation.
It is extremely unlikely that you’ll need to tweak the ‘specs’ file, and you should avoid it
unless necessary. And if you do know how to tweak it, chances are you don’t need to read
this section. . .

e ‘cpp’, the C preprocessor
The section

/usr/1lib/gcc-1ib/i486-suse-1linux/2.95.2/cpp -lang-c -v -D__GNUC__=2
-D__GNUC_MINOR__=95 -D__ELF__ -Dunix -D__i386__ -Dlinux -D__ELF__
-D__unix__ -D__i386__ -D__linux__ -D__unix -D__linux
-Asystem(posix) -Acpu(i386) -Amachine(i386) -Di386 -D__i386
-D__i386__ -Di486 -D__i486 -D__i486__ main.c /tmp/ccxswtDi.i

which calls the preprocessor, ‘cpp’, with a host of preprocessor options, passing ‘main.c’
through the preprocessor and creating a file named ‘/tmp/ccxswtDi.i’. Notice that cpp
passes —lang-c as one of its options; it’s saying "the following source file is a ¢ file". Calling
any of the integrated languages will ensure that the -lang-... command will be called,
providing that gcc recognises the file extension for that source file.

The preprocessed file is placed in a temporary file named ‘/tmp/ccxswtDi.1i’; this will be
used by the compiler to generate assembly code. Note here that each -D instance is defining
a constant (see Section 4.2.8.2 [Defining Constants|, page 83); there are also a number of

88 Programming with GNU Software

architectural flags (-A). There’s no real need to have to worry about these flags - they are
dealt with for you, and you shouldn’t have to bother with them.

e ‘ccl’, the C compiler

With ‘/tmp/ccxswtDi.i’ now created, it is passed to the C compiler; it’s output is to
produce a file named ‘/tmp/ccOpQ7AA.s’ which will contain the assembly code:

/usr/1ib/gcc-1ib/i486-suse-1linux/2.95.2/ccl /tmp/ccxswtDi.i -quiet
-dumpbase main.c -version -o /tmp/ccOpQ7AA.s

It creates as its output file ‘/tmp/ccOpQ7AA.s’, the assembly file.
e ‘as’, the GNU assembler

‘/tmp/ccOpQ7AA.s’ is now passed to the assembler to produce an object file, named
‘/tmp/ccwiNRyM.o":
/usr/i486-suse-linux/bin/as -V -Qy -o /tmp/ccwiNRyM.o
/tmp/ccOpQ7AA.s
e ‘collect?2’

‘collect?2’ is a utility to arrange calling of initialisation functions at start time. It links
the program and looks for these functions, creating a table of them in a temporary ‘. c’ file,
and then links the program a second time but including the new file. ‘1d’ is called from
‘collect?2’ at the end of this process.

NOTE

Each of these processes is called with a number of flags that you’ll not
find in the ‘gcc’ man pages. The reason for this is quite simple: they’re
flags specific to that process, and are nothing to do with gcc. In fact
you can find out exactly how to use these flags by calling the process
involved with —-help, for example, when I invoke

ccl —-help

I get the full listing of the commands available for ‘cc1’. Although
generally unnecessary to know these flags, it is helpful to know how to
find out about the options available, which you may need to tweak and
change.

Although gcc handles these details for you, it is worth getting a fuller grasp on what happens
when gcc is invoked; the separate components enable you to monitor and watch each of the
separate phases of compilation, such that (if necessary) you can cut out the text from a compile,
change the flags and then paste the text back in and run it again with different flags.

The example compilation just shown was produced from a C source file; in practice, there
is relatively little difference between this and, for example, the compilation of a Fortran source
file compiled using g77 (g77 is the GNU Fortran compiler). The most obvious difference is what
is used to compile the source file; ‘ccl’ for ¢ sources, ‘€771’ for Fortran sources, ‘jcl’ for Java
sources etc..

4.4 Integrated Languages

So far the emphasis has been on the language C. Other languages, namely C++, Fortran,
Objective-C and Java are also integrated into gcc. Our purpose here is to explain how to
compile C++, Objective C, Fortran and Java source files (along with other notes regarding these
languages). We'll also look at the various other front-ends supported by gcc in Section 4.4.6
[Other GCC Frontends], page 95.

Chapter 4: The GNU Compiler Collection 89

For each of the languages discussed below, there is a frequently used options section and an
example compilation section (showing the output of the compilation of a trivial source file in
the old-time favourite example Hello, world! program).

4.4.1 How GCC deals with languages

There are a number of different ways to invoke gcc with regard to compiling different lan-
guages. The most obvious is to call the binary responsible for that language; g++ for c++, g77
for Fortran source files etc..

However, since all of these languages are integrated into gcc, it is possible to simply call gcc
along with a number of flags telling it what language is being used. There are two things you’ll
need to be aware of: linking with the correct library for that language using the -1 option, and
supplying ‘gcc’ with the correct language using the -x flag.

For example, invoking

$ gcc -1g++ -x c++ main.cpp

is exactly the same as calling

$ g++ main.cpp

for a c++ source file named ‘main.cpp’. However, although you can use the former, the latter

is much easier to look at. The former just says "use the library ‘1ibg++.s0’, and tell ‘gcc’ that
the source file passed in is a C++ file".

However, we’ll not consider supplying any information regarding language options or correct
libraries to be passed to ‘gcc’ (other than for Objective ¢); rather, we’ll call the files directly,
like g++ for c++ source files, gcj for Java sources etc..

4.4.2 Objective C

There isn’t too much to know about compiling Objective C sources; you must ensure that
you link the program with the ‘libobjc.a’ using -lobjc. Here’s a few sources continuing the
"Hello, world!” theme - the first source file is ‘main.m’:

/* main.m */
#include "HelloWorld.h"

int main()
{
id helloWorld;
helloWorld = [HelloWorld new];
[helloWorld world];
return O;

}
And the header file containing the interface for the HelloWorld class:

/* HelloWorld.h */

#ifndef _HI_WORLD_INCLUDED
#define _HI_WORLD_INCLUDED
#include <objc/Object.h>
#define world_len 13

Q@interface HelloWorld : Object

{
char helloWorld[world_len];

90 Programming with GNU Software

¥

- world;
Q@end

#endif

And finally, the implementation of HelloWorld:
/* HelloWorld.m */
#include "HelloWorld.h"

O@implementation HelloWorld

- world

{
strcpy (helloWorld, "Hello, world!");
printf ("%s\n", helloWorld);

}

@end

Compiling this using the command
gcc —lobjc -1pthread -o helloWorld main.m HelloWorld.m

creates the executable ‘helloWorld’ which, as you can predict, prints out the message "Hello,
world!". You can use all the standard compilation options already described to compile Objective
C programs.

NOTE You’ll notice that I added -1pthread too. I did this, because if I didn’t,
the following errors popped up:

/usr/1lib/gcc-1ib/i486-suse-1linux/2.95.2/1libobjc.a
(thr-posix.o):

In function ‘__objc_init_thread_system’:
thr-posix.o(.text+0x41): undefined reference to
‘pthread_key_create’
/usr/1lib/gcc-1ib/i486-suse-1linux/2.95.2/1libobjc.a
(thr-posix.o):

In function ‘__objc_mutex_trylock’:
thr-posix.o(.text+0x1f1): undefined reference to
‘pthread_mutex_trylock’

collect2: 1d returned 1 exit status

This is because without the ~1pthread flag, a number of references from
the archive ‘libobjc.a’ could not be resolved, so we had to explicitly
call in the pthread objects.

4.4.3 C++

The front-end for c++ is g++. g++ is just a wrapper script to call gcc with c++ options. C++
is a super-set of ¢; thus, all ¢ options will hold for a c++ compile, and they should (usually) be
enough.

Chapter 4: The GNU Compiler Collection 91

You have a number of choices when compiling C++ sources: invoke g++, which is the easiest
option. The other option is to invoke gcc calling the correct language and libraries, for example
g++ —x c++ -1g++, a little more verbose perhaps.

Not all of the options for compiling with g++ are given here; many have been left out, and we’ll
only look at a small selection. The options that gcc offer should generally be enough for most
compilations, except under very special curcumstances. You should consult the documentation
for more details.

-fdollars-in-identifiers Allow identifiers to contain $ characters in identifiers.
By default this shouldn’t be permitted in GNU C++, al-
though it is enabled on some platforms. -fnodollars-
in-identifiers disables this option if it is default on
the machine you’re using.

-fenum-int-equiv Allow conversion of int to enum.

-fnonnull-objects This option ensures that no extra code is generated for
checking whether any objects reached through refer-
ences are not null.

-Woverloaded-virtual Warn when a function in a derived class has the same
name as a virtual function in the base class, but the
signature is different.

-Wtemplate-debugging When using templates, warn if debugging is not
available.

4.4.4 Java

The front-end for Java is the GNU Java Compiler, gcj. Not all of the classes for Java have
been implemented, which isn’t surprising due to the impressive amount of classes that Java
contains. In particular, support for the Abstract Windowing Toolkit and Swing components
have not yet been implemented®, and there is no support for Remote Method Invocation either.
The Java FAQ http://gcc.gnu.org/java/faq.html details the reasons for current extent of
support. It is worth visiting this site because new developments are made all the time as new
classes and features are added. Also, the current status of the gcj compiler can be viewed at
http://gcc.gnu.org/java.

The gcj compiler can take input files in the form of ‘. java’ or ‘.class’ files. If a ‘. java’
source file is passed in, then it can either be passed to gcj and compiled into a ‘.class’ file or
compiled into native machine code. If gcj is passed a ‘.class’ file, then it can only produce
native machine code.

To view the machine-dependant classes in object-file format, supported by gcj, locate the
‘libgcj.a’ archive library (mine is located in ‘/usr/1ib/’) and perform an ar t libgcj.a on it®.
The results should be something like this:

EnumerationChain.o BufferedInputStream.o
BufferedOutputStream.o BufferedReader.o
BufferedWriter.o ByteArrayInputStream.o
ByteArrayOutputStream.o CharArrayReader.o
CharArrayWriter.o CharConversionException.o

8 That is up to the point when this book went to press.

9 ar is an archiving tool for archives.

92

Datalnput.o
DataOutput.o
EOFException.o
FileDescriptor.o
FileNotFoundException.o
FileReader.o
FilenameFilter.o
FilterOutputStream.o
FilterWriter.o
InputStream.o
InterruptedlOException.o
LineNumberReader.o
OutputStreamWriter.o
PipedOutputStream.o

Programming with GNU Software

DatalnputStream.o
DataOutputStream.o
File.o
FileInputStream.o
FileOutputStream.o
FileWriter.o
FilterInputStream.o
FilterReader.o
IOException.o
InputStreamReader.o
LineNumberInputStream.o
OutputStream.o
PipedInputStream.o
PipedReader.o

which shows the output of a small section of the archive library. The Java-equivalent files are
in object file format, obviously, since gcj takes java source code (or class files) and can convert
the information into machine-dependent binary files.

GCJ Options

Let’s look at some of the commands first, and then focus on a few relatively simple examples.

gcj is invoked as follows:

gcj [options] filel

There are a number of

—--main=File

-o file

-d dir

[[file2] ... [filen]]

different options available.

takes the ‘. java’ file and produce a corresponding ‘.class’ file. The
‘.class’ file is in (machine independent) byte code, so it can be
run with the JvM as normal. This option cannot be used with --
main=File (see below), because no machine-dependent code is being
produced. Thus, the command gcj -C SomeClass.java will produce a
file named ‘SomeClass.class’ which can be run with the java com-
mand as normal.

specifies the file to be used when searching for the file that would
normally be invoked with java [filename] . java for the file named
‘[filename] .class’ where the main method is specified. Cannot be
used with -C. You must specify this when creating a binary produced
in native format, because the usual main stub cannot be found unless
we tell it where to look; remember that Java can specify a public
static void main(...) method in any of its classes, so we need some
way of telling the compiler where main will be located.

creates the executable named ‘file’ instead of the default ‘a.out’.
This flag cannot be used in conjuction with -C, because you cannot
rename the class file (Java ‘. class’ files are named according to their
corresponding ‘. java’ source files).

places class files in directory ‘dir’. Only used when compiling byte-
code using -C.

As with gcc, print verbose output to ‘stdout’.

Chapter 4: The GNU Compiler Collection 93

-g Produce debugging information, when creating machine dependent
code; this is useful since it enables you to use (for example) gdb or
ddd to debug java source files that have been made into machine-
dependent binaries - see Chapter 14 [Debugging with gdb and DDD],
page 247.

Compiling a simple Java source file
The following example utilises two Java source files.

$ cat Main.java
/* Main. java */
import helloworld.HelloWorld;

public class Main

{
public static void main(String argsl[])
{
HelloWorld helloWorld = new HelloWorld();
System.out.println(helloWorld.toString());
}
}
$

and our HelloWorld package file located in the directory ‘helloworld’ in the same directory
that ‘Main. java’ is in:
$ cat helloworld/HelloWorld.java

/* HelloWorld.java */
package helloworld;

public class HelloWorld
{
String helloWorld;
public HelloWorld()
{
helloWorld = "Hello, world!";
}
public String toString()
{
return helloWorld;
}
}
$

Compiling this program with the command
$ gcj ——main=Main Main. java helloworld/HelloWorld.java —o HelloWorld

yields the following output (if any problems occur, it may be because your classpath may
not be set. If you can’t fix it by using any of the options already given, try looking at the FAQ
at the gcj homepage at http://gcc.gnu.org/java/faq.html for answers to many common
problems when trying to compile java programs):

$./HellowWorld

Hello, world!
$

94 Programming with GNU Software

‘Helloworld’ is our machine-dependent binary. If we wanted, we could have simply produced
a ‘.class’ file

$ gcj -C Main. java helloworld/HelloWorld. java

Which produces ‘Main.class’ and ‘HelloWorld/HelloWorld.class’, which can be ran using
the command java Main:

$ java Main
Hello, world!
$

4.4.5 Fortran

The front end compiler for Fortran is g77. It is used to compile GNU Fortran programs;
however, other Fortran dialects are also supported by a number of flags. For details of the GNU
Fortran language, refer to http://gcc.gnu.org/onlinedocs/g77_toc.html.

Compiling a simple fortran source file

As with many of the other front-ends, you can use many of the ¢ language options such as
-0, —-g, -v etc. The options here should be enough for you to compile many Frotran programs,
although you should refer to the ‘g77’ documentation for a broader range of flags.

g77 Options

-ffree-form, -fno-fixed- by default, compilation will vi for fixed form Fortran code,

form based on punched-card format. Specifying -ffree-form or -
fno-fixed-form allows compilation of the new Fortran 90 free
form source code.

-f£90 allow some Fortran 90 constructs; not all may be supported,
depending on current support for the compiler you're using.

-I-, -IDIR Files included by the Fortran INCLUDE directive are not prepro-
cessed; thus, use -IDIR to search for INCLUDE files in directory
‘DIR’. Do not put a space between the switch and the directory.

-x £77-cpp-input Ensure that the source file is preprocessed by the preprocessor,
‘cpp’. This enables you to pass -D options to the preprocessor
inside the Fortran file (see Section 4.2.8.2 [Defining Constants],
page 83), as well as be able to deal with #ifdef and #if state-
ments etc. in your code.

Like the previous section on gcj, we’ll illustrate a simple hello world program, outlined below
in the new Fortran free form format, with a few preprocessor options in there:
$ cat HelloWorld.for
PROGRAM HELLOWORLD

#if HELLO

WRITE(6,*) ’Hello, world!’
#else

WRITE(6,*) ’Goodbye, world!’
#endif

END PROGRAM HELLOWORLD
$

I compiled this program using the command g77 -x £77-cpp-input -DHELLO -ffree-form
HelloWorld.for

Chapter 4: The GNU Compiler Collection 95

You can well imagine the output of this program - so we’ll not bother listing it. If we’d not
have included the -DHELLQ definition, the output would have been instead "Goodbye, world!".

4.4.6 Other GCC Frontends

A number of languages are supported; below is a list of current front-ends:
e The GNU Ada Translator (GNAT)
e GNU Pascal Compiler (GPC).
e Mercury
e Cobol For GCC
e G95 (Fortran 95)
e GNU Modula-2
e Modula-3

However, for up-to-date information, visit http://gcc.gnu.org/frontends.html.

4.5 Pulling it Together

You have seen the basic compilation options on offer, so let’s concentrate on some practical
examples. This section will utilise the M4 sources, to give you something tangible to play with.
Not all of the options will be used from the preceeding sections - however, I'll utilise as many
as necessary to give you a good grounding in gcc’s options.

The following examples are split up into the main phases of compilation, although many of
the other commands will also be used within these sections.

4.5.1 Preparation

To begin with, you’ll need the M4 sources. Once you have installed them you’ll end up with
a directory where the binaries are kept, and the original source directory: don’t delete this,
as we’ll use the source files to demonstrate different gcc options. By default when you run
./configure, make etc., the libraries and object files are put into the source tree. So after I'd
installed M4 from my ‘$HOME/gnu-src/m4-1.5’ directory, the libraries were placed in the source
tree under ‘$HOME/gnu-src/m4-1.5/m4/.1libs’:
$ 1s SHOME /gnu-src/m4-1.5/m4/ libs
libm4.a 1libm4.la 1libm4.lai 1libm4.so 1libm4.s0.0 1ibm4.s0.0.0.0
$
These libraries are built from the ‘m4’ directory of sources. The files that we’ll actually be
interested in utilizing are in the ‘src’ directory of M4:
$ 1s SHOME /gnu-src/m4-1.5/src
freeze.c getopt.c m4.h main.c stackovf.c

$

NOTE In addition you’ll need a temporary file in this directory (I named mine
‘temp.c’) with the following details:

#include "m4module.h"
const 1lt_dlsymlist *1t_preloaded_symbols = O;

This is because normally 1ibtool would handle this for you; since we are
hand-running the examples (yes, it may seem counter-intuitive, but it’s

96 Programming with GNU Software

the only reasonable way to illustrate the example) we have to generate
the file instead.

4.5.2 Preprocessing

Let’s start with preprocessing. Locate the file ‘main.c’ in the ‘m4/src’ directory. Send it to
the preprocessor using the command

gcc -Emain.c -I../m4/ -I. -I..

which will display the result straight to screen. I've included the -I options because ‘main.c’
includes a number of files in different directories. Since this command will send the output
straight to the screen, to be able to have a look at the output, I sent it to a temporary file
(‘temp.i’) using file redirection:

gcc ~Emain.c -I../m4/ -I. -I.. > temp.i

Check out the file sizes now you’ve preprocessed the file. There is a big difference; mine
showed the following sizes (the sizes will differ, possibly radically, depending on which build
version you use):

$ Is -1 main.c temp.i
“IrW-r--r—- 1 rich users 13995 Jun 2 01:12 main.c
-rw-r——-r—— 1 rich users 58376 Aug 1 16:53 temp.i

Notice that it’s almost five times bigger. This is because the #includes have packed in all
their information. We can study this by looking at a grep of the preprocessed file, filtering for
all lines beginning with a # symbol:

$ grep ’~#’ temp.i

1 "main.c"

1 "/usr/include/getopt.h" 1 3
160 "/usr/include/getopt.h" 3
20 "main.c" 2
1 "/usr/include/signal.h" 1 3
1 "/usr/include/features.h" 1 3
138 "/usr/include/features.h" 3
196 "/usr/include/features.h" 3
1 "/usr/include/sys/cdefs.h" 1 3

1 "../m4/md4module.h" 1

1 "../m4/error.h" 1

1 "../m4/system.h" 1

100 "../m4/system.h"

143 "../m4/system.h"

27 "../m4/error.h" 2

23 "../m4/mé4module.h" 2

1 "../m4/1list.h" 1

24 "../m4/mdmodule.h" 2

1 "../m4/1tdl.h" 1

75 "../m4/1tdl.h"

107 "../m4/1tdl.n"

278 "../m4/1tdl.h"

301 "../m4/1tdl.h"

25 "../m4/m4module.h" 2

1 "/usr/include/obstack.h" 1 3
338 "/usr/include/obstack.h" 3

H OH HF H H OH H HF HH HH HFH R H H

Chapter 4: The GNU Compiler Collection 97

If you actually look at the contents of ‘temp.i’, there will be massive patches of white space;
this occurs when the preprocessor is stripping out comments that do not need to be included
(and if included would make the file even larger). Recall from Section 4.2.3 [The Preprocessor],
page 79 that the above #’s have a special significance; they tell us where and when a file is
included, and which files are included from the file being included (and so on). For example, one
portion of my ‘temp.i’ file read as follows (omitting newlines where necessary to save space):

227 "/usr/include/signal.h" 2 3

extern int sigprocmask (int __how,
__const sigset_t *__set, sigset_t *__oset) ;

extern int sigsuspend (__const sigset_t *__set) ;

extern int __sigaction (int __sig, __const struct sigaction *__act,
struct sigaction *__oact) ;
extern int sigaction (int __sig, __const struct sigaction *__act,
struct sigaction *__oact) ;

1 "/usr/include/bits/sigcontext.h" 1 3

The fist line, # 227 "/usr/include/signal.h" 2 3 is saying "At line number 227 in
‘/usr/include/signal.h’, note the return to this file from some other file, and supress any
warnings that may arrise from the following textual substitution". Then, at the end of the
above code snippet, ‘/usr/include/bits/sigcontext.h’ is included, and off the preprocessor
goes again.

4.5.3 Compilation

After preprocessing, our next goal is produce assembly language for the preprocesed file.
There are a number of approaches to this; we could invoke the preprocessor on each ‘.c’ file,
produce a ‘.i’ file and then pass this to the compiler; or (a lot less trouble) just pass the ‘.c’
files to the compiler, which will detect that the sources have not been preprocessed, so instead
will preprocess them and then run them through the compiler:

gcc -S -I ../m4 -I ../ main.c freeze.c stackovf.c temp.c
Note that this will produce a number of errors - mine produced the following output:

$ gce -1. -I.. -1../m4 -S main.c freeze.c stackovf.c temp.c

In file included from main.c:23:

m4.h:60: parse error before ‘malloc’

m4.h:60: warning: data definition has no type or storage class
m4.h:61: parse error before ‘realloc’

m4.h:61: warning: data definition has no type or storage class
main.c: In function ‘main’:

main.c:239: ‘STDIN_FILENO’ undeclared (first use in this function)
main.c:239: (Each undeclared identifier is reported only once
main.c:239: for each function it appears in.)

main.c:367: ‘PACKAGE’ undeclared (first use in this function)
main.c:367: ‘VERSION’ undeclared (first use in this function)
In file included from freeze.c:23:

m4.h:60: parse error before ‘malloc’

m4.h:60: warning: data definition has no type or storage class

98 Programming with GNU Software

m4.h:61: parse error before ‘realloc’

m4.h:61: warning: data definition has no type or storage class
freeze.c: In function ‘produce_frozen_state’:

freeze.c:205: ‘PACKAGE’ undeclared (first use in this function)
freeze.c:205: (Each undeclared identifier is reported only once
freeze.c:205: for each function it appears in.)

freeze.c:205: ‘VERSION’ undeclared (first use in this function)
In file included from stackovf.c:80:

m4.h:60: parse error before ‘malloc’

m4.h:60: warning: data definition has no type or storage class
m4.h:61: parse error before ‘realloc’

m4.h:61: warning: data definition has no type or storage class

$

The reason is that a number of symbols - such as STDIN_FILENO and VERSION have not been
resolved; they were not found in any of the header files that we specified using -I. This is
because we’ll actually reslove these symbols in the last stage (linking) by including the relevant
libraries. Despite these errors, we now have a collection of ‘.s’ files:

$1s-1*s

“IrWw-r--r-- 1 rich users 44080 Sep 30 18:25 freeze.s
“IW-r--r—- 1 rich users 20096 Sep 30 18:25 main.s
“IW-r--r—- 1 rich users 810 Sep 30 18:25 stackovf.s
“IW-Ir—-r—- 1 rich users 949 Sep 30 18:25 temp.s

$

4.5.4 Assembling

Now we have the assembled sources, we can perform the penultimate stage and produce
object files for each ‘.s’ file.

gcc ~-DHAVE_CONFIG -I. -I.. -I../m4 -c main.s freeze.s stackovf.s temp.s

which results in the corresponding object files being produced:

-IrW-r--r—- 1 rich users 13108 Sep 30 18:59 freeze.o
“IW-r--r—- 1 rich users 12796 Sep 30 18:59 main.o
“IW-r--r-- 1 rich users 1528 Sep 30 18:59 stackovf.o
-IrWw-r--r-- 1 rich users 1565 Sep 30 18:59 temp.o

4.5.5 Linking

Finally, we’re ready to link the files together to produce a final binary. This involves taking
the object files and glueing them together with the M4 library, ‘1ibm4.so’ to produce a binary
that we can run. To make sure that your M4 libraries are visible, point them to your ‘1ib’
directory:

export LD_LIBRARY_PATH
LD_LIBRARY_PATH=$HOME/gnu-src/m4-1.5/m4/.1ibs:$LD_LIBRARY_PATH
Finally, run the object files through gcc:

gcc -DHAVE_CONFIG_H -I. -I.. -I../m4 main.o freeze.o stackovf.o temp.o -L‘cd
../m4/.1ibs && pwd‘ -1m4

which produces the executable ‘a.out’. Let’s just test it:

$./a.out —version
GNU (null) (null)

Chapter 4: The GNU Compiler Collection 99

Written by Rene’ Seindal and Gary V. Vaughan.

Copyright 1989-1994, 1999, 2000 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is
NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

$

4.5.6 And Finally...

That all seemed like a lot more work than we really needed. In fact, it was a lot more work;
we could have simply called

gcc -DHAVE_CONFIG_H -I. -I.. -I../m4 main.c freeze.c stackovf.c temp.c -L¢cd
../m4/.1ibs && pwd‘ -1m4

which would have given us the same results, quicker than having to produce assembler sources,
and then passing these on to the assembler, and so on.

In fact, we cheated from the start. M4 had to be built (so that the libraries were all in place,
produced from the ‘m4/m4’ and ‘m4/1tdl’ directories). All we did is go in and compile a few
sources and link them with these libraries. A few things to note:

e gcc was used directly to build the sources, and

e the libraries were already built for us.

Is there an easier way?

Actually, there is, and it ties in to Chapter 5 [GNU Make|, page 103, Chapter 9 [Autoconf],
page 189, Chapter 10 [Automake|, page 203 and Chapter 11 [Libtool], page 205. GNU Make
enables us to place all the information we need to build sources into neatly modularised ‘make’
files. It saves us the hassle of typing in long-winded commands. Autoconf and automake enable
us to configure and manage make files in a very simple fashion. Libtool makes library creation
and management much simpler as well.

4.6 Reference Section

This section gives an overview of all of the commands used throughout this chapter regarding
gcc. These commands are an extremely small subset of the full set of gcc commands. You should
consult the gcc documentation for the comprehensive listing.

4.6.1 Standard Compilation Options

gcc [options] file [file2] ... [filen] Compile file ‘file’ (and/ or [file2’]

ilen’]); preprocess, compile, assemble and link, where [options] can be any of the options
‘filen’ il ble and link, where [options] b f the opti
below:

-o outputFile Replace default file with file named ‘outputFile’. This can
be used with any stage that produces as output some default
file. For example, gcc -S main.c -o file.assembler will pro-
duce an assembly file named ‘file.assembler’ instead of the
default ‘main.s’.

-E Preprocess only; send to ‘stdout’ (standard output).

-C Preserve line comments; used with -E.

100

—-traditional

-ansi

-pedantic

-DDEFN, -DDEFN=VALUE

-UDEFN

-V
-pipe

-Idirectory

-Wa,option-list

-Wl,option-list

Programming with GNU Software

Do not generate #line comments; used with -E.

Preprocess (if the file is a ¢ source file) and compile (if the file
is a preprocessed file), but do not assemble. The created file will
have the suffix ‘.s’, unless the -0 ‘outputFile’ option is used.

Preprocess (if the file is a ¢ source file), compile (if the file is a
preprocessed file) and assemble (if the file is assembler source);
do not link. The created file will have the suffix ‘.o’, unless the
-0 ‘outputFile’ option is used.

Supports the traditional ¢ language. The traditional option also
supports all of the FSF’s extensions to the C language.

Supports the ANSI C standard.

Issues all the warning messages that are required by the ANSI
¢ standard. Forbids the use of all the FSF extensions to the C
language and considers the use of such extensions errors.

Define DEFN to have value 1, or DEFN to have value VALUE.

undefine definition DEFN (all -D options are evaluated before any
-U options on the command line).

Print verbose information.
Use a pipe rather than temporary files when compiling.

When searching for ‘.h’ header files, look in directory
‘directory’, in addition to the default directories. If spedified
before the -I- option (see below), only #include "..." files are
searched for. Used after -I-, -I ‘directory’ will also search
for any ‘#include <...>’ files.

Used after the —-I option, it forces all succeeding -1 calls to search
for #include <...> files. It also negates search of the current
directory; thus, to force the compiler to look in the current di-
rectory, use -I. after -I-.

Pass option-list as a list of comma separated options (with no
white-space between options whatsoever) to the assembler.

Pass option-list as a list of comma separated options (with no
white-space between options whatsoever) to the linker.

4.6.2 Linking and Libraries

—-lname

-Ldirectory

-static

Include library ‘libname.so’ if it exists; if ‘libname.so’ doesn’t
exist, search for ‘libname.a’.

search directory ‘directory’ for library files. Used with -1.

indicate that static libraries should be linked instead of shared
libraries.

Chapter 4: The GNU Compiler Collection 101

4.6.3 Warning Options

Since the warning options are fairly descriptive on their own (apart from the -w option, which
inhibits all warning options), they’re listed here without any descriptions; you can find out what
each of them do in Section 4.2.9 [Warnings|, page 85.

-pedantic, -pedantic-errors, -Wall, -Wimplicit-int, -Wimplicit-function-
declaration, -Wimplicit, -Wmain, -Wreturn-type, -Wunused, -Wswitch, -Wcomment,
-Wformat, -Wchar-subscripts, -Wuninitialized, -Wparentheses

4.6.4 Language Options

4.6.4.1 Objective C Command Summary

Other than linking your Objective-C sources with ‘libobjc.a’ using the -1 option, there
aren’t any other options other than the standard options already discussed for ¢ that you need
to be aware of.

4.6.4.2 C++ Command Summary

Generally you can compile many C++ source files using the standard compilation options
already discussed for C. There are a few extra options here that you may find useful:

-fdollars-in-identifiers Allow identifiers to contain $ characters in identifiers.
By default this shouldn’t be permitted in GNU C++, al-
though it is enabled on some platforms. -fnodollars-
in-identifiers disables this option if it is default on
the machine you’re using.

-fenum-int-equiv Allow conversion of int to enum.

-fnonnull-objects This option ensures that no extra code is generated for
checking whether any objects reached through refer-
ences are not null.

-Woverloaded-virtual Warn when a function in a derived class has the same
name as a virtual function in the base class, but the
signature is different.

-Wtemplate-debugging When using templates, warn if debugging is not
available.

4.6.4.3 Java Command Summary

gcj [options] filel [[file2] ... [filen]]
Where [options] options can include the following:
-C take the ‘. java’ file and produce a corresponding ‘.class’ file. Can-

not be used with ——main=HelloWorld.

--main=File Specify the name of the ‘. java’ file to locate the public static void
main(String args[]) method as ‘File’. Cannot used with -C.

102 Programming with GNU Software

-o file create the executable named ‘file’ instead of the default ‘a.out’.
This flag cannot be used in conjuction with -C, because you cannot
rename the class file.

-d dir place class files in directory ‘dir’. Only used when compiling byte-
code using -C.

-v Print verbose output to ‘stdout’.

-g Produce debugging information.

4.6.4.4 Fortran Command Summary

g77 [options] sourcefile

compile ‘sourcefile’, providing it is fixed-form format, where [options] can be any of the
options below:

-ffree-form use free-form format.

-fno-fixed-form))

-f£90 Support some of the constructs available in Fortran 90.

-I-, -IDIR Files included by the Fortran INCLUDE directive are not preprocessed;

thus, use -IDIR to search for INCLUDE files in directory ‘DIR’.

-x £77-cpp-input Ensure that the source file is preprocessed by the preprocessor, ‘cpp’.

4.7 Summary

The purpose of this chapter was to introduce gcc at a non-complex, yet useful, level. The
examples were not too demanding, and covered a broad spectrum of commonly used options.

The examples throughout this chapter revolved around hand-typing commands in a terminal.
For very small projects of only a few files, this is fine; larger projects require much more attention.
The next chapter, GNU Make, takes a look into using ‘make’ files for projects, to enable you to
easily manage how projects are built.

gcc is one of the fundamental tools for building software; but for advanced projects, ad-
vanced tools are needed. Although GNU make is useful for source code management, Chapter 9
[Autoconf], page 189 and Chapter 10 [Automake], page 203 enable us to extend make files auch
that configuration and management of make files becomes much easier. In addition, Chapter 11
[Libtool], page 205 makes library creation and management much simpler too.

Chapter 5: Automatic Compilation with Make 103

5 Automatic Compilation with Make

In the last chapter, we explained how to invoke GCC to compile your source code into an
executable. As a project grows, and the source files multiply, the time taken to compile and
link them all whenever some of the source files have been edited becomes a nuisance. The GNU
environment provides an implementation of the UNIX Make utility to help you to manage the
process of rebuilding programs from the source files they depend upon automatically.

The next section gives an overview of what Make is, and the problems that it wants to solve
for you. The rest of the chapter is a discussion of how to utilise Make, and the sorts of things
you might want to have in your own ‘Makefile’s. If you already know about Make, you can
skip this chapter and refer back to it when you read about GNU Automake later (see Chapter 10
[Automake|, page 203).

GNU Make is a sophisticated tool with many features beyond those described in this chapter,
and enhancements beyond the standard feature set offered by the original uUNIX Make upon
which it is based. In this book we will describe only the basic features of GNU Make: sufficient to
understand how it works, and to extend the basic configuration of GNU Automake (see Chapter 10
[Automake|, page 203). If you want to learn more about the Make utility, there are some
suggestions in Section 5.8 [Further Reading], page 125. However, when you develop a project
with Automake and the other GNU utilities described in this book, there is no need to use (or
even learn about) anything beyond what we describe here.

5.1 The Make Utility

Fundamentally, the Make utility looks for files, and uses them to make other files. Although
it has many uses beyond those we describe here, in this book we are interested in Make as a
tool for development — to compile, install and test programs and libraries.

That is, Make is a supremely flexible tool that is useful to us at most stages of the development
process in one way or another. It is also routinely deployed for non development oriented tasks:
the UNIX Nis! facility uses Make to keep its databases up to date, and push modified tables over

the network.

Make follows the long established UNIX mantra: “Do one job, and do it well”. The one job
that Make does is to keep files up to date.

5.1.1 Targets and Dependencies

As with all good explanations of UNIX facilities, we will start with Hello World, in C:

1 Network Information Service. Disseminates a centralised database of network details, such as hostnames and
user password details, through a network.

104 Programming with GNU Software

#include <stdio.h>

int main (int argc, const char *argvl[])
{

printf ("Hello, World!\n");

return O;

}

Example 5.1: ‘hello.c’— an old favourite

In a directory that contains nothing but this one file, you can invoke make to make a program
out of it, like so:

$ make hello

gcc hello.c -o hello
$./hello

Hello, World!

The program ‘hello’ that Make has been asked to build is known as the target. The files that
are required in order to bring the target up to date, or to refresh the target, are called the
target’s dependencies?®.

Make knows an awful lot about the compilation process, and the relationships between file
names of related suffixes (also known as extensions). In the example above, when we asked make
to refresh ‘hello’ for us, it was able to infer that it should compile ‘hello.c’, in part due to the
presence of ‘hello.c’, but also due to the fact that files with a ‘.c’ suffix are normally passed
to the C compiler. This inference depends on the association between the target name, ‘hello’,
and the source file name, ‘hello.c’; Make did not merely pick ‘hello.c’ because it was the only
file in the build directory. For example in the same directory, it won’t work if we try to make a
target with no matching source file name:

$ make helloagain
make: *** No rule to make target ‘helloagain’. Stop.

Internally, Make contains an extensive database of commands that are normally used to
transform between files with names that differ only in suffix. As another example, Make knows
that intermediate compilation objects are held in files with a ‘.o’ suffix (see Chapter 4 [The
GNU Compiler Collection], page 75), and that the C compiler performs that transformation:

$ make hello.o
gcc -c -0 hello.o hello.c

5.1.2 A Refreshing Change

Near the start of this chapter we stated that Make keeps files up to date. In each of the
examples so far, we have given Make a target that it must bring up to date: ‘hello’, ‘helloagain’
and ‘hello.o’. On each occasion, Make has found that there is no such file and tried to determine
a way to create one from its inference model. If a target is already up to date with respect to
its dependencies then Make will notice, and not go to the trouble of refreshing it:

2 Other books refer to the dependencies as prerequisites; the two terms are interchangable.

Chapter 5: Automatic Compilation with Make 105

$ 1s -1tr

total 9

“IW-r--r—- 1 gary users 100 Sep 16 13:40 hello.c
-rwxr-xr-x 1 gary users 5964 Sep 16 13:41 hello
-rw-r——-r—— 1 gary users 888 Sep 16 13:43 hello.o

$ make hello.o

make: ‘hello.o’ is up to date.
$ make hello

gcc hello.o -o hello

$ 1s -1tr

total 18

“IW-r--r—- 1 gary users 100 Sep 16 13:40 hello.c
“IW-r--r—- 1 gary users 888 Sep 16 13:43 hello.o
-rwxr-xr-x 1 gary users 5964 Sep 16 13:44 hello

$./hello

Hello, World!

Make is using the modification timestamp of these file to decide whether the target file is out
of date with respect to the files it depends on. Here, ‘hello.c’ has not been changed since
‘hello.o’ was last refreshed, so when asked to ‘make hello.o’, Make doesn’t recompile. The
program ‘hello’ is actually older than ‘hello.o’ to start with, so when we ask for ‘hello’ to
be refreshed, Make does indeed relink it from the newer ‘hello.o’.

The strategy used by Make for refreshing targets depends on the files that are present in the
build directory. Originally, with only ‘hello.c’ available, Make compiled directly from source
to the program ‘hello’, but in the previous example where a ‘hello.o’ object file was also
available, Make took the simpler route of relinking ‘hello’ directly from the object file. There is
no magic involved here: the search order through Make’s database of candidate file name suffixes
tries less processor intensive matches first. This is important when it comes to complex builds,
where Make is able to minimise the amount of recompilation that is performed by making the
best use of intermediate files.

Make was developed in the early days of UNIX to automate the task of recompiling applications
from of source files and libraries. Before Make was invented developers had to use shell scripts
to recompile everything whenever an application was rebuilt.

5.2 The Makefile

If you imagine applying what we have shown you of Make so far to a real project, some
limitations will quickly come to light, not least of which is that your program is almost certainly
not compiled from a single similarly named source. The behaviours we have demonstrated so
far are merely the last line defaults. In practice, the build process is codified in a ‘Makefile’.
In this ‘Makefile’, you list the relationships between the sources of your project along with
some transformation rules to specialise Make’s default database to meet the project’s build
requirements.

Here, example 5.2 shows a small Makefile for building the program ‘m4’ using three object files,
‘main.o’, ‘freeze.o’ and ‘stackovf.o’, and a library from another directory. The ‘libm4.a’
library declared in ‘m4_LDADD’ is built from its own source code by another Makefile in the
library’s own build directory.

106 Programming with GNU Software

m4_0BJECTS
m4_LDADD

main.o freeze.o stackovf.o
../m4/1ibm4d.a

m4: $(m4_0BJECTS)
$(CC) -0 $ $(m4_OBJIECTS) $(m4_LDADD)

clean:
rm -f $(m4_0BJECTS)

Object compilation rules follow
main.o: main.c
$(CC) -c main.c

freeze.o: freeze.c
$(CC) -c freeze.c

stackovf.o: stackovf.c
$(CC) -c stackovf.c

Example 5.2: A simplistic Makefile’

This file is actually longer than it needs to be, since some of the text included here explicitly
(for the purpose of illustration) is supplied from Make’s own default internal rules. Although
the file might seem somewhat indigestable at first, in broad terms a Makefile can contain only
three different structures: Rules, variables and comments. We will describe each in turn over the
following subsections, and then move on to some specialisations of the basic Makefile building
blocks for the rest of the chapter.

5.2.1 Make Rules

In order for Make to help with your project, you must tell it about the relationships between
all of the files it will be maintaining for you. Each relationship is expressed as a dependency
rule and takes the following form:

target: dependency ...
command

Example 5.3: Format of a dependency rule

Here, target relates to a file that needs to be built during the compilation phase of your project,
for example ‘hello.o’. A space delimited list of dependency files name every other file that
needs to be up to date before target can be built. And an indented list of command each
comprise a line of shell script code for Make to run when target needs refreshing. You might
say that Make uses command to build target from dependency.

NOTE Make will understand that each command is part of the preceding rule
only if the first character on each line is a literal tab. Although a string
of spaces, or even a space followed by a tab look the same in most
editors, they will cause an error like this when you try to run make:

Chapter 5: Automatic Compilation with Make 107

$ make
Makefile:159: *** missing separator. Stop.

Notice that GNU make tells you the name of and the line number within
it that caused the error (line 159 of ‘Makefile’ in this case), making it
easy to locate and correct once you know what the cryptic error message
means.

Recall that in the last chapter you saw that the following command will build the ‘m4’ binary:
$ gcc -o m4 main.c freeze.c stackovf.c ../libs/libm4.a

The simplest rule to achieve the same effect using a ‘Makefile’ is as follows:

m4: main.c freeze.c stackovf.c ../libs/libmé.a
gcc -o m4 main.c freeze.c stackovf.c ../libs/libm4.a

Example 5.4: A sample dependency rule

With just this one rule in the ‘Makefile’, recompiling ‘m4’ is a simple matter of entering the
command ‘make m4’ at your shell prompt:

$ make m4

gcc -o m4 main.c freeze.c stackovf.c ../libs/libmé.a
$ make m4

make: ‘m4’ is up to date.

On the second invocation, make doesn’t build ‘m4’ again, because it is already newer than all of
the dependencies listed in the rule.

Anyway, as we explained in Section 5.1.2 [A Refreshing Change|, page 104, this isn’t a good
way to structure a project ‘Makefile’, since absolutely everything is recompiled each time any
file is changed. You can avoid such needless recompilations, and drastically cut down on the
amount of work GCC has to do when recompiling after changing some source files, by breaking
the compilation down into phases. Recall that source code can be compiled into object code
files, which are in turn linked to form the target executable (see Chapter 4 [The GNU Compiler
Collection], page 75). Each stage is represented by its own rule in your ‘Makefile’, like this:

m4: main.o freeze.o stackovf.o ../lib/libmé.a
gcc -o m4 main.o freeze.o stackovf.o ../lib/libmé.a

main.o: main.c
gcc -c main.c

freeze.o: freeze.c
gcc —c freeze.c

stackovf.o: stackovf.c
gcc —c stackovf.c

Example 5.5: Compilation in phases with make

Now, with this ‘Makefile’ in place, imagine that ‘freeze.c’ has been edited since the compi-
lation we just did with example 5.4. Invoking make m4 now executes only the commands from
the set of rules needed to refresh the ‘m4’ target file:

$ make m4

gcc —c freeze.c

108 Programming with GNU Software

gcc -o m4 main.o freeze.o stackovf.o ../lib/libm4.a

Previously, gcc had needed to recompile all three source files, even if only ‘freeze.c’ had actally
changed. This can save literally hours when recompiling projects spread across a great many
source files.

A typical ‘Makefile’ will specify many rules. Together they can be represented as a tree of
dependencies, where many of the dependencies for a particular target are themselves targets in
another rule, often with more dependencies of their own. The root of this tree is the target that
Make ultimately aims to bring up to date, and is normally specified on the command line. We
used ‘make m4’ above, which caused Make to start building the tree with the ‘m4’ rule at its root,
aiming to bring ‘m4’ up to date.

| m4 |
C
|
 m———————————— o o o
/ / \ \
v v v v
s T T T T TTTT— . y T T TTTTT T y T T TTT T .
| main.o | | freeze.o | | stackovf.o | | 1libmd.a |
€ o) [S b [) € oo b
| | |
v v v
y T T T T~ . y T T T T T~ . y T T T T T T T
| main.c | | freeze.c | | stackovf.c |

(4) ¢) ¢ J

Example 5.6: Part of a Makefile dependency tree

If make is invoked without any arguments, then the target of the first dependency rule in the
‘Makefile’ is refreshed by default. To take advantage of this behaviour, it is common practice
to name the first rule ‘all’; and set it up to be dependent on all of the programs and libraries
compiled by this ‘Makefile’. By doing this, invoking make all or even just make will refresh all
of the targets managed by this ‘Makefile’. For example, in the directory where all of a project’s
plugin modules are compiled, the Makefile would contain an ‘all’ target that depends on all of
the plugin targets that are built by that Makefile:

all: gnu.so load.so m4.so traditional.so perl.so stdlib.so

gnu.so: $(gnu_so_OBJECTS)
$(LD) $(LDFLAGS) -o gnu.so $(gnu_so_OBJECTS) $(gnu_so_LDADD)

load.so: $(load_so_0BJECTS)
Example 5.7: A typical all target Makefile fragment

Make can determine whether any target in its rules has gone out of date from the modification
times of the files referred to in the target and dependency parts of all of its rules. Make first
checks that each of the dependency files listed against the target do not have later modification
times than the target itself. If any of them do, then Make executes the list of command lines

Chapter 5: Automatic Compilation with Make 109

associated with the out of date target. However, the timestamp checks are performed recursively,
so before it can determine whether the current target is older than any of its listed dependency
files, it must first recursively ensure that each of those files is up to date with respect to their
own dependency lists.

If you look at the commands in each rule from ezxample 5.5, you will see that each command
is written so that it builds a new target file from those files listed as its dependencies. Whenever
target names a file, this statement is always true: command transforms dependency into target.
If you bear this in mind as you create new rules, then choosing appropriate file names and
commands becomes quite straight forward.

5.2.2 Make Variables

The next basic building block used when creating a ‘Makefile’ is a variable assignment.
Assigning a value to a variable® within a ‘Makefile’ looks just as you would expect:

variable—-name = value

Example 5.8: Format of Make variable assignment

Where variable-name is any string of characters not containing whitespace or other characters
that are special to Make: ‘=’ is used to separate a variable’s name from its value, ‘:’ is used to
mark the end of a target name in a dependency rule, and ‘#’ is used to begin a comment (see
Section 5.2.3 [Make Comments|, page 112), so you cannot use any of those three characters in the
variable-name itself. Obvious problems with readability aside, if you want your ‘Makefile’ to
work with other implementations of Make, you should probably limit yourself to variable-names

made from upper and lower case letters, the digits ‘0’ to ‘9’ and the underscore character.

The value consists of the remaining characters up to the end of the line, or the first ‘#’
character encountered — whichever comes first. Also, any leading or trailing whitespace around
value does not become part of the variable’s contents.

A variable assignment can extend across several lines if necessary by placing a ‘\’ at the end
of each unfinished line:

libm4_a_SOURCES = builtin.c debug.c error.c eval.c hash.c \
input.c 1tdl.c macro.c module.c output.c \
path.c regex.c symtab.c utility.c

Example 5.9: FEaxtending a Make variable assignment over several lines

Whenever a continuation backslash is encountered in a variable declaration like this, the back-
slash itself and all of the whitespace that surrounds it — including all of the leading whitespace
on the following line — is deleted and replaced by a single space as it is assigned to variable-name.

Make will expand variable references by using the value currently stored in the variable where
ever the following syntax is used:

$(variable-name)

Example 5.10: Format of Make variable expansion

3 Other text books refer to Make variables as macros, but that term has fallen out of favour. To a computer
scientist, the word macro describes something quite different to the functionality of Make variables.

110 Programming with GNU Software

By convention, the name of any external command used in a ‘Makefile’, and any option required
by such a command is stored in a variable. For example, you would use $(CC) and $ (CFLAGS)
rather than writing ‘gcc’ and ‘-ggdb3’ directly into the rules. Rewriting our ‘Makefile’ to
employ variables looks like this:

CcC = gcc

CFLAGS = -ggdb3

CPPFLAGS = -DDEBUG=1

m4_0BJECTS = main.o freeze.o stackovf.o

m4_LDADD ../1lib/1libmé.a

m4: $(m4_0BJECTS) $(m4_LDADD)
$(CC) $(CFLAGS) -0 m4 $(m4_OBJECTS) $(m4_LDADD) $(LIBS)

main.o: main.c
$(CC) $(CFLAGS) $(CPPFLAGS) -c main.c

freeze.o: freeze.c
$(CC) $(CFLAGS) $(CPPFLAGS) -c freeze.c

stackovf.o: stackovf.c
$(CC) $(CFLAGS) $(CPPFLAGS) -c stackovf.c

Example 5.11: Use of variables in a Makefile

This provides an obvious advantage: you can change the contents of a variable in one place,
but affect all of the rules that use the variable. ezample 5.11 is set up to compile with de-
bugging symbols (‘-ggdb3’), and with additional debugging code enabled by the preprocessor
(‘-DDEBUG=1"). This is ideal while the code is under development. Later, when a project is ready
to be released, it is very easy to change the variable assignments to compile a production version
of the code. You simply change the values of these variables at their declaration near the top of
the ‘Makefile’:

ccC = gcc
CFLAGS = -02
CPPFLAGS =

Example 5.12: Changing variable values in a Makefile

Actually, Make’s internal database contains default definitions for many of these variables
already, and uses them for the command part of its default rules. The default setting for ‘$(CC)’
was used earlier, when we compiled ‘hello.c’ without a Makefile in Section 5.1.1 [Targets and
Dependencies], page 103. If you make use of any variable in your own commands, you should
not fall into the habit of relying on there being a useful default definition built in to Make — one
of your customers will probably try to run your Makefile through a version of make that has a
different value, which breaks the assumptions you made. If you use ‘4 (CPPFLAGS)’ in your own
rules, define ‘CPPFLAGS’ somewhere in your Makefile, even if there is nothing ini it!

In any case, references to other Make variables in the value of a Make variable declaration are
not expanded until they are actually needed. In other words you cannot work out the eventual

Chapter 5: Automatic Compilation with Make 111

result of a variable expansion from the order in which things are declared. At first glance, it
looks as though the command in the ‘m4’ target in ezample 5.18 will execute gcc:

LD = gcc $(CFLAGS)
LDFLAGS = -static
LINK = $(LD) $(LDFLAGS)

m4: $(m4_0OBJECTS)
$(LINK) -o m4 $(m4_OBJECTS) $(m4_LDADD) $(LIBS)

LD = 1d

Example 5.13: Make variables are not expanded until they are used

Not so. Until the moment the value of ‘$ (LINK)’ is needed in the command associated with the
‘m4’ target, the values of ‘$ (LD)’ and ‘$ (LDFLAGS)’ are not expanded. By the time this happens,
‘$ (LD)’ contains a different value to what it held when ‘LINK’ was declared:

$ make m4
1d -static -o m4 main.o freeze.o stackovf.o ../m4/libm4.a

So, as Make expands the variables in the command before passing them to the shell for execution,
‘$ (LINK)’ unrolls like this:

$ (LINK)
— $(LD) $(LDFLAGS)
= 1d -static

As a consequence, there can be no loops in variable references, even indirectly, otherwise
Make would get stuck in an infinite recursion loop. GNU Make is able to detect such loops, and
will diagnose them for you. For example, here is a ‘Makefile’ with a reference loop:

FOO = foo $(BAR)
BAR = $(F00) bar
all:

echo $(F00)

Example 5.14: A Makefile with a variable reference loop

When asked to refresh the target, GNU Make bails out with the following error message:

$ make
Makefile:4: #***x Recursive variable ‘F00’ references
Makefile:4: itself (eventually). Stop.

While preparing the command (at line 4 of the ‘Makefile’) for processiong, Make will try to
expand variable references, and notice that there are still unexpanded variables with a variable-
name that has already been expanded:

echo $(F00)
— echo foo $(BAR)
— echo foo $(F0O0) bar

Usually, it is very easy to remove the circular reference once GNU Make has given you the
variable-name and ‘Makefile’ line number where it detected the loop.

112 Programming with GNU Software

5.2.3 Make Comments

)

A comment consists of the text starting with a ‘#’ sign and continuing through to the end
of the line. Make will understand a comment anywhere within a ‘Makefile’, except within
the command part of a rule. Although you can put a comment inside a multi-line variable
assignment, it is generally a bad idea because it is hard to tell whether the following line is still
part of the comment or not?.

libm4_a_SOURCES = builtin.c debug.c error.c eval.c hash.c \
Do the next 2 lines continue this comment? \
input.c 1tdl.c macro.c module.c output.c \
path.c regex.c symtab.c utility.c

Example 5.15: Ambiguous comment endings are bad
5.3 Shell Commands

You have probably noticed that the command part of the rules shown so far are just executing
programs that are also available to users from the command line. In fact, each line of command
is evaluated individually. When you write commands that use shell syntax, each line in the
command part of the rule is individually executed in its own shell — unless you tie consecutive
lines together with backslashes.

includedir = /usr/local/include
include_HEADERS = m4module.h error.h hash.h system.h

install-HEADERS: $(include_HEADERS)
mkdir $(includedir)
for p in $(include_HEADERS); do \
cp $$p $(includedir)/$$p; \
done
Example 5.16: Basic header installation Makefile excerpt

In this example, the command consists of only two actual shell commands. The first, ‘mkdir
$(includedir)’, is invoked as a simple one line command; the next command consists of the
remaining lines in the rule, because of the ‘\’ at the end of each unfinished line.

There is an important distinction to be made here between Make variables, like
‘$(includedir)’, and shell variables, such as ‘$$p’. We have already discussed Make variables
in Section 5.2.2 [Make Variables], page 109. Unfortunately the ‘¢’ symbol is already used to
denote Make variables, and consequently to pass ‘¢’ through to the shell from the command
part of a rule the ‘¢’ symbol needs to be doubled up: Hence the ‘$$p’ in this command becomes
‘$p’ when finally executed by the shell.

Describing how to program in shell is beyond the scope of this book, but you can find terse
details in your system manual pages:

$ man sh
See Section 5.8 [Further Reading], page 125 for further recommendations. In practice, provided
that you use Automake in conjunction with Make, it is quite unusual to need shell program-
ming features in your Makefiles, since all of the complicated commands are generated for you.
Automake is dicussed in much more detail later, in Chapter 10 [Automake|, page 203.

4 Actually, with GNU Make, it is still part of the comment.

Chapter 5: Automatic Compilation with Make 113

5.3.1 Command Prefixes

This is what happens when the ‘install-HEADERS’ target from ezample 5.16 is invoked:

$ make install-HEADERS

mkdir /usr/local/include

mkdir: cannot make directory ‘/usr/local/include’: File exists
make: *x* [install-HEADERS] Error 1

Not exactly what we wanted, yet we do need to keep the ‘mkdir’ command line in the rule
incase the person who installs the project really doesn’t have a ‘/usr/local/include’ directory.
Discarding the error message is easy enough, we simply redirect it to ‘/dev/null’. The real
problem is that when Make encounters an error in the command sequence, it stops processing
and prints a message like the one above.

Make provides a facility to override this behaviour, and thus continue normal processing and
ignore any error from the shell command. By prefixing the command with a ‘=’ character as
follows, we tell make that it doesn’t matter if that command fails:

install-HEADERS: $(include_HEADERS)
-mkdir $(includedir) 2>/dev/null
for p in $(include_HEADERS); do \
cp $%p $(includedir)/$$p; \
done

Example 5.17: Ignoring errors from shell commands in Make rules

Things progress as expected now:

$ make install-HEADERS

mkdir /usr/local/include

make: [install-HEADERS] Error 1 (ignored)

for p in m4module.h error.h hash.h system.h; do \
cp $p /usr/local/include/$p; \

done

Notice that the ‘$$p’ references from the Makefile commands have been passed to the shell as
‘$p’ as explained in the last section.

As long as it doesn’t encounter any errors in the commands as it processes them (except for ‘=’
prefix ignored errors), the normal behaviour of Make is to echo each line of the command to your
display just before passing it to the shell. As this happens, Make variables are replaced by their
current value, as evidenced by the list of files in the for loop above where ‘¢ (include_HEADERS)’
was written in the Makefile. Although double ‘$$’ sequences are replaced by a single ‘$’, the
command itself along with any shell variable references are then simply copied to your display
before the shell processes it.

There is another prefix that you can add to a command line to suppress echoing. By inserting
a ‘@ at the start of a command, you tell Make to pass that command directly to the shell for
processing. We can take advantage of this feature to clarify what the shell is doing in the
commands of our ‘install-HEADERS’ rule:

114 Programming with GNU Software

install-HEADERS: $(include_HEADERS)
Otest -d $(includedir) || \
{ echo mkdir $(includedir); mkdir $(includedir); }
@for p in $(include_HEADERS); do \
echo cp $$p $(includedir)/$$p; \
cp $$p $(includedir)/$$p; \
done

Example 5.18: Suppressing echoing of shell commands in Make rules

There are still two commands in this rule, but now we have turned off echoing from Make with
the ‘@ prefix, and instead use the shell echo command to report what is being done:

$ make install-HEADERS

cp m4module.h /usr/local/include/m4module.h
cp error.h /usr/local/include/error.h

cp hash.h /usr/local/include/hash.h

cp system.h /usr/local/include/system.h

This time, we tested for the existence of a ‘$ (includedir)’, and created it only if it was missing.
In this example the directory was already present, so the second clause of the first command in
example 5.18 didn’t trigger.

Because of the ‘@’ prefix on the first command in the rule, no command is echoed by make.
We control when something is displayed, and echo the command only when it is executed. Much
better.

Also, rather than letting Make echo the for loop code directly, we have the shell individually
report each file that it copies, which makes the output of the command reflect exactly what is
going on, and makes it easier for your users to see what is happening when that rule is invoked.

5.4 Special Targets

Different implementations of Make provide varying numbers of special targets: GNU Make
itself has a particularly impressive array of special targets, which are described exhaustively
in the documention installed along with the GNU Make binary. However, in conjunction with
Automake (see Chapter 10 [Automake], page 203), none are actually explicitly required. We
discuss them here because if you decide not to use Automake for some reason, you will need to
use them — and, besides, the equivalent features in Automake are easier to understand if you
have a good grasp of what is happening in the ‘Makefile’s it generates.

In the next two subsections we discuss ‘. SUFFIXES’ and ‘. PHONY’ as a useful and representative
subset of the special targets supported by all incarnations of Make.

5.4.1 Suffix Rules

The Makefile in example 5.11 has a dependency rule for the compilation of each of the source
files in the source directory. Remembering to add a new rule to the Makefile each time a new
source file is added to the project would be an unwanted distraction from the real work of
writing code. Accordingly, Make offers a way to specify how groups of similar files are kept up
to date, which is especially useful in cases like this where the commands for each rule are almost
identical.

Make will determine when to apply these rules based on the file suffix that follows the last
dot in the pertinent file name. The explicit rules all follow this template:

Chapter 5: Automatic Compilation with Make 115

main.o: main.c
$(CC) $(CFLAGS) $(CPPFLAGS) -c main.c

Example 5.19: A Make rule for compiling main.c

The relationship between the target, ‘main.o’, and its dependency, ‘main.c’ is characterised by
the suffixes ‘.0’ and ‘.c’. An equivalent suffix rule, which can also be used to update any target
with a ‘.o’ suffix from an existing ‘. c’ suffixed filename is as follows:

$(CC) $(CFLAGS) $(CPPFLAGS) -c $<
Example 5.20: A suffix rule for compiling C source files

Confusingly, if you compare example 5.19 and example 5.20, the order of the suffixes to the left
of the ‘:’ above, is reversed with respect to how they would appear in the earlier explicit rule.
This takes some getting used to, but follows the precedent set by prehistoric implementations
of the Make utility. The odd looking variable reference, ‘$<’ refers to the ‘. c’ file that matched
the rule, and is explained fully in Section 5.4.2 [Automatic Variables|, page 117.

Suffix rules take a very similar form to normal dependency rules. However, the target-suffix
follows the dependent-suffix immediately with no separation:

dependent-suffixtarget-suffix:
command

Example 5.21: Format of a double suffix rule

Notice that unlike example 5.3 there is nowhere to list dependencies in a suffix rule. As a
matter of fact, Make will not interpret a rule that does list dependencies as a suffix rule; it will
be treated as a dependency rule with a target named, say, ‘.c.o’. GNU Make already knows
about many of the common suffixes like ‘.c’ and ‘.0’, and in fact has a fairly exhaustive list of
suffixes and default suffix rules declared for you, as explained in Section 5.7 [Invoking Make],
page 123. It uses this knowledge to distinguish between a suffix rule for generating ‘.o’ files from
similarly named ‘.c’ files, and a standard dependency rule to create a wierd target file named
‘.c.0o’. You must declare any additional suffixes used by the suffix rules in your ‘Makefile’.
Make uses a special target named .SUFFIXES for this, like so:

.SUFFIXES: .c .o

The default suffix list is a double edged sword though, and will occasionally elicit surprising
behaviour from Make when some of your files happen to match one of the predeclared suffix
rules. We advocate the principle of least surprise®, and as such recommend enabling only the
suffix rules that are specifically required by each individual ‘Makefile’. First, empty the suffix
list with an empty ‘.SUFFIXES’ target, and then declare the suffixes you actually need in a
second ‘.SUFFIXES’ target.

This works because, unlike normal targets, when ‘.SUFFIXES’ appears multiple times within
a ‘Makefile’, the dependencies for each new appearance are added to a growing list of known
file suffixes. Except that at any point ‘. SUFFIXES’ is written with no dependencies, this growing
list is reset by removing every suffix it contains — subsequent appearances will then be able to
add more suffixes back in to the list.

5 Complex systems are much easier to understand if they always do what you would expect.

116 Programming with GNU Software

Applying these idioms to our Makefile, we now have:

cc = gcc

CFLAGS = -ggdb3

CPPFLAGS = -DDEBUG=1

m4_0BJECTS = main.o freeze.o stackovf.o
m4_LIBS = ../1lib/libm4.a

.SUFFIXES:

.SUFFIXES: .c .o

m4: $(m4_OBJECTS) $(m4_LIBS)
$(CC) $(CFLAGS) -o m4 $(m4_0BJECTS) $(m4_LDADD) $(LIBS)

$(CC) $(CFLAGS) $(CPPFLAGS) -c $<
Example 5.22: The complete Makefile with suffix rule

In general, you will need a mixture of suffix rules and target dependency rules to describe the
entire build process required to transform your source code into an executable. Sometimes you
might want to use a single suffix rule for the vast majority of your files, but make an exception
for an odd one or two.

For example, one set ‘CPPFLAGS’ might be fine for most of your C compilation, but you need
to add an additional ‘~-DDEBUG=1’ option to one or two special files:

cc = gcc
CFLAGS = -ggdb3
CPPFLAGS =

c.o:

$(CC) $(CFLAGS) $(CPPFLAGS) -c $<

stackovf.o: stackovf.c
$(CC) $(CFLAGS) $(CPPFLAGS) -DDEBUG=1 -c stackovf.c

Example 5.23: Compiling some files with different options

Here, the files compiled by the suffix rule use only the options specified in the variables, but
‘stackovf.o’ is compiled by a specific rule which explicitly adds ‘~-DDEBUG=1’. By listing the file
that needs different options as a specific target, that rule overrides the suffix rule in that case.
Let’s see this in action:

$ rm *.0

$ make m4

gcc —-ggdb3 -c main.c

gcc -ggdb3 -c freeze.c

gcc -ggdb3 -DDEBUG=1 -c stackovf.c.c
gcc -o m4 main.o freeze.o stackovf.o ../lib/libm4.a

Chapter 5: Automatic Compilation with Make 117

5.4.2 Automatic Variables

Automatic variables are used in much the same way as normal Make variables, except that
their value are set automatically by Make according to the suffix rule in which they are used.

In example 5.20, we used a so called automatic variable to refer to the implicit dependency
file in a suffix rule. The corollary of this is an automatic variable to refer to the implicit target
in a suffix rule. Here is a variation of the suffix rule we added to our ‘Makefile’ in example
5.20, but using automatic variables to refer to the implicit target and dependency files:

$(CC) $(CFLAGS) $(CPPFLAGS) -c $< -o $0@
Example 5.24: Suffiz rule to compile C source files

‘$< In a suffix rule, this variable contains the name of the dependent file that would be
needed for the rule to match.

When Make determines that it needs an up to date ‘stackovf .o’ in order to continue
the build, and decides to use this suffix rule to bring it up to date, ‘$<’ will expand
to ‘stackovf.c’.

‘$e@’ Similarly, this variable contains the name of the target file which matched this suffix
rule.
For the same ‘stackovf.o’ problem above, ‘$@” will expand to ‘stackovf.o’.

A small example should crystalise these facts in your mind. Using the following tiny
‘Makefile’ you can see how this works in practice:

Q@echo ’$$< = $<°
@echo ’$$0 = $@°

Example 5.25: Automatic variable setting demonstration

You can now create any dummy ‘. c’ file to match the dependency part of the suffix rule, and
ask make to bring a matching target up to date:

$ touch hello.c
$ make hello.o
$< = hello.c
$0@ = hello.o

NOTE GNU Make will actually honour automatic variables in normal depen-
dency rules too, but this is an enhancement beyond what many other
implementations of Make allow. If you use this feature in your own
project, you can be certain that one of your users will be using a make
that doesn’t support it, and will be unable to compile your code as a
result.

5.4.3 Phony Targets

Often, for ease of use, you want to capture a useful set of shell commands in a ‘Makefile’, yet
the commands do not generate a file and thus have no target file; the target is just a convenient

118 Programming with GNU Software

handle for a command that you want to run periodically. The ‘clean’ target from ezample 5.2
is an example of such a rule, repeated here:

clean:
rm -f $(m4_0BJECTS)

Example 5.26: A phony target

There is no file ‘clean’ involved here; but you can clean out the object files in the build directory
with:

$ make clean

rm -f main.o freeze.o stackovf.o
There is nothing special happening here. Asking Make to build the ‘clean’ target, it finds that
the ‘clean’ file is out of date (missing entirely, infact!) and tries to refresh it by running the
commands in the associated rule. No ‘clean’ file is created by running commands, which means
that Make will consider the ‘clean’ target to still be out of date the next time you invoke make
clean.

So what happens if you accidentally drop a file named ‘clean’ into the build directory,
and try to invoke the ‘clean’ target? Well, Make will see the file, and find that there are no
dependencies against the ‘clean’ target — so ‘clean’ is up to date already, and there is no need
to execute the rm command. In all fairness, if you choose the names of your phony targets
carefully, you shouldn’t get into this situation. Just the same, Make provides a special target,
.PHONY, against which you can list your phony targets as dependencies, like this:

.PHONY: clean

Make now knows that ‘clean’ does not represent an actual file, and will always execute the
command part of the ‘clean’ rule.

Unlike normal targets, ‘.PHONY’ can be inserted into a Makefile more than once, in which
case Make will append subsequent ‘.PHONY’ dependencies to the current list, in exactly the same
way that ‘. SUFFIXES’ behaves (see Section 5.4.1 [Suffix Rules|, page 114).

5.5 Make Conditionals

GNU Make provides a rich set of conditional directives, with which you can annotate parts of
the ‘Makefile’ to be used conditionally (or ignored). Make conditional directives work in very
much the same way as C preprocessor directives ((FIXME: zref the preprocessor section of the
GCC chapter.)); before the effective contents of a Makefile are parsed, the file is examined and
the conditional directives processed to determine what the effective contents of the Makefile are.
There are four Make conditional directives, all of which take the following form:

conditional-directive
effective if condition is true

else
effective if condition is false

endif
Example 5.27: Format of a Make conditional directive

The ‘else’ keyword, and the following false text can be omitted entirely if necessary. There
is no need to start the directives in column zero, nor to indent the conditional text blocks any

Chapter 5: Automatic Compilation with Make 119

differently than normal. Whatever indentation is given for conditionl text is used verbatim in
the effective contents of the ‘Makefile’ after the directives have been parsed. Should you wish
to indent the directives themselves, you must use spaces rather than tabs to avoid fooling Make
into thinking the directive is part of a dependency rule command.

The conditional-directive can be one of the following:

ifdef variable-name

The if defined directive tests whether the named Make variable (see Section 5.2.2
[Make Variables], page 109) is empty. However, variable-name is not actually ex-
panded: If its value contains anything, even a reference to some undefined Make
variable, the ‘effective if condition is true’ text is passed through to the next
stage of the Makefile parser. Converseely, if an else clause is present and variable-
name has an empty value, or is not defined at all, the condition fails and the
‘effective if condition is false’ text is effective.

OPT =

CFLAGS

ALL_CFLAGS

all:

ifdef ALL_CFLAGS
Q@echo true

$(0PT) $(CFLAGS)

else
Q@echo false
endif

Here, the ‘Makefile’ above will echo ‘true’. Although ‘ALL_CFLAGS’ evaluates to
empty, the pre-processing pass merely checks to see if the value of ‘ALL_CFLAGS’
contains any text — which it does — so the ‘@echo true’ text is effective.

ifndef variable-name

The if not defined conditional works in the opposite sense to ‘ifdef’. By implication,
if variable-name has an empty value, or is simply not defined, the ‘effective if
condition is true’ text is effective, otherwise, if an else clause is present, the
‘effective if condition is false’ text is effective.

cC =

ifndef CC

CC = gcc

endif

all:
@echo $(CC)

When parsed by Make, the ‘Makefile’ above will always ‘echo gcc’.

ifeq "argument" "argument"
Unlike the last two conditionals, this if equal directive does expand any variables
referenced in either of the two arguments, before they are compared to determine
the effective text. If both arguments have the same contents after variable references
have been expanded, then the ‘effective if condition is true’ text is effective.

1feq "$(CC) n "gCC"

CFLAGS = -Wall -pedantic

endif
This example shows how you might change the ‘CFLAGS’ to give better warnings
when compiling with gcc.

120 Programming with GNU Software

ifneq "argument" "argument"
Similarly, there is an if not equal directive, which behaves much the same as ‘ifeq’,
but obviously with the sense of the test reversed.

lfneq ll$(CC) n "gCC"

CFLAGS=-g
else
CFLAGS=-ggdb3
endif

This ‘Makefile’ fragment shows how you can set the compiler debugging flags op-
timally for Gce, without adverse effects when a different compiler is used.

5.5.1 Make Include Directive

GNU Make has one other directive, which is not actually a conditional, though it is processed
in the same pass as the conditionals and has some noteworthy interactions with them:

include file—-name

Example 5.28: Format of a Make include directive

Again, in parallel with the C preprocessor, before the effective contents of the Makefile are
parsed, Make’s ‘include’ directive is effectively replaced by the listed file-name contents. Any
variable references in the list are expanded before the filenames are opened, and since the names
are delimited with whitespace, a single referenced variable can safely contain more than one
file-name. This does mean, however, that there is no way to specify a file-name containing a
space.

If file-name is a relative path, such as ‘../vars.mk’, instead of a fully qualified path like
‘/usr/share/make/make.std’, and cannot be found by starting in the current directory, Make
tries to find the file in directories in the include search path. See Section 5.7 [Invoking Make],
page 123, for details about setting the include search path. If a file-name still cannot be found,
then Make will issue a warning:

Makefile:1: Make.depend: No such file or directory

If any included file-name was not found, but has a corresponding target rule, Make will issue
these warnings, but then try to build the missing files and continue. This is easiest explained by
enhancing our ‘Makefile’. As with any non-trivial project, there are many interdependencies
between the various source files that comprise the GNU M4 package. In the ‘Makefile’ we
have been looking at so far in this chapter, each of the ‘m4_0BJECTS’ files depends on parts of
‘../lib/libmé4.a’. In fact, it is important that the objects be refreshed if they become out of
date with respect to those parts they depend on. . .

Maintaining the dependencies between files is time consuming and error prone. UNIX comes
with a tool called makedepend, which will automatically discover the dependencies for us, and
we can put it to good use here:

MAKEDEPEND = makedepend
DEPEND_FRAGMENT= Make.depend

include $(DEPEND_FRAGMENT)

ccC = gcc
CFLAGS -ggdb3
CPPFLAGS = -DDEBUG=1

Chapter 5: Automatic Compilation with Make 121

m4_SOURCES = main.c freeze.c stackovf.c
m4_0BJECTS = main.o freeze.o stackovf.o
mé4_LIBS = ../1lib/libm4.a

.SUFFIXES:

.SUFFIXES: .c .o

m4: $(m4_OBJECTS) $(m4_LIBS)
$(CC) $(CFLAGS) -o m4 $(m4_0BJECTS) $(m4_LDADD) $(LIBS)

$(CC) $(CFLAGS) $(CPPFLAGS) -c $<

$ (DEPEND_FRAGMENT) : $(m4_SOURCES)
$ (MAKEDEPEND) $(CPPFLAGS) -f $(DEPEND_FRAGMENT) $(m4_SOURCES)

Example 5.29: Automatic file dependencies with Make

Now, we are trying to ‘include’ a Makefile fragment which contains the generated dependency
list. But rather than manually generating it, we have also added a new rule which uses the
makedepend utility to write the dependencies to ‘Make .depend’. Now, even though Make initially
warns us if it cannot ‘include’ ‘Make.depend’, before giving up it will try to build the file itself,
and then reread the original ‘Makefile’.

Notice that we have made the depend-fragment file dependent upon the source files it scans,
so that if they change, ‘Make.depend’ will be refreshed. The first time ‘Makefile’ is used after
adding these new items, when ‘Make.depend’ does not yet exist, you will see the following:

$ make

Makefile:4: Make.depend: No such file or directory

makedepend -DDEBUG=1 -f Make.depend main.c freeze.c stackovf.c
cp: Make.depend: No such file or directory

Appending dependencies to Make.depend

make: ‘m4’ is up to date.

Make eventually created its own ‘Make.depend’, and now knows how to regenerate it if any of
the sources whose dependencies it contains are changed!

You will be able to find more details about the makedepend command in your system manual
pages, with man makedepend.

5.6 Multiple Directories

Except in the most trivial of projects, source files are usually arranged in subdirectories.
Unfortunately, because of the way it is designed, Make is difficult to use with files that are
not in the same directory as the Makefile itself. Because of this, it is best to put a separate
Makefile in each directory, and make each Makefile responsible for only the source files in its
own directory. For example:

122

$ tree -P Makefile m4

m4
| ——
| ——

4

Makefile
config

‘—— Makefile
doc

‘-— Makefile
examples

‘—— Makefile
intl

‘—— Makefile
m4

‘-— Makefile
modules

‘—— Makefile
po

‘—— Makefile
src

‘—— Makefile
tests
¢—— Makefile

10 directories

Programming with GNU Software

In order to have the build process recurse through the source tree, the toplevel Makefile must
descend into the subdirectories and start a new Make process in each. Typically, the order that
the subdirectories are visited is critical. For the project depicted above, the build must first
visit the ‘po’ and ‘intl’ directories to build the internationalisation libraries®, then the ‘m4’
subdirectory to build ‘1ibm4.a’; which uses the internationalisation library, before building the
loadable modules which rely on ‘libm4.1la’ and so on, and so forth, until the build completes

by building the documentation in the ‘doc’ subdirectory.

GNU Make sets the variable ‘$ (MAKE)’ to the name with which make was invoked. For ex-
ample, many vendor environments install GNU Make as ‘gmake’ — blindy running make from the
command part of a rule would not then invoke gmake, even if the user had invoked gmake on
the top level Makefile.

SUBDIRS = intl po config m4 modules src tests examples doc

all:

Example 5.30:

@for subdir in $(SUBDIRS); do \
echo "Making all in $$subdir"; \
cd $$subdir && $(MAKE) all; \

done

Top level Makefile fragment for recursing subdirectories

Using ‘$ (MAKE)’ in ezample 5.30 ensures that the recursive make invocations in the command
will execute the same program that the user originally ran to start the instance of make that
read this Makefile.

With care, it is possible to set up a Makefile that, in addition to running recursive make
invocations on Makefiles in subdirectories, will also perform some builds in its own directory.

6 We already covered this in (FIXME: zref chapter 2.).

Chapter 5: Automatic Compilation with Make 123

And there is certainly nothing to prevent you from setting up a build tree that has more than
nested levels of Makefile. Later in Chapter 10 [Automake|, page 203, we will explain how
Automake manages all of the details of recursion for you.

5.7 Invoking Make

The majority of the time, with the hard work already expended in creating a ‘Makefile’,
employing that file to refresh build targets is no more complicated than this:

$ make target

This being the GNU system though, you can of course do so much more. There are many
command line options that affect the way that GNU Make behaves, which you can always get a
summary of by running make --help from the command line. We will describe a useful subset
in this section, but you can find comprehensive details in The Gnu Make Manual that ships
with GNU Make.

‘-I directory’
You can specify this option as many times as you like to list various directories that
you want Make to search for additional Makefile fragments that are pulled in to the
effective Makefile with the ‘include’ directive.

‘~f file-name’
This option allows you to specify an alternative Makefile by name. Instead of reading
from the default ‘Makefile’, file-name will be read instead.

-n If you need to see what Make would do, without actually running any of the com-
mand rules, use the ‘-n’ option to have Make display those commands but not
execute them.

-k’ Occasionally, you might be missing one of the tools that a shell command early in
the sequence tries to run, but which is not critical to the correct operation of the
package, but even so Make will give up and report an error message. This option
tells Make to just keep going in the face of errors from shell commands, so that you
can snatch victory from the jaws of defeat.

One of the most useful facilities is being able to override Make variable values from the
command line: With this feature you can set your Makefile variable to perform a production
build of your project (say, maximum optimisation, create shared libraries, minimum debug code
enabled), but specify more appropriate values on the command line during development. So, in
our ‘Makefile’ we would specify the following:

CFLAGS
CPPFLAGS

Example 5.31: Production build values for compilation flags

-06

But during development, by invoking Make as follows, change the values of those Make variables
for the current build:

$ make CFLAGS=’-ggdb3 -Wall’ CPPFLAGS=’-DDEBUG=9’ m4

Do be aware that it is easy to end up with a set of mismatched objects, compiled with different
flags if you keep changing the override values without performing a complete build. To avoid
doing this accidentally, you should probably run ‘make clean’ between changes to the override
settings. Unless you really do want to compile just a few objects with different build options for
some reason...

124 Programming with GNU Software

5.7.1 Environment Variables

In addition to having a provision for overriding the values of Make variables at build time,
Make also provides for supplying default values for variables that are not otherwise assigned.
The mechanism for enabling this feature is simply through the UNIX environment. If you are
using a bourne compatible shell”, variables are exported to the environment using the export
keyword, like this:

$ prefix=$HOME/test
$ export prefix

With the ‘prefix’ shell variable exported into the environment, it can be referred to from a
Makefile with ‘$ (prefix)’, just like any other Make variable. However, it is only a default value,
so it won’t be seen if there is a declaration of ‘prefix’ within the ‘Makefile’, or indeed if you
override it from the command line as described in the last section.

GNU Make will allow you to force the Makefile to prefer settings from the environment over
the variable declarations in the file if you specify the ‘-e’ option when you invoke make. None
of this is as complicated as it sounds — take the following ‘Makefile’ fragment:

includedir
include_HEADERS

$(prefix)/include
m4module.h error.h hash.h system.h

install-HEADERS: $(include_HEADERS)
Otest -d $(includedir) || \
{ echo mkdir $(includedir); mkdir $(includedir); }
@for p in $(include_HEADERS); do \
echo cp $$p $(includedir)/$$p; \
cp $$p $(includedir)/$$p; \
done

Example 5.32: Precedence of Make variable declarations

For this particular ‘Makefile’ we can override the value of ‘includedir’ like this:

$ make -n includedir=’$(HOME)/include’
mkdir /home/gary/include
cp m4module.h /home/gary/include/m4module.h

Notice that I set the override value of ‘includedir’ to reference the variable ‘$ (HOME)’, and this
was defaulted from my shell environment, since there is no declaration for ‘HOME’ either in the
‘Makefile’ or in the command line invocation.

However, there would be no point in setting ‘includedir’ in the shell as an environment
variable, since whatever default value was set, it would be superceded by the variable delaration
at line 1 of ‘Makefile’. Unless, we use the ‘-e’ option to make:

$ prefix=/usr/local

$ export prefix

$ make -n -e

cp m4module.h /usr/local/include/m4module.h
cp error.h /usr/local/include/error.h

7 For example GNU bash, ksh, zsh, sh5 are all based on Steve Bourne’s original UNIX shell.

Chapter 5: Automatic Compilation with Make 125

5.8 Further Reading

Once you have read and understood this chapter, you will have all the information you need
to get the most from the following chapters, especially Chapter 10 [Automake], page 203 which
builds directly on the material discussed here. In the short space allocated to Make in this
book, we have only really covered the basics of the functionality and application of the UNIX
Make tool, and barely scratched the surface of the many extensions provided by GNU Make. If
you wish to find out more about Make, or the shell language used in the command parts of
dependency rules, here are some other books we recommend:

The GNU Make Manual
Written by The Free Software Foundation
Available with the sources for GNU Make

Managing Projects with make
Written by Andrew Oram and Steve Talbot
Published by O’Reilly; ISBN: 0937175900

Learning the Bash Shell
Written by Cameron Newham and Bill Rosenblatt
Published by O’Reilly; ISBN: 1565923472

The Bourne Shell Quick Reference Guide
Written by Anatole Olczak
Published by ASP; ISBN: 093573922X

Before we revisit the application of Make, in the next few chapters we will discuss some of
the other tools that underpin Automake, namely Autoconf and M4. But first we will return
to the discourse on compiler tools from the end of the last chapter on Gce. If you are more
interested in learning about the GNU configuration tools, you could skip straight to the chapter
about M4, See Chapter 8 [Writing M4 Scripts], page 187.

126 Programming with GNU Software

Chapter 6: Scanning with Gperf and Flex 127

6 Scanning with Gperf and Flex

6.1 Scanning with Gperf

A part of the job of scanners is recognizing keywords amongst identifiers. We examine this
task briefly in Section 6.1.1 [Looking for Keywords], page 127. This will lead to us to design a
program automating the generation of keyword recognizers, which turns out to be what Gperf
is, as explained in Section 6.1.2 [What Gperf is|, page 130.

Once the generic background is depicted, we will proceed with an example presenting the
most basic features of Gperf, see Section 6.1.3 [Simple Uses of Gperf], page 131. Then, after
having presented more formally gperf in Section 6.1.4 [Using Gperf], page 133, we will present
a complete use of Gperf, exhibiting the classic pitfalls, Section 6.1.5 [Advanced Use of Gperf],
page 135, and its interface with Autoconf and Automake, Section 6.1.6 [Using Gperf with the
GNU Build System], page 140.

Finally, in Section 6.1.7 [Exercises on Gperf], page 141, we will propose a few directions for
the readers willing to go further with Gperf.

6.1.1 Looking for Keywords

Suppose you face the following problem: you are given a fixed and finite set K of k words
—henceforth keywords—, find whether a candidate word belongs to K.

There are tons of solutions, of varying efficiency. The question essentially amounts to writing
a generalization of switch operating on literal strings:

switch (word)
{
case "foo":
/* perform ‘foo’ operations. */
break;
case '"bar":
/* perform ‘bar’ operations. */
break;
default:
/* WORD is not a keyword. */
break;
}
A first implementation could be
if (!strcmp (word, "foo"))
/* perform ‘foo’ operations. */
else if (!strcmp (word, "bar"))
/* perform ‘bar’ operations. */

else
/* WORD is not a keyword. */
which of course is extremely inefficient both when submitted a keyword (think of the last one) and
worse yet, when submitted a plain word. In the worst case, we perform k string comparisons.
But it is good enough for a few lookups in a small set of words, for instance command line
arguments.

The proper ways to implement this by hand are well known, binary search for a start:

128 Programming with GNU Software

/* Compare the keys of KEY1 and KEY2 with strcmp. */
int keyword_cmp (const keyword_t *keyl, const keyword_t xkey2);

/* The list of keywords, ordered lexicographically. */
const keyword_t keywords[] =
{

{ "bar", &bar_function },
{ "baz", &baz_function },

¥

/* Number of keywords. */
const size_t keywords_num = sizeof (keywords) / sizeof (*keywords);

{
/* Look for WORD in the list of keywords. */
keyword = bsearch (word, keywords, keyword_num,
sizeof (keyword_t), keyword_cmp);
if (keyword)
/* Perform the associated action. */
keyword->function Q) ;
else
/* Not a keyword. */
default_action ();

This is very efficient —the number of string comparisons is bounded by the logarithm of k— and
way enough for most uses. Nevertheless, you have to be sure that your array is properly sorted.
For sake of reliability, sorting the array beforehand (e.g., using qsort at program startup) might
be a good idea, but of course incurs some performance penalty.

But initialization is unlikely to matter, especially if keyword lookup is frequently performed.
If you are crazy for speed, always looking for wilder sensations, you will notice that once we
reached some performance bounds with respect the number of string comparisons, then it is the
number of character comparisons that matters. Imagine you have 256 keywords, then the first
character of a non keyword will be compared at least 8 times, no matter whether any keyword
actually starts with this letter. All its other characters are also likely to be read and compared
several times. Therefore, instead of considering the problem looking at rows of strings, you will
look at the columns of characters. You will end up with something like:

Chapter 6: Scanning with Gperf and Flex 129

switch (word[0])

{
case ’b’: /* ‘b’ x/
switch (word[1])
{
case ’a’: /* ‘ba’ */
switch (word[2])
{
case ’r’: /* ‘bar’ */
switch (word[3])
{
case ’\0’: /* ‘bar\0’ *x/
/* Perform ‘bar’ function. */
break;
default:
/* Not a keyword. */
break;
} /% switch (word[3]) x*/
break;

} /* switch (word[2]) */
break;

} /* switch (word[1]) =*/
break;

} /* switch (word[0]) */

In other words, you will implement by hand a small automaton, reduced to a simple tree:

,————- . \0 ,——————- .
r.--| bar |----| bar\0 |-->
,mmm.a ,—m==/ fmm—-- ’ (oo ’
| b [-—=1| ba |
/=== f====\ - . \0 ,-—————- :
b/ z‘--| baz |----| baz\0 |-->
===/ f=mmm= ’ fmmmmmmm ’
__>| |___
==\
£\
\---. o ,--—-. 0 ,——--- . \0 ,-————-- .
| £ |-——-| fo |---| foo |--—=| foo\0 |-—>
4

C___ [N | [P)y)

Example 6.1: A Fast Keyword Tree-like Recognizer

where (i) the entering arrow denotes the initial state, (ii) exiting arrows denote successful key-
word recognitions, and (iii), any characters that cannot be “accepted” by a state (i.e., there is no

130 Programming with GNU Software

transition, no arrow, exiting from this node, labeled with the character), result in the successful
recognition of a non keyword.

This automaton is definitely unbeatable at recognizing keywords: how could you be faster
given that each character is compared only once!! The average time taken by linear approach,
first exposed, is proportional to the number of keywords; using a binary search cuts it down to
its logarithm; and finally the automaton needs virtually a single string comparison: its efficiency
is independent of the number of keywords!

Can you do better than that?...

In typical compilers input, you have to take user identifiers into account, and on average,
being the fastest at recognizing keywords is not enough: you would like to discriminate non
keywords as soon as possible. Suppose you found out that all the keywords end with ‘_t’, or
even that the same character always appears at some fixed position. Starting by checking the
characters at these positions will let you recognize some non keywords faster than using the
automaton above.

Generalizing this idea, we are looking for a function which will let us know with a high
probability whether a word is not a keyword just by looking at a few well chosen characters.
We can improve even further this idea: if we choose the characters well enough, it might give
us an intuition of the keyword the word might be. Let us name this function hash, and let it
compute an integer, so that processing its result will be cheap. The algorithm will be:

compute the hash code: the value of ‘hash (word)’

if the hash code is not representative of any keyword then
return failure
else
for each keyword corresponding to the hash code do
if this keyword matches then
return it
end if
end for each
return failure
end if

This algorithm, based on a hash function, is as efficient as the automaton was: its performances
are independent of the number of keywords!

It is crucial that the hash code be simple to compute, but the time spent in designing hash
function is inessential: once you wrote it for a given set of keywords, it will be potentially used
millions of times. But of course a little of automation would be most welcome, since laziness is
definitely a quality of programmers...

6.1.2 What Gperf is

Gperf is a generator of small and fast recognizers for compile-time fixed sets of keywords.
Unless specified differently through command line options, the result is C code consisting of
a static hash table and a hash function optimized for a given set of keywords. There is no
restriction on the use of its output, v.g., no license is imposed on its output.

L There is room for debate here: the compiler will transform most of the switch into plain ifs, instead of

computed gotos, especially when there are few cases, hence there will be several comparisons. A strict study
depends upon the compiler. In addition, the price of the gotos should be taken into account too. Let us
merely say “each character is consulted once”.

Chapter 6: Scanning with Gperf and Flex 131

This recognizer is typically used to discriminate reserved words from identifiers in compilers.
The GNU Compiler Collection (FIXME: ref to GCC.), GCC, uses it at least for Ada, C, C++,
Chill, Java, Modula 2, Modula 3, Objective C, and Pascal. GNU Indent also bases its keyword
recognition on Gperf, but its uses are not limited to programming languages. For instance
makeinfo, the Texinfo to Info translator, uses it to recognize its directives. Finally, it proves
itself useful for handling sets of options, especially because it provides a very convenient interface
—performance is less likely to matter. For instance GNU a2ps uses Gperf to read its configuration
files, GNU Libiconv, the GNU character set conversion library, uses Gperf to resolve more than
three hundred aliases such as 11 different names for ASCII.

A hash function is a fast function which maps any member of a k element user-specified
keyword set K onto an integer range 0..n - 1. The result integer, called hash code, is then used
as an index into an n element table containing the keywords, sorted according to their hash
code.

A hash function is perfect if no two keywords have the same hash code, in other words if
the result hash table is collision-free. This means that at runtime time cost is reduced to the
minimum: examining a single string at runtime suffices. For perfect hash table, we have n >=
k. A hash function is minimal when its space cost is reduced to the minimum: n = k.

Usually time optimality is more important than space optimality, and fortunately it is easier
to generate perfect hash functions than minimal perfect hash functions. Moreover, non-minimal
perfect hash functions frequently execute faster than minimal ones in practice. This phenomenon
occurs since searching a sparse keyword table increases the probability of locating a “null” entry,
thereby reducing string comparisons. gperf’s default behavior generates near-minimal perfect
hash functions for keyword sets. However, gperf provides many options that permit user control
over the degree of minimality and perfection.

6.1.3 Simple Uses of Gperf

Gperf is a source generator, just as Flex, Bison, and others. It takes the list of your keywords
as input, and produces a fast function recognizing them. As for Flex and Bison, the input syntax
allows for a prologue, containing directives for gperf and possibly some user declarations and
initializations, and an epilogue, typically additional functions:

hi

user-prologue
%}
gperf-directives
Toth
keywords
Tolh
user—epilogue

Example 6.2: Structure of a Gperf Input File

All the keywords are listed on separate lines. They do not need to be enclosed in double
quotes, but if you intend to include special characters or commas, you may use the usual C
string syntax. When run, gperf produces a C program on the standard output, including, in
addition to your user-prologue and user-epilogue, two functions:

static unsigned int hash (char *string, unsigned int length) [Function]
Return an integer, named the key, characteristic of the length characters long C string.

132 Programming with GNU Software

const char * in_word_set (const char *string, unsigned int length) [Function]
If the C string, length character long, is one of the keywords, return a pointer to this keyword
(i.e., not string, but the same content as string), otherwise return NULL.

For instance, the following simple Gperf input file is meant to recognize rude words, and to
express its surprise on unknown words:

W /% k= C %= %/
#include <stdio.h>
#include <stdlib.h>
ht

Toth

shxt

fxk

winxows

Huh? What the fx*?
Dot

int
main (int argc, const char**x argv)
{
for (--argc, ++argv; argc; --argc, ++argv)
if (in_word_set (*argv))
printf ("I don’t like you saying ‘%s’.\n", *argv);
else
printf ("Huh? What the fx ‘Ys’?\n", *argv);
return O;
}

Example 6.3: ‘rude-1.gperf’ — Recognizing Rude Words With Gperf

which we can try now:

$ gperf rude-1.gperf >rude.c

$ gcc -Wall -o rude rude.c

$./rude ’Huh? What the f*7’

Huh? What the f* ‘Huh? What the fx*7°7

Huh? What the f* ‘Huh? What the f* ‘Huh? What the £*7’7’? It was supposed to recognize it!

You just fell into K&R, and it hurts. Our invocation of in_word_set above is wrong, we
forgot to pass the length of the string, and since by default gperf produces K&R C, the compiler
notices nothing (FIXME: Pollux would like to see some actual output of Gperf here, what do
you people think? It’s roughly 100 lines, but I don’t need them all..). As a consequence, never
forget to pass ‘--language=ANSI-C’ to gperf. Just to check the result on our broken source:

$ gperf --language=ANSI-C rude.gperf >rude.c

$ gcc -Wall -o rude rude.c

rude.c: In function ‘main’:

rude.c:91: too few arguments to function ‘in_word_set’

If we fix our invocation, ‘in_word_set (*argv, strlen (*xargv))’, then:

$ gperf --language=ANSI-C rude-2.gperf >rude.c
$ gcc -Wall -o rude rude.c

$./rude ’Huh? What the f*?’

I don’t like you saying ‘Huh? What the fx*7’.

To exercise it further:

Chapter 6: Scanning with Gperf and Flex 133

$./rude ’sh*t’ ’dear’ %}’

I don’t like you saying ‘shx*t’.

Huh? What the f* ‘dear’?

I don’t like you saying ‘%%’.
Huh? What the * ‘%%’? You just fell into a bug in Gperf 2.7.2 which is a bit weak at parsing its
input when the prologue includes solely user declarations, but no actual Gperf directive. You
are unlikely to be bitten, but be aware of that problem.

But before going onto a more evolved example, let’s browse some other features of Gperf.
6.1.4 Using Gperf

This section presents the most significant options of Gperf, the reader is invited to read the
documentation of Gperf, section “Perfect Hash Function Generator” in User’s Guide to gperf
— The GNU Perfect Hash Function Generator, for all the details.

Instead of just returning a unique representative of each keyword, Gperf can be used to
retrieve data associated to it efficiently.

‘-—struct-type’

‘-t’ Specify that the gperf-prologue include the definition of a structure, and that each
line of the keywords section is an instance of this structure. The values of the
members are separated by a comma. The function in_word_set will then return a
pointer to the corresponding struct. This struct should use its first member to
store the keyword, and name it name.

‘-—initializer-suffix=initializers’

‘~F initializers’
When failing to produce a minimal table of keywords, and therefore falling back to a
near-minimal table (see Section 6.1.2 [What Gperf is|, page 130), gperf introduces
empty entries of this struct, leaving the non name part unspecified. This can
trigger spurious compiler warnings, in particular with gcc’s option ‘-W’. Quoting
the ccc documentation:

-w’ Print extra warning messages for these events: ... An ag-
gregate has an initializer which does not initialize all mem-
bers. For example, the following code would cause such a
warning, because x.h would be implicitly initialized to zero:

struct s { int £, g, h; };
struct s x = { 3, 4 };

Use this option to specify the initializers for the empty structure members following
the keyword. The initializers should start with a comma.

‘-—omit-struct-type’

=T’ Don’t output the definition of the keywords’ struct, it has been given only to
describe it to Gperf. Use this option if your structure is defined elsewhere for the
compiler.

By default gperf produces portable code, too portable actually: modern and useful features
are avoided. The following options bring Gperf forward into the 21st century?.

2 Yet, in an effort to modernize, 8 bit characters are handled by default...

134 Programming with GNU Software

‘--language=ANSI-C’

‘-1 ANSI-C’
Output AnsI C instead of some old forgotten dialects of the previous century. You
may also output C++, but decency prevents us from mentioning the other options.

‘--readonly-tables’
‘~C’ Don’t be afraid to use const for internal tables. This is not only better style, it also
helps some compilers to perform better optimization.

‘~—enum’
-FE Output more C code than Cpp directives. In other words, use local enums for Gperf
internal constants instead of global #define.

‘--switch=total-switch-statements’

‘-S total-switch-statements’
Instead of using internal tables, let the compiler perform the best job it can for
your architecture by letting it face a gigantic switch. To assist compilers which are
bad at long switches, you may specify the depth of nested switch via total-switch-
statements. Using 1 is fine with GCC.

You may want to include several Gperf outputs within a single application or even a single
compilation unit. Therefore you need to avoid multiple uses of the same symbols. We already
described ‘--enum’, and its usefulness to avoid global #defines.

‘--hash-fn-name=name’
‘~H name’ Specify the name of the hash function.

‘--lookup-fn-name=name’
‘~H name’ Specify the name of the in_word_set function.

Finally, many options allow to tune the hash function, see section “Options for changing the
Algorithms employed by gperf” in User’s Guide to gperf — The GNU Perfect Hash Function
Generator, for the exhaustive list. The most important options are:

‘~—compare-strncmp’
‘=¢’ Use strncmp rather than strcmp. Using strcmp is the default because it is faster:
it performs arithmetics operations on two items, the two strings, while strncmp

additionally needs to maintain the length.

‘~—duplicates’

-D’ Handle collisions. When several keywords share the same hash value, they are said
to collide. By default gperf fails if it didn’t find any collision free table. With this
option, the word is compared to all the keywords that share its hash value, which
results in degraded performances. Helping Gperf to avoid the collisions is a better
solution if speed is your concern.

‘--key-positions=positions’

‘~k positions’
By default Gperf peeks only at the first and last characters of the keywords; override
this default with the comma separated list of positions. Each position may be a
number, an interval, ‘¢’ to designate the last character of each keyword, or ‘*’ to
consider all the characters.

This option helps solving collisions.

Chapter 6: Scanning with Gperf and Flex 135

6.1.5 Advanced Use of Gperf

This section is devoted to a real application of Gperf: we will design numeral, an M4 module
providing the builtin numeral, which converts numbers written in American English?® into their
actual value®.

While it is obvious that we will need to map tokens (e.g., ‘two’, ‘forty’, ‘thousand’...) onto
their values (‘2’, ‘40’, ‘1000’...), the algorithm to reconstruct a value is less obvious. For a start,
we won'’t try to handle “and” as in “one hundred and fifty”.

Looking at ‘two hundred two’ it is obvious that, reading from left to right, if the value of a
token, ‘two’, is smaller than that of the next token, ‘hundred’, then we have to multiply, 2 *
100 = 200. If not, ‘hundred’ followed by ‘two’, then we need to add, 200 + 2. It seems that
using two variables —res for the current result, and prev_value to remember the value of the
previous token— is enough.

Unfortunately, it is not that simple. For instance ‘two thousand two hundred’ would produce
((2 *1000) + 2) * 100, while the correct equation is (2 * 1000) + (2 * 100). Since we are reading
from left to right, we will need an additional variable to store the hundreds, hundreds. If the
value of the current token is smaller that 1000, then we apply the previous algorithm to compute
hundreds (add if smaller, multiply if greater), otherwise multiply the current hundreds by this
value, and add to the global result.

if token value >= 1000 then
res += hundreds * token value
hundreds = 0
elseif previous value <= token value then
hundreds *= token value
else
hundreds += token value
end if

Finally, note that for ‘hundreds *= token value’, hundreds should be initialized to 1, while
in ‘hundreds += token value’, 0 is the proper initialization. Instead of additional ifs, we will
use the GNU C extension, ‘foo ? : bar’ standing for ‘foo ? foo : bar’®.

Finally, let the file ‘atoms.gperf’ be:
W /x —%= C —*x- x/
#if HAVE_CONFIG_H

include <config.h>
#endif

#include <m4module.h>
#include <stdint.h>
#include "numeral.h"

%}

3 In American English, the words “billion”, “trillion”, etc. denote a different value than in Commonwealth
English.

4 To be more rigorous, internally they are converted into uintmax_t, and output as strings of digits.

5 There are not strictly equivalent, since in ‘foo ? foo : bar’ the expression foo is evaluated twice, while in
‘foo 7 : bar’ it is evaluated only once.

136 Programming with GNU Software

struct atom_s
{
const char *name;
const uintmax_t value;
}s;
Dot
Units.
zero,
one,
two,
three,
four,
five,
six,
seven,
eight,
nine,

© 00 ~NO O WN = O

Teens.

ten, 10
eleven, 11
twelve, 12
thirteen, 13
fourteen, 14
fifteen, 15
sixteen, 16
seventeen, 17
eighteen, 18
nineteen, 19

Tens.
twenty, 20
thirty, 30
forty, 40
fifty, 50
sixty, 60
seventy, 70
eighty, 80
ninety, 90
Hundreds.

hundred, 100
hundreds, 100

Chapter 6: Scanning with Gperf and Flex 137

Powers of thousand.

thousands, 1000
thousand, 1000

million, 1000000
millions, 1000000
billion, 1000000000
billions, 1000000000
trillionm, 1000000000000
trillions, 1000000000000

quadrillion, 1000000000000000
quadrillions, 1000000000000000
quintillion, 1000000000000000000
quintillions, 1000000000000000000
Dot

uintmax_t

numeral_convert (const char *str)

{
const char *alphabet = "abcdefghijklmnopqrstuvwxyz";
uintmax_t res = 0, hundreds = 0, prev_value = 0;
while ((str = strpbrk (str, alphabet)))
{
size_t len = strspn (str, alphabet);
struct atom_s *atom = in_word_set (str, len);
if (latom)
{
numeral_error = strndup (str, len);
return O;
}
if (atom->value >= 1000)
{
res += (hundreds 7 : 1) * atom->value;
hundreds = O;
}
else if (prev_value <= atom->value)
{
hundreds = (hundreds 7 : 1) * atom->value;
}
else
{
hundreds += atom->value;
}
prev_value = atom->value;
str += len;
}
return res + hundreds;
}

Example 6.4: ‘atoms.gperf’ — Converting Numbers in American English into Integers

Finally, ‘numeral.c’ contains all the needed hooks to create an M4 module, and the definition
of the builtin, numeral:

138 Programming with GNU Software

MABUILTIN_HANDLER (numeral)
{

uintmax_t res;

char buf[128];

res = numeral_convert (M4ARG (1));
if ('numeral_error)
{
sprintf (buf, "%ju", numeral_convert (M4ARG (1)));
obstack_grow (obs, buf, strlen (buf));

else

{
M4ERROR ((warning_status, O,
_("Warning: %s: invalid number component: %s"),
M4ARG (0), numeral_error));
free (numeral_error);
numeral _error = NULL;

+
}

Example 6.5: ‘numeral.c’ - M4 Module Wrapping ‘atoms.gperf’

Let us run gperf to create ‘atoms.c’:

$ gperf --switch=1 --language=ANSI-C --struct-type atoms.gperf >atoms.c

Key link: "eight" = "three", with key set "et".

Key link: "thirty" = "twenty", with key set "ty".

Key link: "fifty" = "forty", with key set "fy".

Key link: "trillion" = "thirteen", with key set "nt".

Key link: "trillions" = "thousands", with key set "st".

Key link: "quintillion" = "quadrillion", with key set '"nq".
Key link: "quintillions" = "quadrillions", with key set '"gs".

7 input keys have identical hash values,
try different key positions or use option -D.

Eek! Gperf recognizes that its simple heuristic, based apparently on peeking only at the first and
last characters of each word (and their lengths), fails, and it lists the clashes. If performances
do not matter too much for your application, such as our, then using ‘--duplicates’, ‘-D’, asks
Gperf to handle the collisions using successive string comparisons:

$ gperf -S 1 -L ANSI-C -t -D atoms.gperf >atoms.c
7 input keys have identical hash values, examine output carefully...

This time the message is only informative, the hash function will just be efficient, not extremely
efficient, that’s all. If, on the contrary, performances matter to you, then you may play with the
various options of gperf, see Section 6.1.4 [Using Gperf], page 133. We will try to find a better
set of character positions to peek at, using ‘--key-positions’, ‘-k’.

Notice that the last characters are often not very informative: ‘n’ is frequently used because

L.

of ‘~teen’ and ‘-1ion’, ‘y’ because of ‘yty’, and ‘s’ because of the plurals etc. This suggests not

Chapter 6: Scanning with Gperf and Flex 139

to use ‘$’ in our key positions. Since ‘ten’ is our shortest word, we need to consider at least one
of 1, 2, and 3 as key position. If you try each one, 3 is the best choice with 7 collisions, against
13 for 1, and 14 for 2:

$ gperf -t -k3 atoms.gperf >/dev/null

Key link: "twelve" = "eleven", with key set "e".
Key link: "twenty" = "eleven", with key set "e".
Key link: "forty" = "three", with key set "r".

Key link: "hundreds" = "nineteen", with key set "n".
Key link: "billion" = "million", with key set "1".
Key 1link: "billions" = "millions", with key set "1".
Key link: "trillion" = "thirteen", with key set "i".

7 input keys have identical hash values,
try different key positions or use option -D.

Choosing 1 is seducing, since most of the collided words start with a different character:

$ gperf -t -k1,3 atoms.gperf >/dev/null

Key link: "twenty" = "twelve", with key set "et".
Key link: "trillion" = "thirteen", with key set "it".

2 input keys have identical hash values,
try different key positions or use option -D.

Finally, obviously, the fourth, fifth and sixth characters will solve the remaining conflicts. Choos-
ing the fourth, we can run gperf with all the options required by our application:

$ gperf -S 1 -L ANSI-C -t -k1,3,4 atoms.gperf >atoms.c
then compile our numeral module, and try it:

$ m4 -m numeral

numeral (forty)

=40

numeral (two)

=2

numeral (forty-two)

m4: stdin: 3: Warning: numeral: invalid number component: forty
=

Huh? What the f* ‘invalid number component: forty’? Clearly this Gperf recognizer demon-
strated that it does know ‘forty’ and ‘two’, but it does not recognize forty in forty-two. How
come?

We just fell into a huge trap left wide open in Gperf, meant by its authors: although we do
specify the length of the word to check, Gperf uses strcmp! In the present case, it is comparing
‘forty-two’ against ‘forty’ using strcmp, even though we did mention the five first characters
of ‘forty-two’ were to be checked.

In fact, what we told Gperf is that if it wants to peek at the last character of the word, then
this character is at the fifth position, but when comparing strings to make sure the word and
the keyword it might be are equal, it uses a plain regular C string comparison.

I cannot emphasize this too much: if you are not submitting 0 ended strings then use
‘~—compare-strncmp’.

Trying again:
$ gperf -S 1 -L ANSI-C -t -k1,3,4 --compare-strncmp atoms.gperf >atoms.c
and then:

$ m4 -m numeral
numeral (forty-two)

140 Programming with GNU Software

=42
numeral (
twelve quintillion
three hundred forty-five quadrillion
six hundred seventy-eight trillion
nine hundred one billion
two hundred thirty-four million
five hundred sixty-seven thousand
eight hundred ninety
)
=12345678901234567890

6.1.6 Using Gperf with the GNU Build System

Currently neither Autoconf nor Automake provide direct Gperf support, but interfacing
Gperf with them is straightforward.

All ‘configure.ac’ needs to do is to look for gperf and to provide its definition for Makefiles
via AC_SUBST (FIXME: ref Autoconf.). In fact, using Automake’s macro to put gperf under the
control of missing is enough:

AM_MISSING_PROG([GPERF], [gperf])
Then your ‘Makefile.am’ should include:

Handling the Gperf code
GPERFFLAGS = --compare-strncmp --switch=1 --language=ANSI-C
BUILT_SOURCES = atoms.c

atoms.c: atoms.gperf
if $(GPERF) $(GPERFFLAGS) --key-positions=1,3,4 --struct-type \
atoms.gperf >$0t; then \

mv $et $@; \
elif $(GPERF) --version >/dev/null 2>&1; then \
m $0t; \
exit 1; \
else \
rm $0t; \
touch $0; \
fi

I personally avoid using short options in scripts and Makefiles, because short options are
likely to change and because long options are easier to understand when you don’t know the
program. Do not forget to help Automake understand that ‘atoms.c’ is to be built early (before
its uses) using BUILT_SOURCES.

The program gperf is a maintainer requirement: someone changing the package needs it,
but its result is shipped so that a regular user does not need it. Hence, we go through some
hoops in order to ensure that a failed run of gperf doesn’t erase the maintainer’s pre-built copy
of ‘atoms.c’. Had gperf provided an ‘--output’ option, missing would have handled these
details gracefully.

There are three cases to handle:

gperf succeeded
Then just rename the temporary output file, ‘@t’, as the actual output, ‘@’;

Chapter 6: Scanning with Gperf and Flex 141

gperf failed
If the $(GPERF) invocation failed, but ‘$ (GPERF) --version’ succeeded, then this
is certainly an actual error in the input file. In this case, do not hide the failure and
exit with failure.

gperf is missing
If $(GPERF) does not answer to ‘~-version’, it is certainly missing, and missing
already suggested to install Gperf. Then remove the temporary output file, and let
the compilation proceed by updating the timestamp of the output file. That’s a
best effort, essentially helping users who get the project with broken timestamps.

6.1.7 Exercises on Gperf

In this section, we address some issues left opened by the previous section, Section 6.1.5
[Advanced Use of Gperf], page 135.

Testing Write an Autotest test suite for your numeral module. See Chapter 12 [Software
Testing with Autotest], page 207, for all the details on designing and implementing
test suites

Overflow Augment the previous algorithm with overflow detection.

Non Standard Numbers
The algorithm presented above produces invalid results when the numbers are pre-
sented in a perfectly human understandable form, but nonstandard. For instance
2 000 2 000 000 000 is to be said “two trillion two billion” but people would un-
derstand “two trillion two thousand millions”, which our module does not recognize
properly:
$ m4 -m numeral

numeral (two trillion two thousand millions)
=2000001002000

This phenomenon is the same as we already observed with hundreds, see Sec-
tion 6.1.5 [Advanced Use of Gperf], page 135. Hint: a stack might be helpful.

Invalid Numbers
Try to diagnose invalid numbers, which humans would reject. For instance:

$ m4 -m numeral
numeral (forty-eleven)
=51

Hint: without an actual grammar (FIXME: ref to Bison.), it might not be possible,
or at least, extremely clumsy.

6.2 Scanning with Flex

6.2.1 Looking for Tokens

When processing texts written in formal languages (such as programming languages, mark up
languages, etc.), finding keywords is not enough: you also need to recognize numbers, identifiers,
strings etc. We will name token or lexeme a series of characters which must be grouped together
into a “word”. For instance the following C snippet:

142 Programming with GNU Software

const char *xcp = "Foo";

is composed of seven tokens: ‘const’, ‘char’, ‘*’, ‘cp’, ‘=", ‘"Foo"’, and ‘;’. We excluded the
white characters because they are not relevant in C, their purpose is limited to separating the
tokens (compare ‘const char’ to ‘constchar’).

Keywords, operators (which are nothing else but non alphabetic keywords) are tokens, and
we saw that Gperf is a fine tool to recognize keywords, see Section 6.1 [Scanning with Gperf],
page 127. Nevertheless, as demonstrated in the numeral example, it does not help us segmenting
the input into tokens, which we handled thanks to strpbrk and strspn (see example 6.4). A
better tool could have assisted us in such a task.

Contrary to the keywords, there are infinitely many tokens: you may write infinitely many
different strings, infinitely many identifiers etc. Again, we are hitting a limitation of Gperf: it
will never be able to recognize strings.

Worse yet! It cannot help us recognize some keywords. Some languages allow for goto
written with arbitrarily many spaces between go and to! Of course, we could teach it goto on
the one hand, and then go and to on the other hand, but it would be so much easier to be able
to specify that a token GOTO can be written as ‘go’, then any number of spaces including none,
then ‘to’...

Clearly, the technology used by Gperf cannot answer such a problem: peeking at fixed places
within a string no longer makes sense if the string can have any length. Nevertheless, we exposed
a technique that might help, see example 6.1. If we relax the constraint of building a tree, i.e.,
if we allow cycles in our construct, then we can build a fast GOTO recognizer:

-
|-

(I I
v o
,———. ‘g’ ,-——. ‘o’ ,--—-. ‘%7 ,-———- . ‘0’ ,m————- .

-=>| |-——=>| g |-——->| go |---->| got |---->| goto |-—>

4 [4 [4

_ —_— —_———) D .

Example 6.6: A Fast GOTO Recognizer

Such small recognizers are named Finite State Recognizers®, FSR, each node being named a
state, and each labeled arrow a transition.

It is one of the most beautiful results in computer size that one can always write an FSR for
all the keywords, identifiers, numbers etc. For instance, identifiers usually look like:

| =~ letter
| | digit
v | ¢

,———. letter ,-—-.
I B >I >

4 [} 4

_) _)

Example 6.7: A Fast Identifier Recognizer

In other words, it must start with one letter or an underscore, and can be followed by any
number of letter, digit or underscore, including zero.

All this independent FSR can be grouped together into a bigger one:

5 You may also find Finite State Machine, or Automaton, which is less specific since not all automata are
recognizers: some are generators and generate words, and others are transducers and transform words.

Chapter 6: Scanning with Gperf and Flex

L.
| = letter
| | digit
v |
J—
letter ,--—>| | ==>
[4) / C___»
/
’___/ ’__
— | | -
“——=\ [I
\ v o
‘g’ \ ,———. ‘o’ ,————. ‘%’
‘~=>| g |-——->| go |-——->

[4) (4

Example 6.8: A Fast Nondeterministic GOTO and Identifier Recognizer

)

| got
¢

|-—-->

| goto
[

[——>

143

Obviously there is a competition between the two branches of this FSR: from the initial state,
upon ‘g’, it may go in either the identifier or GOTO branch. This FSR is said to be nondetermin-
istic: it may perform choices at runtime. It recognizes a word if and only if one of its possible
executions reaches an exiting arrow. It is another most beautiful result in computer science that
there is a deterministic FSR that recognize exactly the same set of words. Better yet: one can
build it from the nondeterministic automaton:

letter but ‘g’

,———— e e
t_; / ~ ~ ~
/ | |
,—==/ | |
-=>| | | ["o] | ["t]
===\ | |
\ | |
-SA ,——=. ‘o’ ,m——=. ‘%7 ,-———- o’
‘~=>| g |-——->| go |--—->| got |-———>
C___» (____\ _____
\
\ P
‘-=>| go |--——>

Example 6.9: A Fast Deterministic GOTO and Identifier Recognizer

[
| v
)

[

.
I ~
[
v o
’---0
>| | ——>
C(___»
| goto |[-—>
€ b)
_____ ¢07
| got |--——>
(4

where ‘.’ stands for “any letter, digit or underscore”, and ‘[~o]’ for “any letter, digit or under-

score but ‘0””. This deterministic automaton is a very efficient token recognizer.

144 Programming with GNU Software

Our goal is ultimately to design a tool that can build this automaton for us, therefore we
need a convenient notation to describe the tokens. It turns out that regular expressions are as
powerful as FSRs are. In other words, the language, the set of words recognized by an automaton
can always be described by a regular expression, and conversely, for any regular expression there
exists a deterministic FSR which recognizes its language.

For instance, ‘goto’ is a perfect description of the word ‘goto’: in regular expressions most
characters represent themselves. In addition, the star, ‘*’, is used to denote the repetition of the
previous regular expression. For instance, * *’ denotes any number of spaces, including none;
the regular expression ‘go *to’ denotes the same language as that recognized by the automaton
of example 6.6.

We also need to express a choice, for instance, to be able to describe that all the identifiers
start with a letter or an underscore. The operator ‘|’ denotes the alternative, and as usual,
parentheses, ‘()’, allow for changing the precedence. For instance ‘alblcl|dlel|f’ denotes one
character amongst ‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, ‘alblcldlel|f*" represent a single ‘a’, or a ‘b’, or a
‘c’, or a ‘d’, or a ‘e’, or any number of ‘f’ including none, and ‘(alblcldlelf)*’ denotes any
string written with ‘a’, ‘b’, ‘¢’, ‘d’, ‘e’, ‘f’, including the empty string.

This notation is inconvenient for character alternatives, therefore we introduce some abbre-
viations: ‘[abcdef]’ stands for ‘(alblcldlelf)’, and ‘[a-f]’ stands for ‘[abcdef]’. There-
fore, the language recognized by the automaton of the example 6.7 can be represented as
‘[a-zA-Z_] [a-zA-Z0-9_]%’. Finally, ‘go *to| [a-zA-Z_] [a-zA-Z0-9_] %’ denotes the language
recognized by the FSRs of example 6.8 and of example 6.9.

When recognizing a keyword, getting a structure associated to it, as with Gperf, see Sec-
tion 6.1.5 [Advanced Use of Gperf], page 135, is very convenient, but in the case an identifier,
you want to know (i) it is an identifier, and (ii), which one. When reading an integer, i.e., a
word written with digits, you don’t want to get its textual representation, but rather a genuine
int containing its value. Finally, you don’t even want to hear about spaces, since they are just
separators.

Therefore, it will be more convenient to associate actions to regular expressions, rather than
structures. These actions will rely on return to declare that something was recognized and to
say what; typically there will be no return associated to spaces since they are meaningless. To
cope with identifiers and integers which, in addition to their type, have a value, these actions
will be provided with two variables, yytext pointing to the beginning of the string which was
recognized, and yyleng, holding its length. Then the action is free to compute whatever is
wanted, for instance converting a string of digits into an actual int, and then to provide the
environment with it via, for instance, a global variable. It is customary to name this global
yylval.

Each pair of regular expression/action will be listed one a single line, separated by spaces.
Using braces will allow for longer actions, and using ‘" "’ allow for denoting a space which is
not a separator.

It will be more convenient for us if it read directly from a file, the standard input by default,
instead of a string. It then needs a means to inform us that it finished reading the input;
returning 0 will do, but keep this in mind when numbering the tokens. Finally, recognition and
actions will be embedded in a routine, which we will name yylex. We will use the same file
layout as in Gperf, see example 6.2.

Chapter 6: Scanning with Gperf and Flex 145

i
#include <stdio.h>
#include <stdlib.h>
const char *yylval = NULL;
enum token_e { token_goto = 1, token_identifier };
h}
hto
go" "xto return token_goto;
[a-zA-Z_] [a-zA-Z0-9_]* yylval = yytext; return token_identifier;
won /* Do nothing. */;
hte
int
main (void)
{

enum token_e token;

while ((token = yylex ()))

if (token == token_goto)
printf ("Saw a goto.\n");
else if (token == token_identifier)
printf ("Saw an identifier (¥%s).\n", yylval);
printf ("End of file.\n");
return O;

}
Example 6.10: ‘goid.1’ — A GOTO and Identifier Flex Recognizer

This turns out to be perfectly valid Flex source which we can immediately compile:

$ flex -ogoid.c goid.l
$ gcc -Wall -W goid.c -1f1 -o goid
goid.c:976: warning: ‘yyunput’ defined but not used

for the time being, forget about ‘-1f1’ and the warning, just try goid:

$ echo ’gotoo goto go to’ | ./goid
Saw an identifier (gotoo).

Saw a goto.

Saw a goto.

End of file.

You may wonder why ‘gotoo’ is not recognized as a GOTO followed by the identifier ‘o’. Our
input file relies on a fundamental rule in Lex matching: if several patterns match the current
input, the longest wins, and if several patterns match the same number of characters, then the
topmost one wins. This explains why the second ‘goto’ is recognized as a GOTO and not as an
identifier although it does look like one: always write the most generic rule last.

You may also wonder where the spurious empty line comes from. Flex provides a default
action for any character which is not caught by the scanner: echoing it to its output. Our
scanner has no rule for the newline character, hence it is output.

6.2.2 What Flex is

Lex is a generator of fast scanners. A scanner is a program or routine which recognizes tokens
(identifiers, keywords, strings etc.) in texts (files or strings). Lex’s input is composed of rules,

146 Programming with GNU Software

pairs of regular expressions and C code. The regular expression describes the patterns that the
different tokens should follow to trigger the associated C code.

Lex is based on Finite States Recognizers, which are known to be extremely efficient.

Lex, and all its declinations (CAMLLex for cAML, Alex for Ada, JLex for Java etc.) are used
in numerous applications: compilers, interpreters, batch text processing etc.

Flex is a free software implementation of Lex, as described by the POSIX standard. It is known
to produce extremely efficient automata; many options are available to tune various parameters.
It provides a wide set of additional options and features, produces portable code, supports a
more pleasant syntax, and stands as a standard of its own. Since many Lex do have problems
(inter-Lex compatibility and actual bugs), there is no reason to limit oneself to the Portable Lex
subset of Flex: the portable C code produced by Flex can be shipped in the package and will
compile cleanly on the user’s machine. It imposes no restriction on the license of the produced
recognizer.

6.2.3 Simple Uses of Flex

Flex is a source generator, just as Gperf, Bison, and others. It takes a list of regular expres-
sions and actions, and produces a fast function triggering the action associated to the pattern
recognized. As for Gperf and Bison, the input syntax allows for a prologue, containing Flex
directives and possibly some user declarations and initializations, and an epilogue, typically
additional functions:

Wi
user-file-prologue
h}
flex-directives
Tolh
Wl
user-yylex—prologue
h}
regular-expression-1 action-1
regular-expression-2 action-2

Toth
user—epilogue
Example 6.11: Structure of a Flex Input File

All the pairs of regular-expression and action is listed on separate lines. The regular-
expression must be written at the first column, otherwise it is considered as code to output
inside the function which will be produced. This can be used to leave comments in the input.
The actions maybe enclosed in braces if they are several lines long, and action = ‘|’ stands for
“same as the next action”.

When run, flex produces a file named ‘lex.yy.c’, containing a C program including, in
addition to your user-prologue and user-epilogue, one function:

int yylex () [Function]
Scan the FILE *yyin, which defaults to the standard input, for tokens. Trigger the action
associated to the succeeding regular-expression. Return 0 when it should no longer be called,
typically when the end of the file is reached. Otherwise, typically returns the kind of the
token that has just been recognized.

Chapter 6: Scanning with Gperf and Flex 147

For instance, this simple Flex input file is meant to recognize rude words, and to express its
surprise on unknown words:

W /% % C ke #/

h}

hte

"shxt" |

"fxk" |

"winkows" |

"Huh? What the f*?" printf ("I don’t like you saying ‘%s’.\n", yytext);
" Lox$ printf ("Huh? What the f*x ‘Ys’?\n", yytext);

\n /* Ignore. */

hle
Example 6.12: ‘Tude-3.1’ — Recognizing Rude Words With Flex

which we can try now:

$ flex -orude-3.c rude-3.1

$ gcc -Wall -o rude-3 rude-3.c -1f1

rude-3.c¢:1020: warning: ‘yyunput’ defined but not used

$ echo ’dear’ | ./rude-3

Huh? What the f* ‘dear’?
We paid attention to writing the most general rules last, and to providing a rule to prevent the
newline characters from being echoed to the standard output. This is needed because ‘.’ does
not match the newline characters, hence ‘~.*$’ doesn’t cover them.

You certainly have noted that we did not provide any main, however the program works: the
Flex library, 1ibf1, provides a default main which calls yylex until the end of file is found.

Let’s try an actual match:
$ echo ’Huh? What the f*?’ | ./rude-3
Huh? What the f* ‘Huh? What the f*7°7
Huh? What the * ‘Huh? What the f* ‘Huh? What the £*7°?’? It was supposed to recognize it!
You just fell onto so-called right contexts: ‘$’ is exactly equivalent to ‘/\n’ standing for “if
followed by a newline”. The bad news, is that when ‘/right-context’ is used, the number of
characters matched by right-context counts to elect the longest match (but of course doesn’t

get into yyleng). In other words, ‘~.*$’ matched the whole line plus the newline, hence it wins
over the dedicated pattern.

As much as possible you should avoid depending upon contexts, i.e., if you ever design a
language, make sure it can be scanned without. If we simply replace ‘~.*$’ with ‘.*’ in the
example 6.12, then we have:

$ echo ’Huh? What the f*?’ | ./rude-4
I don’t like you saying ‘Huh? What the fx*7’.

6.2.4 Using Flex

See the example 6.11 for the general layout of a Flex input file.

6.2.4.1 Flex Directives

Flex supports several directives, only a few of them being presented below, see (FIXME: cite
Flex documentation.), for more information. Most of them have command line option equivalent,
but in typical uses it is better to embed them within the file.

148 Programming with GNU Software

‘hoption debug’
Produce a scanner which can be traced. This introduce a variable, yy_flex_debug,
which, when set to a non zero value, triggers tracing messages on the standard error
output.

You are encouraged to use this option, in particular when developing your scanner,
and to have some option to set yy_flex_debug. In particular, never write printf-
like tracing code in your scanner: that’s an absolute waste of time.

‘%option nodefault’
Die with an error message on unmatched characters instead of echoing them. We
advise you not to rely on the default rule for sake of completeness, therefore, you
should always use it to find holes in your rules.

‘%hoption nounput’

‘%option noyywrap’
Specify your scanner does not use unput and/or yywrap. These two functions are
beyond the scope of this book and won’t be detailed. Nevertheless we present these
options so that (i) we no longer need the Flex library (which provides a default
yywrap), and (ii) our scanners compile without triggering ‘warning: ‘yyunput’
defined but not used’.

‘%option outfile="file"’
Save the scanner in file.

‘%option prefix="prefix"’
Replaces the default ‘yy’ prefix with prefix. It also changes the default output file
from ‘lex.yy.c’ to ‘lex.prefix.c’.

6.2.4.2 Flex Regular Expressions

The characters and literals may be described by:
b'e the character x.

any character except newline.

Y

‘[xyz]’ Any characters amongst ‘x’, ‘y’ or ‘z’. You may use a dash for character intervals:
‘[a-z]’ denotes any letter from ‘a’ through ‘z’. You may use a leading hat to negate
the class: ‘[0-9] stands for any character which is not a decimal digit, including
new-line.

\x’ if x is an ‘a’, ‘d’, ‘f’, ‘n’, ‘r’, ‘t’, or ‘v’, then the ANSI-C interpretation of ‘\x’.
Otherwise, a literal ‘x” (used to escape operators such as ‘*’).

‘\O’ a NUL character.

‘\num’ the character with octal value num.
‘\xnum’ the character with hexadecimal value num.
‘““string"’

Match the literal string. For instance ‘"/*"’ denotes the character ‘/” and then the
character ‘*’, as opposed to ‘/*’ denoting any number of slashes.

‘K<EQF>>’ Match the end-of-file.

The basic operators to make more complex regular expressions are, with r and s being two
regular expressions:

Chapter 6: Scanning with Gperf and Flex 149

‘(r)’ Match an r; parentheses are used to override precedence.

‘rs’ Match the regular expression r followed by the regular expression s. This is called
concatenation.

‘rl|s’ Match either an r or an s. This is called alternation.

‘{abbreviation}’

Match the expansion of the abbreviation definition. Instead of writing
holo
[a-zA-Z_] [a-zA-Z0-9_]* return IDENTIFIER;
o
you may write
id [a-zA-Z_][a-zA-Z0-9_]*
he
{id} return IDENTIFIER;
oo

The quantifiers allow to specify the number of times a pattern must be repeated:

Zero or more r’s.
one or more r’s.

Zero or one r’s.

‘r{[num|}’ num times r

‘r{min, [max|}’

anywhere from min to max (defaulting to no bound) r’s.

For instance ‘=7 ([0-9]+| [0-9]*\. [0-9]+([eE] [-+]?[0-9]+)?)’ matches C integer and float-
ing point numbers.

One may also depend upon the context:

‘r/s’

Match an r but only if it is followed by an s. This type of pattern is called trailing
context. The text matched by s is included when determining whether this rule is
the “longest match”, but is then returned to the input before the action is executed.
So the action only sees the text matched by r. Using trailing contexts can have a
negative impact on the scanner, in particular the input buffer can no longer grow
upon demand. In addition, it can produce correct but surprising errors. Fortunately
it is seldom needed, and only to process pathologic languages such as Fortran. For
instance to recognize its loop keyword, ‘do’, one needs:

DO/ [A-Z0-9]*=[A-Z0-9]*,

to distinguish ‘D01I=1,5’, a for loop where ‘I’ runs from 1 to 5, from ‘D01I=1.5,
a definition/assignment of the floating variable ‘DO1I’ to 1.5. See Section 12.1.2
[Fortran and Satellites|, page 209, for more on Fortran loops and traps.

Match an r at the beginning of a line.

Match an r at the end of a line. This is rigorously equivalent to ‘r/\n’, and therefore
suffers the same problems, see Section 6.2.3 [Simple Uses of Flex], page 146.

150 Programming with GNU Software

6.2.4.3 Flex Actions

When a pattern is matched, the corresponding action is triggered. The actions default to
nothing, i.e., discard the current token. In the output, the actions are embedded in the yylex
function, therefore, using return sets the return value of yylex.

All the actions may use:

const char * yytext [Variable]
size_t yyleng [Variable]
Pointer to the beginning and length of the input string that matched the regular expression.

| [Macro]
Stands for “same as the next action”.

ECHO [Macro]
Propagate the token to FILE *yyout, which defaults to the standard output. This is the
default action.

YY_USER_INIT [Macro]
If defined, evaluated at the first invocation of yylex. This macro can be used to perform
some initialization of your scanners: it will be execute as soon as you start them.

But be aware that if you run your scanner on several inputs, then only the first run will
trigger this code. If you need to perform some initialization at each new file, you will have
to find some other means.

YY_USER_ACTION [Macro]
Executed each time a rule matches, after yytext and yyleng were set, but before the action
is triggered.

user-yylex-prologue [Macro]
Executed each time yylex is invoked. See ezample 6.11 for its definition.

6.2.5 Start Conditions

Non keywords often need some form of conversion: strings of digits are converted into inte-
gers, and so on. This conversion often involves another scanning of the token, for instance to
convert the escapes, e.g., ‘\n’, into character literals. Writing this scanner by hand is easy, but
frustrating.

Sometimes one is limited by the theory itself: imagine your language supports nested com-
ments. It is easily proven that a language of balanced parentheses” cannot be described by
regular expressions. Indeed, this would imply the existence of an FSR, with say g states. Then
if we overflow its memory with more than g opening parentheses, it completely loses its count.
Therefore there cannot be such an FSR, hence no regular expression, thus we are stuck! Never-
theless it would have been very easy to write a scanner solely tracking ‘/*’ and ‘*/’ and throwing
away any other string.

Our scanners are nothing but automata, such as in the ezample 6.9. We could solve the two
problems above simply if we could join the corresponding FSR to a new initial state labelled with
some conditions:

7 “Balanced parentheses” is to be understood in its broadest sense: including begin/end, ‘/*’/*/’ etc.

Chapter 6: Scanning with Gperf and Flex 151

y T >| body scanner

Example 6.13: A Condition Driven FSR Combination

These are called start conditions. They allow to combine small parsers into a bigger one. The
default start condition is named INITIAL, others can be introduced thanks to the Flex directive
%x start-condition. ... To set the current start condition, i.e., to select the eligible branch at
the next run of the automaton, use ‘BEGIN start-condition’. This is not a form of return or
goto, the execution proceeds normally in the current action.

Finally, to complete the description of the rules by their conditions, use either
<start-condition, ...>pattern action
or

<start-condition, ...>{
pattern-1 action-1
pattern-2 action-2

}

6.2.6 Advanced Use of Flex

In this section we will develop a scanner for arithmetics, which will later be used together
with a Bison generated parser to implement an alternative implementation of M4’s eval builtin,
see (FIXME: Ref Bison, ylparse.y.). Our project is composed of:

‘yleval.h’ a header common to all the files,

‘ylscan.l’ the scanner for arithmetics

‘ylparse.y’ the parser for arithmetics (FIXME: ref.).
‘yleval.c’ the driver for the whole module (FIXME: ref.).

Because locations are extremely important in error messages, we will look for absolute pre-
ciseness: we will not only track the line and column where a token starts, but also where it ends.
Maintaining them by hand is tedious and error prone, so we will insert actions at appropriate
places for Flex to maintain them for us. We will rely on Bison’s notion of location:

typedef struct yyltype
{

int first_line, first_column, last_line, last_column;
} yyltype;
which we will handle thanks to the following macros:

LOCATION_RESET (location) [Macro]

Initialize the location: first and last cursor are set to the first line, first column.

152 Programming with GNU Software

LOCATION_LINE (location, num) [Macro]
Advance the end cursor of num lines, and of course reset its column. A macro LOCATION_
COLUMN is less needed, since it would consist simply in increasing the last_column member.

LOCATION_STEP (location) [Macro]
Move the start cursor to the end cursor. This is used when we read a new token. For instance,
denoting the start cursor S and the end cursor E, we move from

1000 + 1000

S E
to
1000 + 1000
S=E
LOCATION_PRINT (file, location) [Macro]

Output a human readable representation of the location to the stream file. This hairy macro
aims at providing simple locations by factoring common parts: if the start and end cursors
are on two different lines, it produces ‘1.1-2.3’; otherwise if the location is wider than a
single character it produces ‘1.1-3’, and finally, if the location designates a single character,
it results in ‘1.1°.

Their code is part of ‘yleval.h’:

/* Initialize LOC. */

define LOCATION_RESET(Loc) \
(Loc) .first_column = (Loc).first_line = 1; \
(Loc).last_column = (Loc).last_line = 1;

/* Advance of NUM lines. */

define LOCATION_LINES(Loc, Num) \
(Loc) .1last_column = 1; \

(Loc) .last_line += Num;

/* Restart: move the first cursor to the last position. */
define LOCATION_STEP(Loc) \

(Loc) .first_column = (Loc).last_column; \

(Loc) .first_line = (Loc).last_line;

/* Output LOC on the stream QUT. */
define LOCATION_PRINT(Out, Loc)
if ((Loc).first_line !'= (Loc).last_line)
fprintf (Out, "%d.%kd-%d.%d",
(Loc) .first_line, (Loc).first_column,
(Loc) .last_line, (Loc).last_column - 1);
else if ((Loc).first_column < (Loc).last_column - 1)
fprintf (Out, "%d.%d-%d", (Loc).first_line,
(Loc) .first_column, (Loc).last_column - 1);

P A A A A A -

else
fprintf (Out, "%d.%d", (Loc).first_line, (Loc).first_column)

Example 6.14: ‘yleval.h’ (i) — Handling Locations

Chapter 6: Scanning with Gperf and Flex 153

Because we want to remain in the ‘yleval_’ name space, we will use %option prefix, but
this will also rename the output file. Because we use Automake which expects flex to behave
like Lex, we use %option outfile to restore the Lex behavior.

%hoption debug nodefault noyywrap nounput
hoption prefix="yleval_" outfile="lex.yy.c"

"l
#if HAVE_CONFIG_H
include <config.h>

#tendif
#include <m4module.h>

#include "yleval.h"
#include "ylparse.h"

Example 6.15: ‘ylscan.l’ - Scanning Arithmetics

Our strategy to track locations is simple, see Section 6.2.4.3 [Flex Actions|, page 150. Each
time yylex is invoked, we move the first cursor to the last position thanks to the user-yylex-
prologue. Fach time a rule is matched, we advance the ending cursor of yyleng characters,
except for the rule matching a new line. This is performed thanks to YY_USER_ACTION. Each
time we read insignificant characters, such as white spaces, we also move the first cursor to the
latest position. This is done in the regular actions:

/* Each time we match a string, move the end cursor to its end. */
#define YY_USER_ACTION yylloc->last_column += yyleng;
hY
Toth
Wi
/* At each yylex invocation, mark the current position as the
start of the next token. */
LOCATION_STEP (*yylloc);

%}
/* Skip the blanks, i.e., let the first cursor pass over them. */
[\t 1+ LOCATION_STEP (*yylloc);
\n+ LOCATION_LINES (*yylloc, yyleng); LOCATION_STEP (*yylloc);
The case of the keywords is straightforward and boring:
" return PLUS;
"-n return MINUS;
B return TIMES;

Integers are more interesting: we use strtol to convert a string of digits into an integer.
The result is stored into the member number of the variable yylval, provided by Bison via
‘ylparse.h’. We support four syntaxes: ‘10’ is decimal (equal to... 10), ‘Ob10’ is binary (2),
‘010’ is octal (8), and ‘0x10’ is hexadecimal (16). Notice the risk of reading ‘010’ as a decimal
number with the naive pattern ‘[0-9]+’; you can either improve the regular expression, or rely
on the order of the rules®. We chose the latter.

8 Note that the two solutions proposed are not equivalent! Spot the difference between

[1-9]1[0-9]* return NUMBER;
o[o-7]+ return NUMBER;

and

154 Programming with GNU Software

/* Binary numbers. */
Ob[01]+ yylval->number
/* Octal numbers. */
0[0-7]+ yylval->number

/* Decimal numbers. */
[0-9]+ yylval->number = strtol (yytext, NULL, 10); return NUMBER;

/* Hexadecimal numbers. */
Ox[:xdigit:]+ yylval->number = strtol (yytext + 2, NULL, 16); return NUMBER

strtol (yytext + 2, NULL, 2); return NUMBER;

strtol (yytext + 1, NULL, 8); return NUMBER;

Finally, we include a catch-all rule for invalid characters: report an error but do not return
any token. In other words, invalid characters are neutralized by the scanner:

/* Catch all the alien characters. */
{
yleval_error (yylloc, yycontrol, "invalid character: Y%c", *yytext);
LOCATION_STEP (*yylloc);
}
hto
where yleval_error is a variadic function (as is fprintf) and yycontrol a variable that will
be both defined later.

This scanner is complete, it merely lacks its partner: the parser. But this is yet another
chapter...

6.2.7 Using Flex with the GNU Build System

Autoconf and Automake provide some generic Lex support, but no Flex dedicated support.
In particular Automake expects ‘lex.yy.c’ as output file, which makes it go through various
hoops to prevent several concurrent invocations of lex to overwrite each others’ output.

As Gperf, Lex and Flex are maintainer requirements: someone changing the package needs
them, but their result is shipped so that a regular user does not need them. I have already
emphasized that you should not bother with vendor Lexes, Flex alone will fulfill all your needs,
and keep you away from troubles. If you use Automake’s AM_PROG_LEX, then if flex or else lex
is found, it is used as is, otherwise missing is used to invoke flex. Unfortunately, if lex is
available, but not good enough to handle your files, then the output scanner will be destroyed.
Therefore, to avoid this, we really want to wrap the lex invocations with missing. I suggest:

Sometimes Flex is installed as Lex, e.g., NetBSD.
AC_CHECK_PROG([FLEX], [flex lex], [flex])

Force the use of ‘missing’ to wrap Flex invocations.
AM_MISSING_PROG([LEX], [$FLEX])

Perform all the tests Automake and Autoconf need.
AM_PROG_LEX

Then, in your ‘Makefile.am’, forget your Flex sources need a special handling, Automake
takes care of it all. Merely list them as ordinary source files:

LDFLAGS = -no-undefined

pkglibexec_LTLIBRARIES = yleval.la
yleval_la_SOURCES = ylparse.y ylscan.l yleval.c yleval.h ylparse.h

[0-9]+ return NUMBER;
0[0-7]+ return NUMBER;

Chapter 6: Scanning with Gperf and Flex 155

yleval_la_LDFLAGS = -module

and that’s all. In particular, do not bother with LEXLIB at all: configure defines it to ‘~11’
or ‘-1f1’, but we already emphasized that Flex’ output is self-contained and portable, see
Section 6.2.4 [Using Flex], page 147.

6.2.8 Exercises on Flex

Free Radix
The scanner we described knows four different input radices for numbers: deci-
mal, binary, octal, and hexadecimal. M4 supports a fifth mode for arbitrary radix
between 2 and 36: ‘Orradix :number’. Implement this mode in ‘ylscan.l’.

C Source Statistics
Using Flex, implement a clone of csize, a simple program performing statistics on
C sources. For instance running it on the Yleval module gives:

$ csize -h yleval.h yleval.c ylscan.c ylparse.h ylparse.c

total blank lines w/ nb, nc semi- preproc. file
lines lines comments lines colons direct.
-— e - R e - +———-
69 10 27 33 8 9 yleval.h
237 35 37 165 60 13 yleval.c
1730 296 279 1185 391 303 ylscan.c
54 7 1 47 7 36 ylparse.h
1290 178 237 915 288 279 ylparse.c
3380 526 581 2345 754 640 total

C Strings Extend the previous program with statistics on C strings.

Beswitch ~ We have already studied keyword recognizers, see Section 6.1.1 [Looking for Key-
words], page 127. In particular, while Gperf is based on hash tables, we showed how
a similar application could be based on a cascade of switch. Implement one such
program, beswitch, thanks to Flex. beswitch must be a drop-in replacement of
Gperf.

Your scanner must be better than that of Gperf, in particular, it shall not be con-
fused by ‘/* %} %/’ or ‘" %} "’ in the prologue. You are likely to need several start
conditions, such as C_CODE, PROLOGUE, COMMENT, STRING, etc. The simple BEGIN
will no longer be sufficient, and you will probably need some form of sub-scanner
recursive calls: see joption stack, yy_stack_push, and yy_stack_pop in (FIXME:
Flex ref.).

156 Programming with GNU Software

Chapter 7: Parsing 157

7 Parsing

7.1 Looking for Balanced Expressions

We have seen that Flex supports abbreviations, see Section 6.2.4.2 [Flex Regular Expressions],
page 148. Using a more pleasant syntax, we could write for instance:
digit: [0-9];
number: digit+;
It is then tempting to describe possibly parenthesized expressions using these abbreviations:
expr: ’(’ expr ’)’ | number

Example 7.1: A Simple Balanced Expression Grammar

to describe numbers nested in balanced parentheses.

Of course, Flex abbreviations cannot be recursive, since recursion can be used as above to
describe balanced parentheses, which fall out of Flex’ expressive power: Flex produces finite state
recognizers, and FSR cannot recognized balanced parentheses because they have finite memory
(see Section 6.2.5 [Start Conditions|, page 150).

This suggests that we need some form of virtually infinite memory to recognize such a lan-
guage. The most primitive form of an infinite memory device is probably stacks, so let’s try to
design a recognizer for expr using a stack. Such automata are named pushdown automata.

Intuitively, if the language was reduced to balanced parentheses without any nested number,
we could simply use the stack to push the opening parentheses, and pop them when finding
closing parentheses. Slightly generalizing this approach to the present case, it seems a good idea
to push the tokens onto the stack, and to pop them when we find what can be done out of them:

Step Stack Input

1. ((number))
2. ((number))
3. ((number))

4. ((number))

At this stage, our automaton should recognize that the number on top of its stack is a form of
expr. It should therefore replace number with expr:

5. ((expr D))
6. (Cexpr))
Now, the top of the stack, ‘(expr)’, clearly denotes an expr, according to our rules:
7. (expr)
8. (expr)
9. expr

Finally, we managed to recognize that ‘((number))’ is indeed an expression according to
our definition: the whole input has been processed (i.e., there remains nothing in the input),
and the stack contains a single nonterminal: expr. To emphasize that the whole input must
be processed, henceforth we will add an additional token, ‘$’, standing for end of file, and an
additional rule:

$axiom: expr $;

If you look at the way our model works, there are basically two distinct operations to perform:

shift Shifting a token, i.e., fetching the next token from the input, and pushing it onto
the stack. Steps performed from the states 1, 2, 3, 5, and 7 are shifts.

158 Programming with GNU Software

reduce Reducing a rule, i.e., recognizing that the top of the stack represents some right
hand size of a rule, and replacing it with its left hand side. For instance at stage 4,
the top stack contains ‘number’ which can be reduced to ‘expr’ thanks to the rule
‘expr: number;’. At stages 6 and 8, the top of the stack contains ‘(expr)’, which,
according to ‘expr: ’(’ expr ’)’;’ can be reduced to ‘expr’.

The initial rule, ‘Baxiom: expr $;’ is special: reducing it means we recognized the
whole input. This is called accepting.

The tricky part is precisely knowing when to shift, and when to reduce: the strategy we
followed consists in simply reducing as soon as we can, but how can we recognize stacks that can
be reduced? To answer this question, we must also consider the cases where the input contains
a syntax error, such as ‘number number’. Finally, our question amounts to “what are the valid
stacks ready to be reduced”. It is easy to see there are two cases: a possibly empty series of
opening parentheses followed by either a lone number, or else by a ‘(’, then an ‘expr’, and a ©)’,
or, finally a single ‘expr’ and end of file.

Hey! “A possibly empty series of opening parentheses followed by...”: this is typically what
we used to denote with regular expressions! Here:

‘O (expr $ | ‘C expr ‘)’ | number)

If we managed to describe our reducible stacks with regular expressions, it means we can recog-
nize them using a finite state recognizer!

This FSR is easy to compute by hand, since its language is fairly small. It is depicted below,
with an additional terminal symbol, ‘¢’, denoting the end of file, and ‘N’ standing for number:

((;
| |
v |
y— == . eXpr ,———-—-——————--—- B .
,==> 1 O+ |- >| 3: ‘C+ expr |-—-->| 4: ‘(°+ expr)’ |-—>
/ [) L b L, b
¢/ |
/ | ‘N>
/ v
s ‘N’ e ———————
| 0 |-=——- >l 20 CCOx ‘N2 |-—>
C___) € e e)
\
\ expr
\
\ sy T T TTT T $ y T T TTTT T .
‘-->| 5: expr |----- >| 6: expr $ |-—>

Example 7.2: A Stack Recognizer for Balanced Expressions

As expected, each final state denotes the recognition of a rule to reduce. For instance state
4 describes the completion of the first rule, ‘expr: > (’ expr ’)’’, which we will denote as
‘reduce 1’. State 6 describes the acceptance of the whole text, which we will denote ‘accept’.
Transitions labelled with tokens are shifts, for instance if the automaton is in state 1 and sees an
‘N’, then it will ‘shift 2’. An transition labelled with a non terminal does not change the stack,
for instance an ‘expr’ in state 1 makes the automaton ‘go to 4’. Any impossible transition

Chapter 7: Parsing 159

(for instance receiving a closing parenthesis in state 0) denotes a syntax error: the text is not
conform to the grammar.

In practice, because we want to produce efficient parsers, we won’t restart the automaton
from the beginning of the stack at each turn. Rather, we will remember the different states we
reached. For instance the previous stack traces can be decorated with the states and actions as
follows:

Step Stack Input Action
1. 0 ((number)) $ shift 1
2. 0 (1 (number)) $ shift 1
3. 0(1(1 number)) $ shift 2
4. 0 (1 (1 number 2 IDIE: reduce 2
5. 0 (1 (1expr)) 8 go to 3
6. 0(1(1expr3)) 8 shift 4
7. 0(1(1lexpr3) 4) $ reduce 1
8. 0 (1 expr) $ go to 2
9. 0 (1expr?2) $ shift 4
10. 0(lexpr2) 4 $ reduce 1
11. 0 expr $ go to b
12. 0 expr 5 $ shift 6
13. Oexpr 586 accept

Example 7.3: Step by Step Analysis of ‘((number))’

This technology is named LR(0) parsing, “L” standing for Left to Right Parsing, “R” standing
for Rightmost Derivation®, and “0” standing for no lookahead symbol: we never had to look at
the input to decide whether to shift or to reduce.

Again, while the theory is simple, computing the valid stacks, designing an finite state stack
recognizer which shifts or reduces, etc. is extremely tedious and error prone. A little of automa-
tion is most welcome.

7.2 Looking for Arithmetics

Except for a few insignificant details, the syntax introduced in the previous section is called
BNF, standing for Backus-Naur form, from the name of its inventors: they used it to formalize
the Algol 60 programming language. It is used to define grammars: a set of rules which describe
the structure of a language, just as we used grammars to describe the English sentences at
school. As for natural languages, two kinds of symbols are used to describe artificial languages:
terminal symbols (e.g., ‘he’, ‘she’, etc. or ‘+’, ‘=", etc.) and nonterminal symbols (e.g., “subject”,
or “operator”). Examples of grammars include

sentence: subject predicate;
subject: ‘she’ | ‘he’ | ‘it’;
predicate: verb noun-phrase | verb;
verb: ‘eats’;

noun-phrase: article noun | noun ;
article: ‘the’;

1 When we reduce a rule, it is always at the top of our stack, corresponding to the rightmost part of the

text input so forth. Some other parsing techniques, completely different, first handle the leftmost possible
reductions.

160 Programming with GNU Software

noun: ‘bananas’ | ‘coconuts’;

or
expr: expr op expr | ‘(’ expr ¢)’ | ‘number’;
op: ‘+7 | =2 | x| </

Example 7.4: A Grammar for Arithmetics

Such rules, which left hand side is always reduced to a single nonterminal, define so called
context free grammars. Context free grammars are properly more powerful than regular ex-
pressions: any regular expression can be represented by a context free grammar, and there
are context free grammars defining languages that regular expressions cannot denote (e.g., the
nested parentheses).

Grammars can be ambiguous: some sentences can be understood in different ways. For
instance the sentence ‘number + number * number’ can be understood in two different ways by
the grammar of the example 7.4:

, expr . , expr .
/ [\ / | \
/ [\ / | \
/ | \ / | \
v v v v v v
, eXpr. op expr expr op , expr.
/ | \ | | | [/ | \
/ | \ | | | | / | \
v v v | | | | v v v
expr op expr | I | | expr op expr

| | | | | | | | | |

v | v v v v v v | v
‘number’ ‘+’ ‘number’‘x*’ ‘number’ ‘number’ ‘+’ ‘number’ ‘x’ ‘number’

Example 7.5: Non Equivalent Parse Trees for ‘mumber + number * number’

Because having different interpretations of a given sentence cannot be accepted for artificial
languages (a satellite could easily be wasted if programmed in an ambiguous language), we will
work with unambiguous grammars exclusively. For instance, we will have to refine the grammar
of the example 7.4 in order to use it with Bison.

Please note that even if limited to the minus operator, this grammar is still ambiguous:
two parse trees represent ‘number - number - number’?. We, humans, don’t find it ambiguous,
because we know that by convention ‘-’ is executed from left to right, or, in terms of parenthesis,
it forms groups of two from left to right. This is called left associativity. There exist right
associative operators, such as power, or assignment in C, that handle their rightmost parts first.

The following unambiguous grammar denotes the same language, but keeps only the conven-
tional interpretation of subtraction: left associativity.

«_»

expr: expr ‘-’ ‘number’ | ‘number’;

Example 7.6: An Unambiguous Grammar for =’ Arithmetics

Let’s look at our stack recognizer again, on the input ‘number - number’:

2 These two parse trees are those of the example 7.5, with ‘=’ replacing ‘*’ and ‘+’.

Chapter 7: Parsing 161

Step Stack Input

1 number - number
2. number - number

3. expr - number

4 expr - number

d. expr - number

6. expr

Example 7.7 An LR(1) Parsing of ‘number - number’

This time, we no longer can systematically apply the rule ‘expr: ‘number’’ each time we see
a ‘number’ on the top of the stack. In both step 2 and step 5, the top of the stack contains a
number which can be reduced into an expr. We did reduce from step 2, but in step 5 we must
not. If we did, our stack would then contain ‘expr ‘-’ expr’, out of which nothing can be done:
all the ‘number’s except the last one, must be converted into an expr. We observe that looking
at the next token, named the lookahead, solves the issue: if the top stack is ‘number’, then if
the lookahead is ‘minus’, shift, if the lookahead is end-of-file, reduce the rule ‘expr: ‘num’’, and
any other token is an error (think of ‘number number’ for instance).

The theory we presented in the Section 7.1 [Looking for Balanced Expressions]|, page 157 can
be extended to recognize patterns on the stack plus one lookahead symbol. This is called LR(1)
parsing. As you will have surely guessed, LR(k) denotes this technique when peeking at the k
next tokens in the input.

Unfortunately, even for reasonably simple grammars the automaton is quickly huge, so in
practice, one limits herself to k = 1. Yet with a single lookahead, the automaton remains huge:
a lot of research has been devoted to design reasonable limitations or compression techniques to
have it fit into a reasonable machine. A successful limitation, which description falls out of the
scope of this book, is known as LALR(1). A promising approach, DRLR, consists in recognizing
the stack from its top instead of from its bottom. Intuitively there are less patterns to recognize
since the pertinent information is usually near the top, hence the automaton is smaller.

In A Discriminative Reverse Approach to LR (k) Parsing, Fortes Gélvez José compares the
handling of three grammars:

arithmetics A small grammar similar to that of the example 7.4, but unambiguous. There
are 5 terminals, 3 nonterminals, and 6 rules.

medium A medium size grammar comprising 41 terminals, 38 nonterminals, and 93
rules.

programming A real size grammar of a programming language, composed of 82 terminals, 68
nonterminals, and 234 rules.

by the three approaches. The size of the automaton is measured by its number of states and

entries (roughly, its transitions):

LR(1) LR(1) LALR(1) LALR(1) DRLR(1) DRLR(1)

Grammar States Entries States Entries States Entries
arithmetics 22 71 12 26 8 23
medium 773 6,874 173 520 118 781
programming 1,000+ 15,000+ 439 3,155 270 3,145

As you can see, LR(1) parsers are too expensive and as matter of fact there is no wide spread
and used implementation, LALR(1) is reasonable and can be found in numerous tools such as
Yacc and all its clones, and finally, because DRLR(1) addresses all the LR(1) grammars, it is an

162 Programming with GNU Software

appealing alternative to Yacc. Bison is an implementation of Yacc, hence it handles LALR(1)
grammars, but might support DRLR(1) some day, providing the full expressive power of LR(1).

7.3 What is Bison

Yacc is a generator of efficient parsers. A parser is a program or routine which recognizes
the structure of sentences. Yacc’s input is composed of rules with associated actions. The rules
must be context free, i.e., their left hand side is composed of a single nonterminal symbol, and
their right hand side is composed of series of terminal and nonterminal symbols. When a rule
is reduced, the associated C code is triggered.

Yacc is based on pushdown automata. It is a implementation of the LALR(1) parsing algo-
rithm, which is sufficient for most programming languages, but can be too limited a framework
to describe conveniently intricate languages.

Yacc, and all its declinations (CAMLYacc for CAML etc.) are used in numerous applications,
especially compilers and interpreters. Hence its name: Yet Another Compiler Compiler.

Bison is a free software implementation of Yacc, as described by the POSIX standard. It
provides a wide set of additional options and features, produces self contained portable code (no
library is required), supports a more pleasant syntax, and stands as a standard of its own. Since
most Yacc do have problems (inter-Yacc compatibility and actual bugs), all the reasons are in
favor of using exclusively Bison: the portable C code it produces can be shipped in the package
and will compile cleanly on the user’s machine. It imposes no restriction on the license of the
produced parser.

It is used by the GNU Compiler Collection for C, C++3, the C preprocessor. Many other
programming language tools use Bison or Yacc: GNU AWK, Perl, but it proves itself useful in
reading structured files: a2ps uses it to parse its style sheets. It also helps decoding some limited
forms of natural language: numerous GNU utilities use a Yacc grammar to decode dates such as
‘2 days ago’, ‘3 months 1 day’, ‘25 Dec’, ‘1970-01-01 00:00:01 UTC +5 hours’ etc.

GNU Gettext deserves a special mention with three different uses: one to parse its input
files, another one to parse the special comments in these files, and one to evaluate the foreign
language dependent rules defining the plural forms.

7.4 Bison as a Grammar Checker

Bison is dedicated to artificial languages, which, contrary to natural languages, must be
absolutely unambiguous. More precisely it accepts only LALR(1) grammars, which formal
definition amounts exactly to “parsable with a Bison parser”. Although there are unambiguous
grammars that are not LALR(1), we will henceforth use “ambiguous”, or “insane”, to mean
“not parsable with Bison”.

While the main purpose of Bison is to generate parsers, since writing good grammars is not
an easy task, it proves itself very useful as a grammar checker (e.g., checking it is unambiguous).
Again, a plain “error: grammar is insane” would be an information close to useless, fortunately
Bison then provides means (i) to understand the insanity of a grammar, (ii) to solve typical
ambiguities conveniently.

How exactly does an ambiguity reveal itself to Bison? We saw that Bison parsers are simple
machines shifting tokens and reducing rules. As long as these machines know exactly what
step to perform, the grammar is obviously sane. In other words, on an insane grammar it will

3 There are plans to rewrite the C++ parser by hand because the syntax of the language is too intricate for
LALR(1) parsing.

Chapter 7: Parsing 163

sometimes hesitate between different actions: should I shift, or should I reduce? And if I reduce,
which rule should I reduce?

In Section 7.2 [Looking for Arithmetics|, page 159, we demonstrated that the naive imple-
mentation arithmetics is ambiguous, even if reduced to subtraction. The following Bison file
focuses on it. The mark ‘%%’ is needed for Bison to know where the grammar starts:

Toth
expr: expr ’-’ expr | "number";
Example 7.8: ‘arith-1.y’ - A Shift/Reduce Conflict

Running bison on it, as expected, ends sadly:

$ bison arith-1.y
arith-1.y contains 1 shift/reduce conflict.

As announced, ambiguities lead Bison to hesitate between several actions, here ‘1 shift/reduce
conflict’ stands for “there is a state from which I could either shift another token, or reduce
a rule”. But which? You may ask bison for additional details:

$ bison --verbose arith-1.y
arith-1.y contains 1 shift/reduce conflict.

which will output the file ‘arith-1.output’:

State 4 contains 1 shift/reduce conflict.

Grammar
rule 0 $axiom -> expr $
rule 1 expr -—> expr ’-’ expr
rule 2 expr —> "number"

Terminals, with rules where they appear
$ (-1
i (45) 1
error (256)
"number" (257) 2

Nonterminals, with rules where they appear
expr (5) on left: 1 2, on right: 1

State 0 $axion -> . expr $ (rule 0)
expr -> . expr ’-’ expr (rule 1)
expr -> . "number" (rule 2)
"number" shift, and go to state 1
expr go to state 2

State 1 expr -> '"number" . (rule 2)
$default reduce using rule 2 (expr)

State 2 $axiom -> expr . $ (rule 0)
expr -> expr . ’-’ expr (rule 1)
$ go to state 5
i shift, and go to state 3

State 3 expr -> expr ’-’ . expr (rule 1)
"number" shift, and go to state 1
expr go to state 4

4" In addition to minor formatting changes, this output has been modified. In particular the rule 0, which Bison
hides, is made explicit.

164 Programming with GNU Software

State 4 expr -> expr . ’-’ expr (rule 1)
expr -> expr ’-’ expr . (rule 1)
i shift, and go to state 3

)

[reduce using rule 1 (expr)]

$default reduce using rule 1 (expr)
State 5 $axiom -> expr . $ (rule 0)

$ shift, and go to state 6
State 6 $axiom -> expr $. (rule 0)

$default accept

You shouldn’t be frightened by the contents: aside from being applied to a different grammar,
this is nothing but the FSR we presented in ezample 7.2. Instead of being presented graphically,
it is described by the list of its states and the actions that can be performed from each state.
Another difference is that each state is represented by the degree of recognition of the various
rules, instead of regular expressions.

For instance the state 3 is characterized by the fact that we recognized the first two symbols
of ‘expr ’-’ expr’, which is denoted ‘expr -> expr ’-’ . expr’. In that state, if we see a
‘number’, we shift it, and go to state 1. If we see an ‘expr’, we go to state 4. The reader is
suggested to draw this automaton.

Bison draws our attention on the state 4, for “State 4 contains 1 shift/reduce conflict”.
Indeed, there are two possible actions when the lookahead, the next token in the input, is ‘-’:

State 4 expr -> expr . ’-’ expr (rule 1)
expr —> expr ’-’ expr . (rule 1)
i shift, and go to state 3
1= [reduce using rule 1 (expr)]
$default reduce using rule 1 (expr)

Example 7.9: State 4 contains 1 shift/reduce conflict

We find again the ambiguity of our grammar: when reading ‘number - number - number’, which

leads to the stack being ‘expr ’-’ expr’, when finding another ‘~’, it doesn’t know if it should:
— shift it (‘shift, and go to state 3’), which results in
Stack Input shift 3
0 expr 2 - 3 expr 4 - number $ shift 1
0 expr2-3expr4-3 number $ shift 1
0 expr 2 - 3 expr 4 - 3 number 1 $ reduce 2
0 expr 2 - 3 expr 4 - 3 expr $ go to 4
Oexpr 2 -3 expr4-3expr4 $ reduce 1
0 expr 2 - 3 expr $ go to 4
0 expr 2 - 3 expr 4 $ reduce 1
0 expr $ go to b
0 expr 5 $ shift 6
Oexpr5$6 accept

i.e., grouping the last two expressions, in other words understanding ‘number - (number -

number)’, or

— reduce rule 1 (‘[reduce using rule 1 (expr)]’), which results in

O expr 2 -3 expr 4
0 expr

0 expr 2
Oexpr2-3

- number $
- number $
- number $
number $

reduce 1
go to 2
shift 3
shift 1

Chapter 7: Parsing 165

0 expr 2 - 3 number 1 $ reduce 2
0 expr 2 - 3 expr $ goto 4
0 expr 2 - 3 expr 4 $ reduce 1
0 expr $ go to b
0 expr 5 $ shift 6
Oexpr5$6 accept

i.e., grouping the first two expressions, in other words understanding ‘ (number - number)
- number’.

Well meaning, it even chose an alternative for us, shifting, which Bison signifies with the
square brackets: possibility ‘[reduce using rule 1 (expr)]’ will not be followed. Too bad,
that’s precisely not the choice we need...

The cure is well known: implement the grammar of the ezample 7.6. The reader is invited
to implement it in Bison, and check the output file. In fact, the only difference between the two
output files is that the state 4 is now:

State 4 expr -> expr ’-’ "number" . (rule 1)
$default reduce using rule 1 (expr)

With some practice, you will soon be able to understand how to react to conflicts, spotting
where they happen, and find another grammar which is unambiguous. Unfortunately...

7.5 Resolving Conflicts

Unfortunately, naive grammars are often ambiguous. The naive grammar for arithmetics, see
example 7.4, is well-known for its ambiguities, unfortunately finding an unambiguous equivalent
grammar is quite a delicate task and requires some expertise:

expr: expr ’+’ term
| expr ’-’ term
| term;
term: term ’*’ factor
| term ’/’ factor
| factor;
factor: ’(° expr ’)’
| "number";

Example 7.10: An Unambiguous Grammar for Arithmetics

Worse yet: it makes the grammar more intricate to write. For instance, a famous ambiguity
in the naive grammar for the C programming language is the “dangling else”. Consider the
following grammar excerpt:

0/0

Tolo

stmt: "if" "expr" stmt "else" stmt
| "if" "expr" stmt
| "Stmt" ;

Example 7.11: ‘ifelse-1.y’ — Ambiguous grammar for if /else in C

Although innocent looking, it is ambiguous and leads to two different interpretations of:

166 Programming with GNU Software

if (expr-1)

if (expr-2)
statement-1

else statement-2

depending whether statement-2 is bound to the first or second if. The C standard clearly
mandates the second interpretation: a “dangling else” is bound to the closest if. How can one
write a grammar for such a case? Again, the answer is not obvious, and requires some experience
with grammars. It requires the distinction between “closed statements”, i.e., those which if are
saturated (they have their pending else), and non closed statements:

ot

stmt: closed_stmt

| non_closed_stmt;
closed_stmt: "if" "expr" closed_stmt "else" closed_stmt
| "stmt";
non_closed_stmt: "if" "expr" stmt
| "if" "expr" closed_stmt "else" non_closed_stmt;

Example 7.12: ‘ifelse-2.y’ — Unambiguous Grammar for if /else in C

And finally, since we introduce new rules, new symbols, our grammar gets bigger, hence the
automaton gets fat, therefore it becomes less efficient (since modern processors cannot make full
use of their caches with big tables).

Rather, let’s have a closer look at example 7.9. There are two actions fighting to get into
state 4: reducing the rule 1, or shifting the token ‘=’. We have a match between two opponents:
if the rule wins, then ‘=’ is right associative, if the token wins, then ‘-’ is left associative.

What we would like to say is that “shifting ‘=’ has priority over reducing ‘expr: expr ’-’
expr’”. Bison is nice to us, and allows us to inform it of the associativity of the operator, it will
handle the rest by itself:

hleft 7=
Toth
expr: expr ’-’ expr | "number";

Example 7.13: ‘arith-3.y’ — Using %left’ to Solve Shift/Reduce Conflicts

$ bison --verbose arith-3.y
This is encouraging, but won’t be enough for us to solve the ambiguity of the example 7.5:

hleft ’+°
Yoo

. J) J J n n.
expr: expr ’*’ expr | expr ’+’ expr | "number";

Example 7.14: ‘arith-4.y’ — An Ambiguous Grammar for *’ vs. “+’

$ bison --verbose arith-4.y
arith-4.y contains 3 shift/reduce conflicts.

Diving into ‘arith-4.output’ will help us understand the problem:

Conflict in state 5 between rule 2 and token ’+’ resolved as reduce.
State 5 contains 1 shift/reduce conflict.
State 6 contains 2 shift/reduce conflicts.

Chapter 7: Parsing 167

State b5 expr -> expr . ’*’ expr (rule 1)
expr =-> expr ’*’ expr . (rule 1)
expr -> expr . ’+’ expr (rule 2)
72 shift, and go to state 3
%2 [reduce using rule 1 (expr)]
$default reduce using rule 1 (expr)
State 6 expr -> expr . ’x’ expr (rule 1)
expr =-> expr ’*’ expr . (rule 1)
expr -> expr . ’+’ expr (rule 2)
7+ shift, and go to state 3
k2 shift, and go to state 4
T+ [reduce using rule 1 (expr)]
%2 [reduce using rule 1 (expr)]
$default reduce using rule 1 (expr)

First note that it reported its understanding of ‘%left ’+’’: it is a match opposing token ‘+’
against rule 2, and the rule is the winner.

State 6, without any surprise, has a shift /reduce conflict because we didn’t define the asso-
ciativity of ‘*’, but states 5 and 6 have a new problem. In state 5, after having read ‘expr +
expr’, in front of a ‘¥’ should it shift it, or reduce ‘expr + expr’? Obviously it should reduce:
the rule containing ‘*’ should have precedence over the token ‘+’. Similarly, in state 6, the token
‘*” should have precedence over the rule containing ‘+’. Both cases can be summarized as “‘*’
has precedence over ‘+’”.

Bison allows you to specify precedences simply by listing the ‘%left’ and ‘4right’ from the
lowest precedence, to the highest. Some operators have equal precedence, for instance series of
‘+” and ‘-’ must always be read from left to right: ‘+’ and ‘-’ have the same precedence. In this
case, just put the two operators under the same ‘%left’.

Finally, we are now able to express our complete grammar of arithmetics:
%left >+7 =
hleft x> 2/
Ioth

expr: expr ’*’ expr | expr ’/’ expr

| expr ’+’ expr | expr ’-’ expr
|) (J expr J))
| "number";

Example 7.15: ‘arith-5.y’ — Using Precedence to Solve Shift/Reduce Conflicts

which is happily accepted by bison:

$ bison --verbose arith-5.y

The reader is invited to:

Implement the grammar of the ezample 7.10

Read the output file, and see that indeed it requires a bigger automaton than the
grammar of the example 7.15.

Play with the option ‘--graph’
A complement of ‘--verbose’ is ‘--graph’, which outputs a vCcaG graph, to be viewed
with xvcg. View the automata of the various grammars presented.

Explain the Failure of Factored Arithmetics
Bison refuses the following grammar:

168 Programming with GNU Software

hleft 47 =2

%left)% 7/)

oo

expr: expr op expr | "number";
op:)+) |) |)*) |)/);

Example 7.16: ‘arith-6.y’ — Failing to Use Precedence

$ bison arith-6.y

arith-6.y contains 4 shift/reduce conflicts.
Can you explain why? Bear in mind the nature of the opponents in a shift/reduce
match.

Solve the dangling else
The precedence of a rule is actually that of its last token. With this in mind, propose
a simple implementation of the grammar of example 7.10 in Bison.

We are now fully equipped to implement real parsers.
7.6 Simple Uses of Bison

Bison is a source generator, just as Gperf, Flex, and others. It takes a list of rules and
actions, and produces a function triggering the action associated to the reduced rule. The input
syntax allows for the traditional prologue, containing Bison directives and possibly some user
declarations and initializations, and the epilogue, typically additional functions:

hi

user-prologue

ht

bison-directives

Dot

/* Comments. */

1fs:

rhs-1 { action-1 }

| rhs-2 { action-2 }
I

YA
user-epilogue
Example 7.17: Structure of a Bison Input File

When run on a file ‘foo.y’, bison produces a file named ‘foo.tab.c’ and possibly
‘foo.tab.h’, ‘foo.output’, etc. This atrocious naming convention is a mongrel between the
POSIX standards on the one hand requiring the output to be always named ‘y.tab.c’; and
on the other hand the more logical ‘foo.c’. You may set the output file name thanks to the
houtput="parser-filename" directive.

This file is a C source including, in addition to your user-prologue and user-epilogue, one
function:

int yyparse () [Function]
Parse the whole stream of tokens delivered by successive calls to yylex. Trigger the action
associated to the reduced rule.

Chapter 7: Parsing 169

Return 0 for success, and nonzero upon failures (such as parse errors).

You must provide yylex, but also yyerror, used to report parse errors.

For a start, we will implement the example 7.1. Because writing a scanner, which splits the
input into tokens, is a job in itself, see Chapter 6 [Scanning with Gperf and Flex], page 127, we
will simply rely on the command line arguments. In other words, we use the shell as a scanner
(or rather, we let the user fight with its shells to explain where start and end the tokens).

W /% k= C == #/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <error.h>

static int yylex (void);
static void yyerror (const char *);
h}
Joutput="brackens-1.c"
hto
expr: ’(’ expr ’)’
| K
hte
/* The current argument. */
static const char **args = NULL;

static int
yylex (void)
{
/* No token stands for end of file. */
if (!*++args)
return O;
/* Parens stand for themselves. ‘N’ denotes a number. */
if (strlen (*args) == 1 && strchr ("()N", **args))
return **args;
/* An error. */
error (EXIT_FAILURE, O, "invalid argument: %s", *args);
/* Pacify GCC that knows ERROR may return. */

return -1;
}
void
yyerror (const char *msg)
{
error (EXIT_FAILURE, O, "%s", msg);
}
int
main (int argc, const char *argv[])
{

args = argv;
return yyparse ();

}

170 Programming with GNU Software

Example 7.18: ‘brackens-1.y’ — Nested Parentheses Checker

Which we compile and run:

$ bison brackens-1.y

$ gcc -Wall brackens-1.c -o brackens-1
$./brackens-1 ’(’ °N’> ’)’

$./brackens-1 °(’ ’n’ ’)’
./brackens-1: invalid argument: n
$./brackens-1 ’(’ ’(° °N’)’)’

$./brackens-l)())(;)N) J))))J ;))
./brackens-1: parse error

It works quite well! Unfortunately, when given an invalid input is it quite hard to find out where
the actual error is. Fortunately you can ask Bison parsers to provide more precise information by
defining YYERROR_VERBOSE to 1. You can also use the Bison directive %debug which introduces
a variable, yydebug, to make your parser verbose:

W /% 4= C k= x/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <error.h>

static int yylex (void);

static void yyyerror (const char *msg);
#define YYERROR_VERBOSE 1

h}

%debug

Joutput="brackens-2.c"

oo

expr: ’(’ expr ’)’

| N
hto
int
main (int argc, const char *argv[])
{

yydebug = getenv ("YYDEBUG") 7 1 : O;
args = argv;
return yyparse ();

}
Example 7.19: ‘brackens-2.y’ — Nested Parentheses Checker

which, when run, produces:
$ '/brackenS_Q)())())N))))))))))
./brackens-2: parse error, unexpected ’)’, expecting $

Wow! The error message is much better! But it is still not clear which one of the arguments is
provoking the error. Asking traces from the parser gives some indication:

$ YYDEBUG=1 ./brackens-2 ’(’ ’(° ’N’ ?)’ 2)’ ?)’
Starting parse

Chapter 7: Parsing 171

Entering state O

Reading a token: Next token is 40 (°(’)

Shifting token 40 (’(’), Entering state 1

Reading a token: Next token is 40 (’(’)

Shifting token 40 (’(’), Entering state 1

Reading a token: Next token is 78 (’N’)

Shifting token 78 (’N’), Entering state 2

Reducing via rule 2 (line 32), ’N’ -> expr

state stack now 0 1 1

Entering state 3

Reading a token: Next token is 41 (’)’)

Shifting token 41 (’)’), Entering state 4

Reducing via rule 1 (line 32), ’(’ expr ’)’ -> expr
state stack now 0 1

Entering state 3

Reading a token: Next token is 41 (°)’)

Shifting token 41 (’)’), Entering state 4

Reducing via rule 1 (line 32), ’(’ expr ’)’ -> expr
state stack now O

Entering state 5

Reading a token: Next token is 41 (°)’)
./brackens-2: parse error, unexpected ’)’, expecting $

The reader is invited to compare these traces with the “execution” by hand of the example 7.3:
it is just the same!

Two things are worth remembering. First, always try to produce precise error messages,
since once an error is diagnosed, the user still has to locate it in order to fix it. I, for one, don’t
like tools that merely report the line where the error occurred, because often several very similar
expressions within that line can be responsible for the error. In that case, I often split my line
into severals, recompile, find the culprit, educate it, and join again these lines... And second,
never write dummy printf to check that your parser works: it is a pure waste of time, since
Bison does this on command, and produces extremely readable traces. Take some time to read
the example above, and in particular spot on the one hand side the tokens and the shifts and
on the other hand the reductions and the rules. But forget about “states”, for the time being.

7.7 Using Actions

Of course real applications need to process the input, not merely to validate it as in the
previous section. For instance, when processing arithmetics, one wants to compute the result,
not just say “this is a valid/invalid arithmetical expression”.

We stem on several problems. First of all, up to now we managed to use single characters as
tokens: the code of the character is used as token number. But all the integers must be mapped
to a single token type, say INTEGER.

Bison provide the %token directive to declare token types:
%token INTEGER FLOAT STRING

Secondly, tokens such as numbers have a value. To this end, Bison provides a global variable,
yylval, which the scanner must fill with the appropriate value. But imagine our application
also had to deal with strings, or floats etc.: we need to be able to specify several value types,
and associate a value type to a token type.

To declare the different value types to Bison, use the %union directive. For instance:

172 Programming with GNU Software

J%union

{
int ival;
float fval;
char *sval;

}

This results in the definition of the type “token value”: yystype®. The scanner needs the
token types and token value types: if given ‘--defines’ bison creates ‘foo.h’ which contains
their definition. Alternatively, you may use the %defines directive.

Then map token types to value types:

%token <ival> INTEGER
%token <fval> FLOAT
%token <sval> STRING
But if tokens have a value, then so have some nonterminals! For instance, if iexpr denotes
an integer expression, then we must also specify that (i) it has a value, (ii) of type INTEGER. To
this end, use %type:
htype <ival> iexpr
%type <fval> fexpr
htype <sval> sexpr
We already emphasized the importance of traces: together with the report produced thanks
to the option ‘--verbose’, they are your best partners to debug a parser. Bison lets you improve
the traces of tokens, for instance to output token values in addition to token types. To use this
feature, just define the following macro:

YYPRINT (File, Type, Value) [Macro]
Output on File a description of the Value of a token of Type.

For various technical reasons, I suggest the following pattern of use:

Wi

#define YYPRINT(File, Type, Value) yyprint (File, Type, &Value)
static void yyprint (FILE *file, int type, const yystype *value);
h}
Toth
Tolh
static void
yyprint (FILE *file, int type, const yystype *value)
{
switch (type)
{
case INTEGER:
fprintf (file, "
break;
case FLOAT:
fprintf (file, "
break;

%", value->ival);

%E", value->fval);

5 Because of the compatibility with POsix Yacc, the type YYSTYPE is also defined. For sake of inter Yacc

portability, use the latter only. But for sake of your mental balance, use Bison only.

Chapter 7: Parsing 173

case STRING:
fprintf (file, " = \"%s\"", value->sval);
break;

}

The most important difference between a mere validation of the input and an actual com-
putation, is that we must be able to equip the parser with actions. For instance, once we have
recognized that ‘1 + 2’ is a ‘INTEGER + INTEGER’, we must be able to (i) compute the sum, which
requires fetching the value of the first and third tokens, and (ii) “return” 3 as the result.

To associate an action with a rule, just put the action after the rule, between braces. To
access the value of the various symbols of the right hand side of a rule, Bison provides pseudo-
variables: ‘$1’ is the value of the first symbol, ‘$2’ is the second etc. Finally to “return” a value,
or rather, to set the value of the left hand side symbol of the rule, use ‘$$’.

Therefore, a calculator typically includes:
iexpr: iexpr ’+’ iexpr { $$ = $1 + $3 }
iexpr ’-’ iexpr { $$ = $1 - $3 }

|

| iexpr ’*’ iexpr { $$ = $1 * $3 }
| iexpr ’/’ iexpr { $$ = $1 / $3 }
| INTEGER {83 =911

b

Please, note that we used ‘$3’ to denote the value of the third symbol, even though the second,
the operator, has no value.

Putting this all together leads to the following implementation of the ezample 7.15:
W /% —%= C —x— %/

#include <stdio.h>

#include <stdlib.h>
#include <string.h>
#include <error.h>

#include "calc.h"

#define YYERROR_VERBOSE 1
#define yyerror(Msg) error (EXIT_FAILURE, 0, "%s", Msg)

#define YYPRINT(File, Type, Value) yyprint (File, Type, &Value)
static void yyprint (FILE *file, int type, const yystype *value);

static int yylex (void);
ht
%debug
Jdefines
%houtput="calc.c"
%union
{
int ival;
}
%token <ival> NUMBER
htype <ival> expr input

Programming with GNU Software

%left 42 7=
%left)%)/;
hto

input: expr { printf ("Jd\n", $1) }
expr: expr ’*’ expr { $$ = $1 * $3 }

| expr /> expr { $$ = $1 / $3 }

| expr ’+’ expr { $$ = $1 + $3 }

| expr -’ expr { $$ = $1 - $3 }

| >C expr ’)> { $$=9%21}

| NUMBER {83 =911}

Toth
/* The current argument. */
static const char **args = NULL;

static void
yyprint (FILE *file, int type, const yystype *value)
{
switch (type)
{
case NUMBER:
fprintf (file, " = %d", value->ival);
break;
}
}

static int
yylex (void)
{
/* No token stands for end of file. */
if (!*++args)
return O;
/* Parens and operators stand for themselves. */
if (strlemn (*args) == 1 && strchr ("()+-*/", **xargs))
return **args;
/* Integers have a value. */
if (strspn (*args, "0123456789") == strlen (*args))
{
yylval.ival = strtol (*args, NULL, 10);
return NUMBER;
}
/* An error. */
error (EXIT_FAILURE, O, "invalid argument: %s", *args);
/* Pacify GCC which knows ERROR may return. */
return -1;

Chapter 7: Parsing 175

int

main (int argc, const char *argv[])

{
yydebug = getenv ("YYDEBUG") 7 1 : O;
args = argv;
return yyparse ();

}
Example 7.20: ‘calc.y’— A Simple Integer Calculator

Its execution is satisfying:

$ bison calc.y

$ gcc calc.c -o calc

$./calc 1 + 2 *x 3

7

$./calc 1 + 2 *x 3 *

./calc: parse error, unexpected $, expecting NUMBER or ’(’
$ YYDEBUG=1 ./calc 51

Starting parse

Entering state O

Reading a token: Next token is 257 (NUMBER = 51)
Shifting token 257 (NUMBER), Entering state 1
Reducing via rule 7 (line 56), NUMBER -> expr
state stack now O

Entering state 3

Reading a token: Now at end of input.

Reducing via rule 1 (line 48), expr -> input
51

state stack now O

Entering state 14

Now at end of input.

Shifting token O ($), Entering state 15

Now at end of input.

well, almost

$./calc 1/ 0
floating point exception ./calc 1/ 0

7.8 Advanced Use of Bison

The example of the previous section is very representative of real uses of Bison, except for
its scale. Nevertheless, there remains a few issues to learn before your Bison expert graduation.
In this section, we complete a real case example started in Section 6.2.6 [Advanced Use of Flex],
page 151: a reimplementation of M4’s eval builtin, using Flex and Bison.

Bison parsers are often used on top of Flex scanners. As already explained, the scanner then
needs to know the definition of the token types, and the token value types: to this end use
‘--defines’ or %defines to produce a header containing their definition.

The real added value of good parsers over correct parsers is in the handling of errors: the
accuracy and readability of the error messages, and their ability to proceed as much as possible
instead of merely dying at the first glitch®.

6 No one would ever accept a compiler which reports only the first error it finds, and then exits!

176 Programming with GNU Software

It is an absolute necessity for error messages to specify the precise location of the errors. To
this end, when given ‘--locations’ or %locations, bison provides an additional type, yyltype
which defaults to:

typedef struct yyltype
{

int first_line;

int first_column;

int last_line;
int last_column;
} yyltype;

and another global variable, yylloc, which the scanner is expected to set for each token (see
Section 6.2.6 [Advanced Use of Flex|, page 151). Then, the parser will automatically keep track
of the locations not only of the tokens, but also of nonterminals. For instance, it knows that the
location of ‘1 + 20 * 300’ starts where ‘1’ starts, and ends where ‘300’ does. As with ‘$$’, ‘$1°
etc., you may use ‘@$’, ‘@1’ to set/access the location of a symbol, for instance in “division by
0” error messages.

It is unfortunate, but the simple result of history, that improving the error messages requires
some black incantations:

#define YYERROR_VERBOSE 1
#define yyerror(Msg) yyerror (&yylloc, Msg)

in other words, even with %locations Bison does not pass the location to yyerror by default.
Similarly, enriching the traces with the locations requires:

/* FIXME: There used to be locations here. x*/
#define YYPRINT(File, Type, Value) yyprint (File, /* &yylloc, */ Type, &Value)|]

In the real world, using a fixed set of names such as yylex, yyparse, yydebug and so on is
wrong: you may have several parsers in the same program, or, in the case of libraries, you must
stay within your own name space. Similarly, using global variables such as yylval, yylloc is
dangerous, and prevents any recursive use of the parser.

These two problems can be solved with Bison: use ‘4name-prefix="prefix"’ to rename of
the ‘yyfoo’s into ‘prefixfoo’s, and use Jpure-parser to make Bison define yylval etc. as
variables of yyparse instead of global variables.

If you are looking for global-free parsers, then, obviously, you need to be able to exchange
information with yyparse, otherwise, how could it return something to you! Bison provides an
optional user parameter, which is typically a structure in which you include all the information
you might need. This structure is conventionally called a parser control structure, and for
consistency I suggest naming it yycontrol. To define it, merely define YYPARSE_PARAM:

#define YYPARSE_PARAM yycontrol

Moving away from ‘yy’ via Yname-prefix, and from global variables via j,pure-parser also
deeply change the protocol between the scanner and the parser: before, yylex expected to find
a global variable named yylval, but now it is named foolval and it is not global any more!

Scanners written with Flex can easily be adjusted: give it ‘foption prefix="prefix"’ to
change the ‘yy’ prefix, and explain, (i) to Bison that you want to pass an additional parameter
to yylex:

#define YYLEX_PARAM yycontrol
and (ii) on the other hand, to Flex that the prototype of yylex is to be changed:

#define YY_DECL \

Chapter 7: Parsing 177

int yylex (yystype *yylval, yyltype *yylloc, yycontrol_t *yycontrol)
Putting this all together for our eval reimplementation gives:

%debug

%defines

%locations

Jipure-parser

Jname-prefix="yleval_"

/* Request detailed parse error messages. */
%herror-verbose

hi

#if HAVE_CONFIG_H

include <config.h>
#endif

#include <m4module.h>
#include "yleval.h"

/* When debugging our pure parser, we want to see values and locations
of the tokens. */
/* FIXME: Locations. */
#define YYPRINT(File, Type, Value) \
yyprint (File, /% FIXME: &yylloc, */ Type, &Value)
static void yyprint (FILE *file, /* FIXME: const yyltype *loc, */
int type, const yystype *value);

/*

void yyerror (const YYLTYPE *location, yleval_control_t *yleval_control,
const char *message, ...);

*/

h}

/* Pass the control structure to YYPARSE and YYLEX. */
%parse-param "yleval_control_t *yycontrol", "yycontrol"

%lex-param "yleval_control_t *yycontrol", "yycontrol"
/* Only NUMBERS have a value. */
%union
{
number number;
s

The name of the tokens is an implementation detail: the user has no reason to know NUMBER
is your token type for numbers. Unfortunately, these token names appear in the verbose error
messages, and we want them! For instance, in the previous section, we implemented calc:

$./calc °(’ 2+)’
./calc: parse error, unexpected ’)’, expecting NUMBER or ’(’

3

Bison lets you specify the “visible” symbol names to produce:

$./calc °(’ 2+)’
./calc: parse error, unexpected ’)’, expecting "number" or ’(’

which is not perfect, but still better. In our case:

178 Programming with GNU Software

/* Define the tokens together with there human representation. */
%token YLEVAL_EOF O "end of string"

%token <number> NUMBER "number"

Jtoken LEFTP " (" RIGHTP ")"

Jtoken LOR "[||"

%token LAND "&&"

%token OR "|"

%token XOR "~

/token AND "&"

%token EQ "=" NOTEQ "!="

%token GT ">" GTEQ ">=" LS "<" LSEQ "<="

%token LSHIFT "<<" RSHIFT ">>"

%token PLUS "+" MINUS "-"

/itoken TIMES "*" DIVIDE "/" MODULO "%" RATIO ":"
%token EXPONENT "*x"

%token LNOT "!" NOT "~" UNARY

%type <number> exp
There remains to define the precedences for all our operators, which ends our prologue:

/* Specify associativities and precedences from the lowest to the
highest. */

%left LOR

%left LAND

%left OR

%left XOR

%left AND

/* These operators are non associative, in other words, we forbid
‘-1 <0< 1. C allows this, but understands it as
(-1 < 0) < 1’ which evaluates to... false. */

%nonassoc EQ NOTEQ

Y%nonassoc GT GTEQ LS LSEQ

%nonassoc LSHIFT RSHIFT

%left PLUS MINUS

%left TIMES DIVIDE MODULO RATIO

%right EXPONENT

/* UNARY is used only as a precedence place holder for the
unary plus/minus rules. */

%right LNOT NOT UNARY

Tolh

The next section of ‘ylparse.y’ is the core of the grammar: its rules. The very first rule
deserves special attention:

result: { LOCATION_RESET (yylloc) } exp { yycontrol->result = $2; };

it aims at initializing yylloc before the parsing actually starts. It does so via a so called mid-
rule action, i.e., a rule which is executed before the whole rule is recognized”. Then it looks

7 The attentive reader will notice that the notion of mid-rule action does not fit with LALR(1) techniques:
an action can only be performed once a whole rule is recognized. The paradox is simple to solve: internally
Bison rewrites the above fragment as

result: @1 exp { yycontrol->result = $2; };

@1: /* Empty. */ { LOCATION_RESET (yylloc); };
where ‘@1’ is a fresh nonterminal. You are invited to read the
invisible symbols and rules.

‘--verbose’ report which does include these

Chapter 7: Parsing

179

for a single expression, which value consists in the result of the parse: we store it in the parser
control structure.

The following chunk addresses the token NUMBER. It relies on the default action: ‘$$ = $1°.

/* Plain numbers.
exp:

3

NUMBER

/* Parentheses.
exp:
LEFTP exp RIGHTP { $$ = $2; }

I

*/

*/

The next bit of the grammar describes arithmetics. Two treatments deserve attention:

Unary Operators
We want the unary minus and plus to bind extremely tightly: their precedence is
higher than that binary plus and minus. But, as already explained, the precedence
of a rule is that of its last token... by default... To override this default, we use
%prec which you can put anywhere in the rule. The rules below read as “the rules
for unary minus and plus have the precedence of the precedence place holder UNARY”.

Semantic Errors
Not all the exponentiations are valid (‘2 ~ -1’), nor are all the divisions and moduli
(‘1/ 0% ‘1% 0’). When such errors are detected, we abort the parsing by invoking
YYABORT.

/* Arithmetics.
exp:

3

PLUS exp
MINUS exp
exp PLUS
exp MINUS
exp TIMES
exp DIVIDE
exp MODULO
exp RATIO

*/

exp
exp
exp
exp
exp
exp

exp EXPONENT exp

/* Booleans.
exp:

| exp LAND exp { $$
| exp LOR exp { $$

J

LNOT exp

*/

{3

/* Comparisons. */
exp:

3

exp EQ
exp NOTEQ
exp LS
exp LSEQ
exp GT
exp GTEQ

exp
exp
exp
exp
exp
exp

{ $%
{ $%
{ $%
{ $%
{ $%
{ if
{ if
{ if
{ if

$

$2; ¥
- $2; %

$1 + $3;
$1 - $3;
$1 * $3;
('yldiv
(!'y1lmod
(1yldiv
('ylpow

' $2; 1}
$1 && $3; T
$1 |1 $3; %

$3;
$3;
$3;
$3;
$3;
$3;

(yycontrol,
(yycontrol,
(yycontrol,
(yycontrol,

W Y N

%prec UNARY
%prec UNARY

&e$,
&%,
&0$,
&e$,

&$$,
&$3,
&$$,
&$$,

$1, $3)) YYABORT;
$1, $3)) YYABORT;
$1, $3)) YYABORT;
$1, $3)) YYABORT;

]

180 Programming with GNU Software

/* Bitwise. *x/

exp:

NOT exp {88 ="9$2; }
| exp AND exp { $¢ = $1 & $3; }
| exp OR exp { $$ = $1 | $3; }
| exp LSHIFT exp { $$ = $1 << $3; }
| exp RSHIFT exp { $$ = $1 >> $3; }

oo

Finally, the epilogue of our parser consists in the definition of the tracing function, yyprint:

static void
yyprint (FILE *file,
/* FIXME: const yyltype *loc, */ int type, const yystype *value)
{
fputs (" (", file);
/* FIXME: LOCATION_PRINT (file, *loc); */
fputs (")", file);
switch (type)
{
case NUMBER:
fprintf (file, " = %1d", value->number);
break;

}

7.9 The yleval Module

Our job is almost done, there only remains to create the leader: the M4 module which receives
the expression from M4, launches the parser on it, and return the result or an error to M4. The
most relevant bits of this file, ‘yleval.c’, are included below. The reader is also referred to
‘yleval.h’ and ‘ylscan.l’, see Section 6.2.6 [Advanced Use of Flex]|, page 151.

Chapter 7: Parsing 181

Y e it e e
| Record an error occurring at location LOC and described by MSG. |
oo ——————————— */
void
yleval_error (const yyltype *loc, yleval_control_t *control,

const char *msg, ...)
{

va_list ap;
/* Separate different error messages with a new line. */
fflush (control->err);
if (control->err_size)
putc (’\n’, control->err);
LOCATION_PRINT (control->err, *loc);
fprintf (control->err, ": ");
va_start (ap, msg);
viprintf (control->err, msg, ap);
va_end (ap);

This first function, yleval_error, is used to report the errors. Since there can be several errors
in a single expression, it uses a facility provided by the GNU C Library: pseudo streams which
are in fact hooked onto plain char * buffers, grown on demand. We will see below how to
initialize this stream, err, part of our control structure defined as:

typedef struct yleval_control_s
{
/* To store the result. */
number result;

/* A string stream. */
FILE *err;
char *err_str;
size_t err_size;
} yleval_control_t;

The following function computes the division, and performs some semantic checking. ylmod
and ylpow are similar

182 Programming with GNU Software

| Compute NUMERATOR / DENOMINATOR, and store in RESULT. On errors, |
| produce an error message, and return FALSE. |

boolean
yldiv (yleval_control_t *control, const yyltype *loc,
number *result, number numerator, number denominator)
{
if (!'denominator)
{
yleval_error (loc, control, "Division by zero");
*result = 0;
return FALSE;
}

*result = numerator / denominator;
return TRUE;
}

Now, the conductor of the whole band, the builtin yleval is defined as follows. Its first part
is dedicated to initialization, and to decoding of the optional arguments passed to the builtin:

MABUILTIN_HANDLER (yleval)
{
int radix = 10;
int min = 1;
/* Initialize the parser control structure, in particular
open the string stream ERR. */
yleval_control_t yleval_control;
yleval_control.err =
open_memstream (&yleval_control.err_str,
&yleval_control.err_size);

/* Decode RADIX, reject invalid values. */
if (argc >= 3 &% !'m4_numeric_arg (argc, argv, 2, &radix))
return;

if (radix <= 1 || radix > 36)
{
M4ERROR ((warning_status, O,
_("Warning: %s: radix out of range: %d"),
M4ARG(0), radix));
return;

}

Chapter 7: Parsing 183

/* Decode MIN, reject invalid values. */
if (argc >= 4 &% !'m4_numeric_arg (argc, argv, 3, &min))
return;

if (min <= 0)
{
M4ERROR ((warning_status, O,
_("Warning: %s: negative width: %d"),
M4ARG(0), min));
return;

3

Then it parses the expression, and outputs it result.

/* Feed the scanner with the EXPRESSION. */
yleval__scan_string (M4ARG (1));

/* Launch the parser. */

yleval_parse (&yleval_control);

/* End the ERR stream. If it is empty, the parsing is
successful and we return the value, otherwise, we report
the error messages. */

fclose (yleval_control.err);

if (!yleval_control.err_size)

{

numb_obstack (obs, yleval_control.result, radix, min);

else
{
M4ERROR ((warning_status, O,
_("Warning: %s: %s: %s"),
M4ARG (0), yleval_control.err_str, M4ARG (1)));
free (yleval_control.err_str);
}
}

Example 7.21: ‘yleval.y’ — Builtin yleval (continued)

It is high time to play with our module! Here are a few sample runs:

$ echo "yleval(1)" | m4 -M . -m yleval
1

Good news, we seem to agree on the definition of 1,

$ echo "yleval(1 + 2 * 3)" | m4 -M . -m yleval
7

and on the precedence of multiplication over addition. Let’s exercise big numbers, and the radix:
$ echo "yleval(2 ** 2 ** 2 *x 2 - 1)" | m4 -M . -m yleval

65535
$ echo "yleval(2 ** 2 ** 2 *x 2 - 1, 2)" | m4 -M . -m yleval
1111111111111111

How about tickling the parser with a few parse errors:

$ echo "yleval(2 *** 2)" | m4 -M . -m yleval
m4: stdin: 1: Warning: yleval: 1.5: parse error, unexpected "x": 2 **x 2]

184 Programming with GNU Software

Wow! Now, that’s what I call an error message: the fifth character, in other words the third ‘*’,
should not be there. Nevertheless, at this point you may wonder how the stars were grouped?®.
Because you never know what the future is made of, I strongly suggest that you always equip
your scanners and parsers with runtime switches to enable/disable tracing. This is the point of
the following additional builtin, yldebugmode:

M4BUILTIN_HANDLER (yldebugmode)
{
/* Without arguments, return the current debug mode. */
if (argc == 1)
{
m4_shipout_string (obs,
yleval__flex_debug 7 "+scanner" : "-scanner", O, TRUE);I
obstack_lgrow (obs, ’,’);
m4_shipout_string (obs,
yleval_debug 7 "+parser" : "-parser", O, TRUE);

else
{
int arg;
for (arg = 1; arg < argc; ++arg)
if (!strcmp (M4ARG (arg), "+scanner"))
yleval__flex_debug = 1;
else if (!strcmp (M4ARG (arg), "-scanner"))
yleval__flex_debug = 0;
else if (!strcmp (M4ARG (arg), "+parser"))
yleval_debug = 1;
else if (!strcmp (M4ARG (arg), "-parser"))
yleval_debug = O;
else
MAERROR ((warning_status, O,
_("%s: invalid debug flags: %s"),
M4ARG (0), M4ARG (arg)));

¥

Applied to our previous example, it clearly demonstrates how ‘2 **% 2’ is parsed?:

$ echo "yldebugmode (+parser)yleval(2 *** 2)" | m4 -M . -m yleval
Starting parse

Entering state O

Reducing via rule 1 (line 100), -> @1

state stack now 0O

Entering state 2
Reading a token: Next token is 257 ("number" (1.1) = 2)

8 Actually you should already know that Flex chose the longest match first, therefore it returned ‘**’ and then
‘“*’. See Section 6.2.1 [Looking for Tokens], page 141.

9 The same attentive reader who was shocked by the concept of mid-rule actions, see Section 7.8 [Advanced
Use of Bison], page 175, will notice the reduction of the invisible ‘@1’ symbol below.

Chapter 7: Parsing 185

Shifting token 257 ("number"), Entering state 4
Reducing via rule 3 (line 102), "number" -> exp
state stack now O 2

Entering state 10

Reading a token: Next token is 279 ("xx" (1.3-4))
Shifting token 279 ("**"), Entering state 34
Reading a token: Next token is 275 ("x" (1.5))
Error: state stack now 0 2 10

Error: state stack now 0 2

Error: state stack now O

m4: stdin: 1: Warning: yleval: 1.5: parse error, unexpected "x": 2 xx*x 2J]

which does confirm ‘x*%’ is split into ‘**’ and then ‘x’.

7.10 Using Bison with the GNU Build System

Autoconf and Automake provide some generic Yacc support, but no Bison dedicated support.
In particular Automake expects ‘y.tab.c’ and ‘y.tab.h’ as output files, which makes it go
through various hoops to prevent several concurrent invocations of yacc to overwrite each others’
output.

As Gperf, Lex, and Flex, Yacc and Bison are maintainer requirements: someone changing the
package needs them, but since their result is shipped, a regular user does not need them. Really,
don’t bother with different Yaccs, Bison alone will satisfy all your needs, and if it doesn’t, just
improve it!

If you use Autoconf’s AC_PROG_YACC, then if bison is found, it sets YACC to ‘bison --yacc’,
otherwise to ‘byacc’ if it exist, otherwise to ‘yacc’. It seems so much simpler to simply set YACC
to ‘bison’l But then you lose the assistance of Automake, and in particular of missing (see
Section 6.1.6 [Using Gperf with the GNU Build System]|, page 140). So I suggest simply sticking
to AC_PROG_YACC, and let Automake handle the rest.

Then, in your ‘Makefile.am’, merely list Bison sources as ordinary source files:

LDFLAGS = -no-undefined

pkglibexec_LTLIBRARIES = yleval.la
yleval_la_SOURCES = ylparse.y ylscan.l yleval.c yleval.h ylparse.h
yleval_la_LDFLAGS = -module

and that’s all.

7.11 Exercises on Bison

Error Recovery
There is one single important feature of Yacc parsers that we have not revealed here:
the use of the error token to recover from errors. The general idea is that when
the parser finds an error, it tries to find the nearest rule which claims to be ready to
return to normal processing after having thrown away embarrassing symbols. For
instance:

exp: ’(’ error ’)’
But including recovery means you must pretend everything went right. In particular,
an exp is expected to have a value, this rule must provide a valid $$. In our case, the

186 Programming with GNU Software

absence of a rule means proceeding with a random integer, but in other applications
it may be a wandering pointer!

Equip yleval with proper error recovery. See section “Writing rules for error recov-
ery” in Bison — The YACC-compatible Parser Generator, for detailed explanations
on error and yyerrok.

LR(2) Grammars

Consider the following excerpt of the grammar of Bison grammars:

grammar: rule

| grammar rule
rule: symbol ’:’ ride-hand-side
right-hand-side: /* Nothing */
| right-hand-side symbol

symbol: ’s’
Convince yourself that Bison cannot accept this grammar either by (i) feeding it
to bison and understanding the conflict, (ii) drawing the LR(1) automaton and
understanding the conflict, (iii) looking at the strategy you, human, use to read the

)

text ‘s : sss:s: 8.

Yes, the bottom line is that, ironically, Yacc and Bison cannot use themselves! (More
rigorously, they cannot handle the natural grammar describing their syntax.)

Once you have understood the problem, (i) imagine you were the designer of Yacc
and propose the grammar for a better syntax, (ii) stop dreaming, you are not Steven
C. Johnson, so you can’t change this grammar: instead, imagine how the scanner
could help the parser to distinguish a symbol at the right hand side of a rule from
the one at the left hand side.

7.12 Further Reading On Parsing

Here a list of suggested readings.

Bison — The YACC-compatible Parser Generator
Written by Charles Donnelly and Richard Stallman
Published by The Free Software Foundation

Available with the sources for GNU Bison. Definitely one of the most beautiful piece
of software documentation.

Lex & Yacc
Written by John R. Levine, Tony Mason and Doug Brown
Published by O’Reilly; ISBN: (FIXME: [have the french one :).)

As many details on all the Lexes and Yacces as you may wish.

Parsing Techniques — A Practical Guide
Written by Dick Grune and Ceriel J. Jacob
Published by the authors; ISBN: 0-13-651431-6

A remarkable review of all the parsing techniques. Freely available on the web pages
of the authors since the book was out of print. (FIXME: url.).

Modern Compiler Implementation in C, Java, ML
Written by Andrew W. Appel
Published by Cambridge University Press; ISBN: 0-521-58390-X
A nice introduction to the principles of compilers. As a support to theory, the whole
book aims at the implementation of a simple language, Tiger, and of some of its
extensions (Object Oriented etc.).

Chapter 8: Writing M4 Scripts 187

8 Writing M4 Scripts

188 Programming with GNU Software

Chapter 9: Source Code Configuration with Autoconf 189

9 Source Code Configuration with Autoconf

9.1 What is Autoconf

The following pun remains, in my opinion, the best introduction to Autoconf:

A physicist, an engineer, and a computer scientist were discussing the nature of
God. “Surely a Physicist,” said the physicist, “because early in the Creation, God
made Light; and you know, Maxwell’s equations, the dual nature of electromagnetic
waves, the relativistic consequences. . .” “An Engineer!,” said the engineer, “because
before making Light, God split the Chaos into Land and Water; it takes a hell of an
engineer to handle that big amount of mud, and orderly separation of solids from
liquids. . .” The computer scientist shouted: “And the Chaos, where do you think
it was coming from, hmm?”

And indeed, if you happen to work on a widespread program you will soon learn that there are
thousands of subtle or huge differences between systems, which render compilation of a program
an impossible exercise. Virtually all the different systems require that sources of a program be
adjusted specifically for them.

An impossible task... Instead of providing sources for all the different systems, maintainers
program for an ideal system, named POSIX, and use a tool that will try to pretend that the user’s
machine does fulfill the specifications of this ideal POSIX machine. This program is Autoconf.

The task of Autoconf is therefore to help the maintainer studying the user’s machine, di-
agnosing its non-POSIX-nesses, and providing workarounds. Obviously, examining the user’s
machine requires running an auditor. Since this auditor is responsible of finding the weak-
nesses, it must be absolutely universal. The Bourne shell is the only language in which this
auditor, configure, can be written. But since the Bourne shell has no support for functions
(), programming complex auditors is near to impossible, just as for programming in assembly
language.

Higher level languages and compilers have been invented to run away from assembly language.
Autoconf, the language, and autoconf, the program, have been invented by David J. MacKenzie
to run away from plain Bourne shell.

This chapter is a gentle introduction to Autoconf, the tool of reference to ensure software
portability. Nevertheless, little emphasize will be put over portability, because:

— solving portability issues is a very tricky activity, which, unfortunately, not only requires
cleverness and practice, but also expertise and knowledge. In other words, being smart or
even brilliant will never be enough to avoid portability pitfalls: there is a lot to learn by
heart.

— fortunately, the GNU/Linux system is POsIX-compliant and essentially bug free. If you
aim at publishing software for GNU/Linux, then you really don’t need to pay attention to
portability issues: everything works fine!

Then, why do you still need to know about Autoconf? First because it is the standard
interface to the GNU Build System (which also comprises Automake and Libtool): users are
used to run configure, to pass ‘—-prefix=$HOME’ etc. instead of having to edit files by hand.
Secondly because POSIX specifies only the core of the system, but if your package requires some
specific program or library (say, the GNU Multiple Precision library), then you still have to
check for it.

190 Programming with GNU Software

9.2 Simple Uses of Autoconf

Autoconf is merely an M4 library, a set of macros specialized in testing for libraries, programs
and so on. Since pure M4 is a bit too low level and since Autoconf aims at producing Bourne
shell scripts, it is on top of M4sh, itself atop M4sugar ((FIXME: Ref.)). As a consequence it
has the same syntax: ‘# introduces comments, the square brackets quote etc. Similarly, you
can use ‘automdte --language=autoconf’ to expand Autoconf source files, but for historical
reasons and because of the momentum of tradition, everybody runs autoconf.

Any Autoconf script must start with AC_INIT:

AC_INIT (package, version, [bug-report-address]) [Macro]
Process any command-line arguments and perform various initializations and verifications.
Set the name of the package and its version. The optional argument bug-report-address
should be the email to which users should send bug reports.

The simplest Autoconf script is therefore:

$ cat auditor.ac

AC_INIT(Auditor, 1.0)

$ automdte -1 autoconf -o auditor auditor.ac
$./auditor

$./auditor --version

Auditor configure 1.0

generated by GNU Autoconf 2.52g

Copyright 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001

Free Software Foundation, Inc.

This configure script is free software; the Free Software Foundation
gives unlimited permission to copy, distribute and modify it.

Most packages contain C sources, and therefore need a compiler; AC_PROG_CC looks for it:

$ cat auditor.ac

AC_INIT(Auditor, 1.1)

AC_PROG_CC

$ automdte -1 autoconf -o auditor auditor.ac

$./auditor

checking for gcc... gcc

checking for C compiler default output... a.out
checking whether the C compiler works... yes
checking whether we are cross compiling... no
checking for executable suffix...

checking for object suffix... o

checking whether we are using the GNU C compiler... yes
checking whether gcc accepts -g... yes

It does work, but how can you exploit the results of this system audit? In Autoconf, this is
always performed by the creation of new files out of templates. For instance, once your system
fully examined, all the ‘Makefile.in’ templates will be instantiated for your system into the
‘Makefile’. This is called configuring the package, and it is a mandatory tradition to name
your configuring script configure, created by autoconf from ‘configure.ac’.

Transforming a simple auditor into a configuring script requires two additional macro invo-
cations:

Chapter 9: Source Code Configuration with Autoconf 191

AC_CONFIG_FILES (file. .., [command]) [Macro]
Declare ‘file’ must be created by copying an input file (by default ‘file.in’), substituting
the output variable values. file is then named an output file, or configuration file. If FOO is
an output variable which value is ‘Bar’, then all the occurrences of ‘@F00@’ in ‘file.in’ will
be replaced with ‘Bar’ in file.

If given, run the shell command once the file is created.

AC_OUTPUT [Macro]

Perform all the outputs (create the output files, output headers, etc.).

For instance:

$ cat which-cc.in

#! OSHELLQ

echo "cc is @CC@"

$ cat configure.ac

AC_INIT(Sample, 1.0)

AC_PROG_CC

AC_CONFIG_FILE([which-cc], [chmod +x which-cc])
AC_OUTPUT

$ autoconf

$./configure

checking for gcc... gcc

checking for C compiler default output... a.out
checking whether the C compiler works... yes
checking whether we are cross compiling... no
checking for executable suffix...

checking for object suffix... o

checking whether we are using the GNU C compiler... yes
checking whether gcc accepts -g... yes
configure: creating ./config.status
config.status: creating which-cc

$./which-cc

cc is gcc
$ cat which-cc
#! /bin/sh

echo "cc is gcc"

You may wonder what this config.status file is... As a matter of fact, configure is really
an auditor, an inspector: it does not perform any configuration action itself, it creates an
instantiator, config.status, and runs it.

Output files are not the only form of output: there is also a special form dedicated to
providing the results of the audit to a C program. This information is a simple list of CPP
symbols defined with #define, grouped together in a output header.

AC_CONFIG_HEADERS (file. .., [command)) [Macro]

Declare the output header ‘file’ must be created by copying its template (by default
‘file.in’), defining the CPP output symbols.

The traditional name for file is ‘config.h’. Therefore its default template is
‘config.h.in’, which causes problems on platforms so severely broken that they
cannot handle two periods in a file name. To help people using operating systems

192 Programming with GNU Software

of the previous Millennium, many maintainers use ‘config.hin’ or ‘config-h.in’
as a template. To this end, invoke ‘AC_CONFIG_HEADERS(config.h:config.hin)’ or
‘AC_CONFIG_HEADERS (config.h:config-h.in)’ .

If given, run the shell command once the file is created.

Typical packages have a single place where their name and version are defined:
‘configure.ac’. Nevertheless, to provide an accurate answer to ‘--help’, the main program
must know the current name and version. This is performed via the configuration header:

$ cat configure.ac

AC_INIT(Audit, 1.1, audit-bugs@audit.org)

AC_CONFIG_HEADERS (config.h)

AC_OUTPUT

$ cat config.h.in

/* Define to the address where bug reports for this package
should be sent. */

#undef PACKAGE_BUGREPORT

/* Define to the full name of this package. */
#undef PACKAGE_NAME

/* Define to the full name and version of this package. */
#undef PACKAGE_STRING

/* Define to the one symbol short name of this package. */
#undef PACKAGE_TARNAME

/* Define to the version of this package. */

#undef PACKAGE_VERSION

$ autoconf

$./configure

$ cat config.h

/* config.h. Generated by configure. */

/* Define to the address where bug reports for this package
should be sent. */

#define PACKAGE_BUGREPORT "audit-bugs@audit.org"

/* Define to the full name of this package. */
#define PACKAGE_NAME "Audit"

/* Define to the full name and version of this package. */
#define PACKAGE_STRING "Audit 1.1"

/* Define to the one symbol short name of this package. */
#define PACKAGE_TARNAME "audit"

/* Define to the version of this package. */
#define PACKAGE_VERSION "1.1"

Fortunately, the content of the configuration header template, ‘config.h.in’, can easily
be inferred from ‘configure.ac’: look for all the possibly defined CPP output symbols, put
an #undef before them, paste a piece of standard comment, and spit it. This is just what
autoheader does:

$ rm config.h.in
$ autoheader
autoheader: ‘config.h.in’ is created

Chapter 9: Source Code Configuration with Autoconf 193

$ cat config.h.in
/* config.h.in. Generated from configure.ac by autoheader. x/

/* Define to the address where bug reports for this package
should be sent. */
#undef PACKAGE_BUGREPORT

/* Define to the full name of this package. */
#undef PACKAGE_NAME

/* Define to the full name and version of this package. */
#undef PACKAGE_STRING

/* Define to the one symbol short name of this package. */
#undef PACKAGE_TARNAME

/* Define to the version of this package. */
#undef PACKAGE_VERSION

“Simple Uses of Autoconf”... Yet there are two programs to run! Does the order matter?
(No, it doesn’t.) When do I have to run them? (Each time ‘configure.ac’ or one of its almost
invisible dependencies changes.) Will there be other programs to run like this? (Sure, automake,
libtoolize, gettextize, aclocal...) Will the order matter? (Yes, it becomes essential.)

“Simple Uses of Autoconf” ought to be named “Simple Uses of autoreconf”: the latter is a
program that knows each of these programs, when they are needed, when they ought to be run
etc. I encourage you to forget about autoconf, automake and so on: just run autoreconf:

$ rm configure config.h config.h.in

$ cat configure.ac

AC_INIT(Audit, 1.1, audit-bugs@audit.org)
AC_CONFIG_HEADERS(config.h)

AC_OUTPUT

$ autoreconf --verbose

autoreconf: working in ‘.’

autoreconf: running: aclocal --output=aclocal.mdt
autoreconf: configure.ac: not using Gettext
autoreconf: configure.ac: not using Libtool
autoreconf: configure.ac: not using Automake
autoreconf: running: autoconf

autoreconf: running: autoheader

autoheader: ‘config.h.in’ is created

$./configure

configure: creating ./config.status
config.status: creating config.h

9.3 Anatomy of GNU M4S$ ‘configure.ac’

The Autoconf world, or better yet, the GNU Build System world is immense. Reading the
documentation of these tools (Autoconf, Automake, Libtool) and exercising them on a genuine
package is the only means to get used to them. Nevertheless, understanding an ‘configure.ac’
is a first required step. This section is devoted to an explanation of a very representative
‘configure.ac’: M4’s.

194 Programming with GNU Software

As for any non trivially short file, the very first section of M4’s ‘configure.ac’ contains its
copyright and license, in comments.

Configure template for GNU m4. -*-Autoconf-*-

Copyright 1991-1994, 2000, 2001 Free Software Foundation, Inc.

#

This program is free software; you can redistribute it and/or modify

Example : GNU M4’s ‘configure.ac’ - (i) License

Then, it requires at least Autoconf 2.53, because it relies on Autoconf and Autotest features
available only since then. While this macro was first meant to have a nice error message if your
Autoconf was too old, this clause takes an increasing importance these days. Indeed, on systems
such as Debian GNU/Linux which ship several concurrent versions of Autoconf, it is used to
decide which should be run.

Extreme caution is taken in Autoconf to catch macros which are not expanded. Typically,
finding ‘m4_define’ in the output is highly suspicious. As a matter of fact, any token starting
with ‘m4_" or ‘AC_’ is suspected of being an M4 or Autoconf macro that was not expanded, or
simply nonexistent. In the present case, since we use variables which names start with ‘m4_cv_’,
we inform the system they are valid. Similarly, to make sure no macro named jm_* (e.g., jm_
PREREQ_ERROR) is left unexpanded, we forbid this pattern, and immediately make an exception

for variables named ‘jm_cv_x’.

———————— it
We need a modern Autotest.
-

AC_PREREQ([2.53])
m4_pattern_allow(["mé4_cv_])

We use some of Jim’s macros.
m4_pattern_forbid(["jm_])
m4_pattern_allow(["jm_cv_])

Example : GNU M/’s ‘configure.ac’ — (i) Requirements

Then, Autoconf is initialized and the package identified. The invocation to AC_CONFIG_
SRCDIR stands for “when running configure, make sure that we can properly find the source
hierarchy by checking for the presence of ‘src/m4.h’.

The GNU Build System relies on a myriad of little tools to factor workarounds portabil-
ity issue. For instance, mkinstalldirs is nothing but a portable ‘mkdir -p’, building a di-
rectory and possibly its parents. Such auxiliary quickly populate the top level of a package:
‘AC_CONFIG_AUX_DIR(config)’ requires to store them in the directory ‘config’. The name of
this directory is available in configure as $ac_aux_dir.

GNU M4 uses Automake to handle the Makefiles, see Chapter 10 [Automake], page 203.
Automake too has to face portability issues: invoking AM_INIT_AUTOMAKE lets it perform the
checks it needs. As using configuration headers implies some additional work in the Makefiles,
Automake needs that you use AM_CONFIG_HEADERS instead of AC_CONFIG_HEADERS, but it is
really the same.

See Section 12.6.2 [Using Autotest with the GNU Build System]|, page 240, for an explanation
of the last two invocations, related to the test suite.

Chapter 9: Source Code Configuration with Autoconf 195

- #it
GNU Build System initialization.
- #it
Autoconf.

AC_INIT([GNU m4], [1.4ql, [bug-m4@gnu.org])
AC_CONFIG_SRCDIR([src/m4.h])
AC_CONFIG_AUX_DIR(config)

Automake.
AM_INIT_AUTOMAKE
AM_CONFIG_HEADER(config.h:config-h.in)

Autotest.
AC_CONFIG_TESTDIR(tests)
AC_CONFIG_FILES([tests/m4], [chmod +x tests/m4])

Example : GNU Mj’s ‘configure.ac’ — (ii) Initialization of the GNU Build System

Because people scattered through out the planet who collaboratively on GNU M4, it is under
the control of CVS, see Chapter 13 [Source Code Management|, page 243. Since anyone can fetch
a snapshot of M4 at any moment, the concept of version number is insufficient. The following
section makes sure that non released versions or betas of GNU M4 (which, by convention, end
with an “odd letter”) have an additional version information: the references of the latest update
of ‘ChangeLog’.

- #i#t
Display a configure time version banner.
- #i#
TIMESTAMP=
case AC_PACKAGE_VERSION in

* [[acegikmogsuwy]l])

TIMESTAMP=‘$CONFIG_SHELL $ac_aux_dir/mkstamp < $srcdir/Changelog®
AS_BOX([Configuring AC_PACKAGE_TARNAME AC_PACKAGE_VERSION$TIMESTAMP])
echo

esac

AC_DEFINE_UNQUOTED([TIMESTAMP], ["$TIMESTAMP"],
[Defined to a CVS timestamp for alpha releases of M4])

Example : GNU M4’s ‘configure.ac’ — (iv) Fine version information

Note that this timestamp is provided to the C code via...

AC_DEFINE (variable, [value = ‘17, [description]) [Macro]

AC_DEFINE_UNQUOTED (variable, [value = ‘1], [description]) [Macro]
Output ‘#define variable value’ in the configuration headers. In the second form, regular
shell expansion (back quotes, variables etc.) is performed on value.

As a result, m4 can provide detailed version information:

$ m4 --version | sed 1q
GNU m4 1.4q (1.71 Sat, 20 Oct 2001 09:31:12 +0200)

196 Programming with GNU Software

Automake provides a set of locations where components of a package are to be installed,
e.g., bindir, includedir etc. We want M4’s modules to be installed in an ‘m4’ directory in
the module directory, 1ibexecdir. To this end we define in all the Makefiles a new variable,
pkglibexecdir, thanks to AC_SUBST.

AC_SUBST (variable, [value]) [Macro]
Substitute ‘@variable® with its value as a shell variable in the output files. The second
argument is a convenient shorthand for:

variable=value
AC_SUBST(variable)

Then we let the user chose the default modules using an additional configure option:
‘~-with-modules=list-of-modules’.

-
M4 specific configuration.
-

AC_SUBST([pkglibexecdir], [’${libexecdir}’/$PACKAGE])
AC_SUBST([ac_aux_dir])

AC_MSG_CHECKING(for modules to preload)
m4_pattern_allow(["m4_default_preload$])
m4_default_preload="m4 traditional gnu"
DLPREQOPEN=

AC_ARG_WITH([modules],
[AC_HELP_STRING([--with-modules=MODULES],
[preload MODULES [$m4_default_preloadl])],
[use_modules="$withval"],
[use_modules="$m4_default_preload"])

DLPREOPEN="-dlpreopen force"
if test -z "$use_modules"; then
use_modules=none
else
if test "$use_modules" != yes; then
for module in $use_modules; do
DLPREOPEN="$DLPRECOPEN -dlpreopen ../modules/$module.la"
done
fi
fi
AC_MSG_RESULT ($use_modules)
AC_SUBST (DLPREOPEN)

There are several new macros used here. The pair AC_MSG_CHECKING/AC_MSG_RESULT is re-
sponsible of the messages display at configure runtime:

checking for modules to preload... m4 traditional gnu
-

C compiler checks.

-

AC_PROG_CC

AC_ISC_POSIX

Chapter 9: Source Code Configuration with Autoconf 197

AM_PROG_CC_STDC
AC_PROG_CPP
AC_PROG_CC_C_O
M4_AC_CHECK_DEBUGGING

Use gcc’s -pipe option if available: for faster compilation.
case "$CFLAGS" in
x-pipe) ;;
*) AC_LIBTOOL_COMPILER_OPTION([if $compiler supports -pipel,
[m4_cv_prog_compiler_pipel,
[-pipe -c conftest.$ac_ext], [],
[CFLAGS="$CFLAGS -pipe"])

esac

-—-—————————
Libtool initialisation.
-—————————————

AM_ENABLE_SHARED
AC_LIBTOOL_DLOPEN
AC_LIBTOOL_WIN32_DLL
AM_PROG_LIBTOOL
AC_LIB_LTDL

AC_SUBST([LTDLINCL], ["${LTDLINCL-INCLTDL}"])

- #i#
Gettext support.
- #i#t

ALL_LINGUAS="cs de el fr it ja nl pl ru sv"
AM_GNU_GETTEXT
AC_CONFIG_FILES(po/Makefile.in intl/Makefile)

if test "$USE_INCLUDED_LIBINTL" = yes; then
AC_SUBST([INTLINCL], [’-I$(top_srcdir)/intl’])

fi

-
Other external programs.
-

AC_PROG_INSTALL
AC_PROG_MAKE_SET
AC_PATH_PROG (PERL,perl)

AC_PROG_AWK

-
C headers required by M4.
#H ##

AC_CHECK_HEADERS(1limits.h locale.h memory.h string.h unistd.h errno.h)
AC_HEADER_STDC

- #it
C compiler characteristics.
- #it

AM_C_PROTOTYPES
AC_C_CONST

198 Programming with GNU Software

AC_TYPE_SIZE_T
AC_CHECK_SIZEOF ([long long int])

- #i#t
Library functions required by M4.
-—-——— #it

AC_CHECK_FUNCS(bzero calloc strerror tmpfile)

AC_REPLACE_FUNCS (mkstemp strtol xmalloc xstrdup)

if test $ac_cv_func_mkstemp != yes; then
AC_LIBOBJ(tempname)

fi

AC_FUNC_ALLOCA

AC_FUNC_VPRINTF

AM_WITH_DMALLOC
jm_PREREQ_ERROR

M4_AC_FUNC_OBSTACK
M4_AC_SYS_STACKOVF

M40BJS=

m4_pattern_allow(["mé4_getopt_h$])

m4_getopt_h=src/getopt.h

rm -f $m4_getopt_h

AC_CHECK_FUNC([getopt_long]l, [I,
[M40BJS="getoptl.$ac_objext getopt.$ac_objext"
AC_CONFIG_LINKS([$m4_getopt_h:src/gnu-getopt.h])])

AC_SUBST ([M40BJS])

This is for the modules

AC_STRUCT_TM

AC_FUNC_STRFTIME

AC_CHECK_FUNCS(getcwd gethostname mktime uname)
AC_CHECK_FUNCS (setenv unsetenv putenv clearenv)

AC_LIB_GMP

AM_CONDITIONAL([USE_GMP], [test "x$USE_GMP" = xyes])
-

Make sure LTLIBOBJS is up to date.

i ——mmm #it

Xsed="sed -e s/"X//"
LTLIBOBJS=‘echo X"$LIBOBJIS" | \

$Xsed -e ’s,\.[[".1]1* ,.1l0 ,g;s,\.[[".1]1%$,.10,7¢
AC_SUBST([LTLIBOBJS])

#H o ##
Outputs.
- #i#

AC_CONFIG_FILES(Makefile config/Makefile doc/Makefile m4/Makefile
m4/system.h:m4/system-h.in src/Makefile modules/Makefile
tests/Makefile examples/Makefile)

Chapter 9: Source Code Configuration with Autoconf 199

AC_OUTPUT

9.4 Understanding Autoconf

Teaching to the reader the long road to Autoconf guruness is way beyond the scope of this
book. Exploiting the full power of Autoconf is, unfortunately, reserved to the few people who
are ready to spend hours tracking portability issues, as mastering Autoconf stands for mastering
portability issues.

Nevertheless, we feel you ought to be revealed a few secrets about Autoconf.
9.4.1 Keep It Stupid Simple

It is unfortunate that the most important rule is still a secret today:
Never try to be smart with Autoconf

Many people write ‘configure.ac’s that are rejected by different versions of Autoconf, or
will be rejected in the future. The Autoconf maintainers often receive complaints about such
problems, but they are really introduced by the users themselves.

The first most common problem is relying on undocumented features. You should never do
that. If it is undocumented, it is private, and likely to be changed in the future. The most
frequent reason to rely on undocumented feature is to save some typing: you have to address a
task, and notice some internal macro performs a job close to your needs. Don’t use it: either
you copy and adjust it to your very needs —under a different name of course—, or you ask to
the maintainers to make a public version of this macro.

The worst case is with people who want to rely on very low level details, or even in some
cases, change some low level macros! This is doomed to failure. There are several reasons
making maintainers try this perverse game:

bypass the official interface
Autoconf follows the GNU Coding Standards, which some people sometimes find
painful —for instance because they want options that do not fall into the GNU
standard set of options for configure. You should rely stick to these standards,
experience has proved that they cover all the needs, possibly in an admittedly con-
voluted way. And if they don’t, then ask for changes in the GNU Coding Standards:
Autoconf will follow.

adjust existing macros to different needs

Many people want to hook their code onto Autoconf macros. For instance, “when
AC_PROG_CC is called I want MY_PROG_CC_HOOK to be invoked”. You cannot imagine
the complex tissue of interdependencies that already exists in Autoconf! Checking
for a compiler for instance, requires relying on many different preliminary initial-
izations and checks. The following figures should give you an idea of this amount
of work: AC_PROG_CC alone produces more than 20Kb of code, almost 900 lines of
shell script! And this code is not contiguous: it goes into three different sections of
configure.

Don’t try to hook your macros: just invoke them. Sure, your change is not longer
“invisible”, the user must call it explicitly, but at least it will be robust.

If you see no option to address your need, ask the Autoconf maintainers: either the know
the right way to do it, or they will provide you with a new macro in the official Autoconf.

200

The second most common problem is trying to optimize configure. For instance they skip
long series of tests needed only for some features the user did not chose. This exposes you
to extremely nasty, stealthy, vicious bugs. Unless you know exactly what you do (I am here
referring to people who have an exact knowledge of Autoconf), never perform tests conditionally:

Programming with GNU Software

depend conditionally on their output!

Here is a simple example of such an broken “optimized” ‘configure.ac’

AC_INIT

AC_ARG_WITH([fprintf])
if test "x$with_fprintf" = xyes; then
AC_CHECK_FUNCS (fprintf)

fi

AC_ARG_WITH([sprintf])
if test "x$with_sprintf" = xyes; then
AC_CHECK_FUNCS (sprintf)

fi

The following runs clearly demonstrate the point of this optimization:

$./configure

as nothing was needed, nothing was checked for. If using fprintf is requested, then of course,

we need a C compiler to check for its existence, and then check for it:

$./configure --with-fprintf

checking
checking
checking
checking
checking
checking
checking
checking
checking

for gcc... gcc

for C compiler default output... a.out
whether the C compiler works... yes
whether we are cross compiling... no

for executable suffix...

for object suffix... o

whether we are using the GNU C compiler...
whether gcc accepts -g... yes

for fprintf... yes

Similarly if both fprintf and sprintf are needed:

$./configure --with-fprintf --with-sprintf

checking
checking
checking
checking
checking
checking
checking
checking
checking
checking

As expected, fprintf and sprintf are both available on my GNU/Linux system.

for gcc... gcc

for C compiler default output... a.out
whether the C compiler works... yes
whether we are cross compiling... no

for executable suffix...

for object suffix... o

whether we are using the GNU C compiler...
whether gcc accepts -g... yes

for fprintf... yes

for sprintf... yes

Now, sit back, and look at this:

$./configure --with-sprintf

checking

for sprintf... no

although sprintf is present!

yes

yes

Chapter 9: Source Code Configuration with Autoconf 201

What happened is that Autoconf knows that checking for a function requires a compiler
for the current language (here, C), so it actually expands something similar to the following
‘configure.ac’:

AC_INIT

AC_ARG_WITH([fprintf])

if test "x$with_fprintf" = xyes; then
AC_PROG_CC
AC_CHECK_FUNCS (fprintf)

fi

AC_ARG_WITH([sprintf])
if test "x$with_sprintf" = xyes; then
AC_CHECK_FUNCS (sprintf)
fi
As a consequence, if fprintf is not requested, configure will not look for a C compiler, and
all the following tests are broken. Never run tests conditionally: depend conditionally on the
results of the tests:

AC_INIT

AC_ARG_WITH([fprintf])
AC_CHECK_FUNCS (fprintf)
if test "x$with_fprintf" = xyes; then
Depend on the presence/absence of fprintf here.
fi

AC_ARG_WITH([sprintf])
AC_CHECK_FUNCS (sprintf)
if test "x$with_sprintf" = xyes; then
Depend on the presence/absence of sprintf here.
fi

202 Programming with GNU Software

Chapter 10: Managing Compilation with Automake 203

10 Managing Compilation with Automake

204 Programming with GNU Software

Chapter 11: Building Libraries with Libtool 205

11 Building Libraries with Libtool

206 Programming with GNU Software

Chapter 12: Software Testing with Autotest 207

12 Software Testing with Autotest

This chapter is devoted to test suites, i.e., programs which are meant to exercise other
programs in order to perform sanity checks, to prevent old bugs from creeping back in etc.

While programmers understand their jobs involve more than programming, most still do not
pay the attention to the test suite that it deserves; the Section 12.1 [Why write tests?], page 207
advocates for test suites under the form of three buggytales. Then, in Section 12.2 [Designing
a Test Suite], page 211, some of the generic rules to obey while implementing a test suite are
presented. See Section 12.4 [Running an Autotest Test Suite], page 217, for a presentation
of Autotest, the Autoconf component dedicated to portable test suite generation. For a more
“hands on” presentation of Autotest, see Section 12.5 [Stand-alone Test Suite], page 219, which
demonstrates Autotest features, step by step, applied to M4. Finally, in Section 12.6 [Autotesting
GNU M4], page 235, the actual GNU M4 test suite is pictured, exhibiting all the characteristics
of real world Autotest uses.

12.1 Why write tests?

Everybody will agree with the usefulness of writing tests, but in practice it takes some time
before novice programmers pay attention to them. See Section 12.1.1 [Joe Package Version 0.1],
page 207, for a story many of us lived as the main character. That’s only the beginning of the
story, intent to design a test suite is not enough, and even the most experienced programmer
may be caught by bugs deserving an appearance in a Monty Python movie. See Section 12.1.2
[Fortran and Satellites], page 209, for a demonstration of the importance of realism in tests.
Unfortunately there is no silver bullet against “errare human est”, and even using the strictest
development procedures in the world, there is no protection against bugs within the testing
framework, see Section 12.1.3 [Ariane 501], page 210, for a $500 000 000 fireworks story.

12.1.1 Joe Package Version 0.1

Joe is a novice maintainer. He installed his first GNU/Linux system last year, played a bit
with it, experienced the programming environment, and finally discovered that his system was
lacking a little something which would make his life much easier.

He started writing a small shell script to fulfill some of his needs. Along the months his shell
script grew big, for it included all the features he needed, plus some bells and whistles he is
proud of. But it became slower and slower, almost unusable.

Based on his experience, he redesigned his project, and implemented it in C. Some of his
friends, discovering his program, realized they really needed it on their GNU /Linux machine,
and even wanted more features. Soon he was to package his project, which met an immediate and
unexpected success: the statistics of his web page revealed an average of one hundred downloads
per day.

Soon the trouble started.

Of course there were people who could not compile his project, because of missing or broken
functions in their C library. Those are the easy problems, which he quickly solved thanks to
Autoconf.

Later someone reported a segmentation fault when using his package. It took Joe a couple of
message exchanges to get some fundamental information, such as the version of the package and
the command line which triggered the segmentation violation. Finally, after having delivered a
quick lecture on gdb, he managed to get a stack trace from the user, and the value of some of
the variables. The library files loading failed because their directory was NULL. After some more

208 Programming with GNU Software

messages, more and more delayed since the user grew tired of running a debugger, Joe finally
had an idea, and asked the user to send his configuration file.

The user had edited it, and the ‘LibraryDirectory:’ line was lacking...

Joe equipped his program with additional sanity checks, to make sure such variables are set,
and released another version of his package.

Someone else reported some unexpected behavior at runtime; the program did not crash, but
systematically refused to work properly, complaining about the absence of files although they
were present! Nothing made sense, neither to Joe nor to his user.

Yet another series of messages, the first of which asking the version of his package, the
command line the user typed and... the configuration files. A close examination of all this data
gave no hint of what might have gone wrong. It took Joe two weeks and many messages, which
included his now usual gdb lecture notes, to finally discover his user was running some system
with a different encoding of end-of-line! Raging that the user never reported the system he runs,
but now understanding the problem, he quickly solved it, and made another release.

Later a system administrator sent him angry messages: under the pressure of his users
who are fond of Joe’s package, he installed the newly published “bug fix” release; they all
started complaining nothing worked at all, the package was completely unusable. Hurt in his
self-esteem, Joe first answered that his package was delivered with NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, but after a few messages asked
the usual questions: the version of the package, the command line, the configuration files, and
the architecture. This time it went fast, since the system administrator was experienced and
quickly localized the bug in some experimental code. This code was under development and
compiled only when ‘--enable-experimental-feature’, a crucial information lacking from the
initial bug report. Reinstalling the package without the option was enough.

Joe learned his lesson well, and added a section “Reporting Bugs” to the documentation. He
even added some tracing options to his package which will definitely help him locating problems,
that later appeared to be often due to unexpected behavior from the users; he is now happily
using an expression he grew fond of: UBD, User Brain Damage!. But he was to realize that few
users actually read that section, and he regularly has to refer them to it.

Yet another release.

Yet another problem: the very same administrator, now a friend (which is always what
happens after long sessions of virile bug hunting expeditions), reports an endianness problem
was introduced with the tracing options. He even provides a patch!

Fix. Release.

It’s been three months since the initial release. In the meanwhile, he had many new and
exciting ideas of new cool features, but he had no time to implement any of them, only the
preliminary version of one of them that caused him some troubles. Looking back to these three
months, he realized that he spent all his spare time to fixing bugs, to answering bug reports,
most of the time just asking the user some crucial information, sometimes teaching them how
to run a debugger to trace some execution. It was not rare that the user stopped providing
feedback before the origin of the bug was actually found, resulting in a pure loss of time for

! According the Jargon dictionary:

UBD /U-B-D/ /n./ [abbreviation for ‘User Brain Damage’]. An abbreviation used to close out trouble reports
obviously due to utter cluelessness on the user’s part. Compare “pilot error”; oppose PBD.

pilot error /n./ [Sun: from aviation]. A user’s misconfiguration or misuse of a piece of software, producing
apparently buglike results (compare UBD). “Joe Luser reported a bug in sendmail that causes it to generate
bogus headers.” “That’s not a bug, that’s pilot error. His ‘sendmail.cf’ is hosed.”

PBD /P-B-D/ /n./ [abbrev. of ‘Programmer Brain Damage’]. Applied to bug reports revealing places where
the program was obviously broken by an incompetent or short-sighted programmer. Compare UBD.

Chapter 12: Software Testing with Autotest 209

both, and the terrible frustration of knowing there is a bug somewhere, and not being able to
know where.

What he was lacking is, obviously, a good test suite.

Tracking bugs can swallow all your time. You cannot foresee all the variations of the systems
on which your package will be installed. You cannot imagine how heavily a daily use by thousands
of users can exercise your code in unexpected ways. The main purpose of a test suite is to save
both the users’ and your time. It must be able to denounce problems before the package is
installed to avoid breaking a working (previous) installation. It should be usable without any
kind of expertise. It should help the user sending the maintainers all the information they might
need: version of the package, configuration options, as much data as possible on the architecture
and the environment, traces etc.

12.1.2 Fortran, Antennae and Satellites

(FIXME: Can’t find the reference to this adventure..)

In Fortran an identifier doesn’t need to be declared:
— if it starts with an ‘1’, ‘37, ‘k’, ‘1’, ‘m’, or ‘n’, it’s an integer variable;
— if it starts with another letter, it’s a float variable;

— white spaces are insignificant (they are not separators).

A satellite driving software was written in Fortran; one of its tasks was extending the antenna
once on orbit. An excerpt of the program that was to be written is presented below, together
with it C equivalent for our non Fortran fluent readers:

int I;
D01I=1,5 for (I = 1; I <= 5; ++I)
{
C Extend the antenna. /* Extend the antenna. */
C If antenna is extended if (antenna_is_extended)
C Then Go to 2 goto 2
1 CONTINUE }
2 ... 2:...

Example 12.1: FEzxtending a Satellite Antenna in Fortran
This code intends to try five times to open the antenna before giving up. When tested on
the ground, the antenna always opened at the first try.

Unfortunately the actual program had a dot instead of a comma in the loop statement, and
because of a single character typo the meaning is completely different:

210 Programming with GNU Software

float DO1I;
DO1I=1.5 DO1I = 1.5;
C Extend the antenna. /* Extend the antenna. */
C If antenna is extended if (antenna_is_extended)
C Then Go to 2 goto 2
1 CONTINUE
2 ... 2:

Example 12.2: Not Extending a Satellite Antenna in Fortran

The antenna was not extend at the first and only try, the satellite was lost.

12.1.3 Ariane 501

On June 4, 1996, the Ariane 5 maiden flight 501 failed 40s after its takeoff with the explosion
of the launcher. The amount lost was $500 000 000, five hundred billion dollars. Uninsured.

(FIXME: Ariane: Heck. ESA seems to have withdrawn the report from the Web, what refer-
ence shall I put now? There remains the French version of the CNES..)

The explosion resulted from a software error in the Inertial Reference System (SR1?) software
module. Ariane 5 reuses the srIs and much of the hardware and software from Ariane 4, her
elderly sister, and in particular the SRIs modules were kept as is, since they proved to be perfectly
reliable over the last ten years.

Nonetheless, 37 seconds after takeoff, the two SRIs software modules detected an overflow:
the horizontal bias of the flight, measured on 64 bits, no longer fitted in a 16 bit integer.
The exception handling mechanisms were triggered, but since this overflow was not caught,
the default exception handler of both modules concluded an impossible situation, diagnosing
severe problems: they shut down. This resulted in Ariane veering abruptly, and in the launcher
properly committed suicide. Although the trajectory was perfect.

The sris failed during the very first flight of Ariane 5 while they worked perfectly for Ariane
4. How come? Because the trajectories of the two generations of Ariane are completely different.

The overflow was not detected during simulations and testing. How come? Because testing
has also been performed using Ariane 4 trajectories.

The sris were still running 37 seconds after takeoff while they are useful only before. How
come? The two SRIs are normally shut down 9 seconds before takeoff, but in the event that the
count down is held just before takeoff, to avoid the additional delays needed to reset the SRIs,
which would delay the whole launch for hours, they are kept alive until 50 seconds after takeoff.

They trusted a single pair of modules while everybody knows that in planes critical systems
are tripled and election is performed on the results. How come? Because they did double the
SRIs modules, but it was a mere duplication, and both twins correctly detected the failure at
the same time.

The recommendations given by the committee of experts which analyzed the failure include:

2 sgi, standing for the French “Systeéme de Référence Inertiel”, is the term used by the European Space Agency

in its English reports. Maybe to avoid evoking bad memories for American people...

Chapter 12: Software Testing with Autotest 211

— improvement of the representativeness (vis-a-vis the launcher) of the qualifica-
tion testing environment;

— introduction of overlaps and deliberate redundancy between successive tests (i)
at equipment level, (ii) at stage level, (iii) at system level;

— switch-off or inhibition of the SRis alter lift off;
— testing to check the coverage of the SRI flight domain;

— general improvement of representativeness through systematic use of real equip-
ment and components wherever possible;

— simulation of real trajectories on SRI electronics.

12.2 Designing a Test Suite

Any experienced programmer knows her job stretches much further than merely typing in-
structions in a programming language. Just as programmers need pressure and experience to
appreciate the importance of documenting their code, they need to be educated about the im-
portance of testing. Writing tests is usually considered as a waste of time, and sometimes even
a loss of “productivity”.

Unfortunately, most test suites are often simply shell scripts written by hand, which is indeed
not very “productive”. There exist a few testing frameworks that ease the maintenance, in
particular Autotest. They make it possible to design a test suite.

12.2.1 Specify the Testing Goals

A test suite is a project in and of itself.

As much as possible, you should define the objectives to be reached by the test suite, and
you even may isolate different aspects that should be covered by different test suites, or even
different test tools.

Knowing who will run the test suite is crucial: a maintainer runs additional tests and only
needs raw information such as a core dump, while when run by a user it should ease the writing
of a precise bug report.

Keep in mind that message exchanges are extremely costly in the bug tracking process: the
user is likely to be lax about answering simple questions. Without any answer, you will know a
bug is sneaking, imperceptible to you, in the program.

You might come up with different test suites, some of them exercising the code with time
consuming internal checks activated, or simply changing something in the environment. For
instance you might want to run your programs with special tools which considerably improve
the severity of the testing conditions that the users do not necessarily have: debugging memory
management libraries, bound checking compilers, etc.

Running all these tests can be extremely time consuming®, and can discourage users from
running them. While this should never be a reason not to test a feature, you should nonetheless
keep this factor in mind, and maybe design a consistency test suite which is to be run by
maintainers only, and a “public” test suite, which would be run by virtually all the users.

3 The GCC test suite takes hours to run on most architectures. While performed in a quarter of an hour on
my machine, the Autoconf test suite has been reported to take up to 9 hours by some users. Using Dmalloc
at its maximum checking possibility slows down a program by several orders of magnitude, making it hardly
usable.

212 Programming with GNU Software

12.2.2 Develop the Interface

A test suite is a tool.

Because programs are sensitive to the environment?, playing with a failure is often needed,
either to get more details using some specific feature, or after a variable was changed, and simply
after the program is —hopefully— fixed. All these scenarios may happen on the user’s side,
therefore you should make it easy for them: have a clean interface, and some user documentation.
Bug reporters are well-meaning, but have often little time and varying skills: let your interface
be simple enough for you to ask “please run this simple command”. Conversely, some users are
ready to spend some time tracking the origin of a failure: everything must be done to play easily
with variation of the test scenario.

Because unfortunately not all the failures are detected by the test suite, you might also be
interested in equipping the programs with verbosity/tracing options. Many programs provide
a ‘--verbose’ option which produces information about critical internal variables, the various
actions that are performed etc. It often helps locating when the bug was triggered.

No one would ever work with a Boolean compiler: while ‘compilation succeeded’ is all
we need, ‘compilation failed’ is definitely not enough information for a programmer to track
an error. Test suites are very similar: we all expect ‘test suite succeeded’, but ‘test suite
failed’, or even ‘test suite failed: test 51 failed’, are not enough. Your testing scheme
should provide accurate information on the tests that were performed, what was expected, and
what was obtained.

If the test suite may be run by users, then you should pay even more attention to providing
as much information as needed to understand a failure at distance. For instance, have the test
suite wrap all the pertinent information in a log file, and ask for this file.

12.2.3 Look for Realism

A test suite is a user.

See Section 12.1.3 [Ariane 501], page 210, for a demonstration of the importance of realism
in tests. While testing from the inside (with consistency checks or even tests embedded in the
executables themselves) is a precious means to catch failures as early and as precisely as possible,
realism should always be on your mind. There are always surprising bugs when putting together
features which, individually, work perfectly. Only real uses are likely to reveal them. As a
consequence, don’t test the package, use it!

Bison (see Section 7.3 [What is Bison], page 162) is a generator of C files, and a lot of testing
can be performed by simple checks performed on its input: looking for specific lines etc. But
this is not a real use, you’ll miss a lot of errors that way; the C output has to be exercised itself
on inputs that stress the parser.

Bypassing the official interface of the tools is extremely tempting, as it usually makes it
faster to write the tests or speeds up the test suite. But sooner or later you might pay for that
simplification, either because you missed a bug triggered on actual input, or because some inner
detail of the program changed invalidating the test itself. A valid and complete sequence would
have kept the test valid since the user interface is often kept backward compatible.

4 Like for plants and fishes, have your sensitive programs listen to classical music instead of hard core techno.
Do as I do: use earphones.

Chapter 12: Software Testing with Autotest 213

I once released a broken package: some of its files were not installed. The test suite did
not (and could not!) diagnose it. Why? Because I wanted the test suite to run in the user’s
directory, where the user built my package, before it was installed. To make this possible, the
test suite set a lot of environment variables, skipped the regular PATH use etc. Then of course,
it was finding the files! It’s almost as if it were directly looking for them in the tarball.

My test suite was not a regular user, and because of this I could not use it on an installed
version of my program. Actually, most test suites have exactly this problem: they are not
regular users, they are biased users exercising the package under specific conditions.

Now my test suites rely on PATH exclusively, like regular users. But then, how to test a
package before it is installed? First, add small wrappers in your package, typically shell-scripts
that set environment variables and then run the real not yet installed binaries. Then run the
test suite after having set the PATH so that these wrappers are found first. Simple enough!

Be sadistic, be mean! Anything that can strengthen the test suite should be used. If your
programs have self-testing features, or simple sanity checks such as a ‘~-warning’ option, use
them. Some users have extremely surprising expectations, or are simply very demanding; they
might hit some limitations in your package. Precede such uses and write torture tests, stretching
the limits as far as possible. Many bugs lie in the angles, at the extremes of the range of validity
of your routines: who has never been bitten by a ‘<’ where a ‘<=" was needed? The number
of stupid bugs, silly “lacking the room for the trailing \0” errors that torture tests catch is
impressive®. It might even help realize you were about to waste a satellite because of a single
character typo, as recounted in Section 12.1.2 [Fortran and Satellites|, page 209, something the
tests did not reveal for lack of realism.

Users do make mistakes (occasionally). Not only should you exercise the programs at the
extreme of their validity domains, but you should also test them on invalid situations. A program
which fails to properly reject invalid situations is broken. If you check only for valid conditions
you might release a program dying when given a nonexistent filename. Sooner or later, you’ll
have to waste time answering zillions of similar SEGV reports while a simple ‘No such file or
directory: 10"X"F’, or ‘not a number: 10:wq’ would have saved you from this hassle.

12.2.4 Ordering the Tests

A test suite is a tool.

A test suite must be designed to assist you when something goes wrong. If you merely append
test cases one after the other, then some day you will receive a huge log in which possibly 90% of
the tests failed. Obviously some low level routine is not working properly for this configuration,
but which one? With which one of the hundred of failing test should you start? What is their
most probable common origin?

Tests, within a test suite, shall be built just as the programs themselves: if the program
consists of layers of modules, or simply layers of routines, then exercise the low level layers first.
In other words, exercise bottom up. Then, chances are high that addressing massive test suite
failures from the first failures to the last will be the shortest path to a properly fixed program.

The patience of the user, and the increasing likelihood of his interrupting the test suite, are
also to be taken into account. If you have torture tests (and you should) then putting them last

5 Early Macintosh users might remember the so-called Monkey test: a simple program was randomly moving
the mouse, clicking here and there. I don’t remember having to wait for more than a few minutes to have
to manually reboot my computer. Pose, the PalmOS emulator provides the same feature under the name of
“Gremlins mode”.

214 Programming with GNU Software

diminishes their chances of being run, hence your chances to learn that under extreme conditions
your package fails.

Unfortunately the two objectives, ordering programmo-morphologically and usero-
impatiencely, are often incompatible since torture tests usually involve as many parts of the
software as possible, while bottom-up testing emphasizes single component testing.

Autoconf faces this dilemma. Torture tests are critical for Autoconf, since they are meant
to guarantee portability of complex requests across all the exotic systems some users have, and
across all the creativity of some maintainers. If some sed’s limitations are hit by Autoconf, then
it must be known it before some fundamental package such as Emacs is found to be impossible
to install on some systems. But these torture test failures are extremely hard to analyze...

In the case of Autoconf, we chose to exercise the most fundamental features first, then the
torture tests, and finally automatically generated tests, which are representative of the most
typical uses. Up to now this order proved to be efficient, as grave failures are detected early,
and it only happened a couple of times that the failure of torture tests be understood thanks to
tests run afterwards.

12.2.5 Write tests!

A test suite is a sister project.
A test suite is a project, sharing a special relationship with the core project:
— implement tests for new features as you implement them;

— implement tests for new bugs as you deimplement them.

Do you know of any programmer who thinks of a new feature, implements it and immediately
releases it? I don’t know of any, with one exception: students who sometimes manage to deliver
code which doesn’t even compile.

All the programmers ezercise their code while they implement it. Very young programmers,
first year students (first month students actually) spend hours typing the same set of values
to check that their implementation of quicksort work properly. Slightly older programmers
(second year students, or students who stayed down) quickly learn to write input files and use
shell redirections to save their efforts. But they usually throw away these test cases, and as the
project gets bigger, they suddenly observe failures of features that were working properly months
ago. Older programmers keep these test cases. Experienced programmers comment, document
and write tests while they implement (see Section 12.2 [Designing a Test Suite], page 211, and
Literate Programming). Some authors recommend that developers spend 25-50% of their time
maintaining tests (FIXME: Should I ref this? http://www.zprogramming.com/testfram.htm.).

Don’t be bitten three times by the same dog! Write regression tests.

While most bugs probably do not need to be tracked down by dedicated tests, at least they
demonstrate that some high level test is missing, or is not complete. For instance a bug was
found in Bison: some C comments were improperly output like ‘///* this. */’. A dedicated test
was written. This is overkill. It demonstrated that the high level tests, exercising the full chain
down to the generated executable, needed to include C comments. Not only was this overkill,
but it is also quite useless: this bug is extremely unlikely to reappear as is, while it is extremely
likely that at other places, comments are also incorrectly output. The test suite was adjusted
so that the sources be populated with comments at all sorts of different places.

When you spent a significant amount of time tracking the failure of a feature in some primitive
problem, immediately write a dedicated test for the latter. Do not underestimate the importance

Chapter 12: Software Testing with Autotest 215

of sanity checks within the application itself. It doesn’t really matter whether the application
diagnoses its failure itself or whether the test suite does. What is essential is that the test suite
exercises the application in such a way that the possible failure be tickled.

You should always write the test before fixing the actual bug, to be sure that your test is
correct. This usually means having two copies of the source tree at hand, one running the test
suite to have it fail, and the other to have the same test suite succeed.

If you track down several bugs down to the same origin, write a test especially for it.

Of course in both cases, more primitive tests should be run beforehand.

Test generation, or rather test extraction®, is a valuable approach because it saves effort, and
guarantees some form of up-to-dateness. It amounts to fetching test cases from the documenta-
tion (as is done in GNU M4 for instance), or from comments in the code, or from the code itself
(as is done by Autoconf).

More generally, look for means to improve the maintainability of your test suites.
12.2.6 Maintain the Test Suite

A test suite is a project in its own right.

. and therefore demands to be maintained. If you don’t, it will become useless or unmain-
tainable, just like any other kind of program. Spend some time to:

— generalize specific tests;

— improve the maintainability of the test suite.

Try to generalize your specific tests when you implement or improve tests. For instance, if
you are testing a feature which has a fixed set of possible values, test them all. If you exercise
the interaction between two such features, do not hesitate the test the Cartesian product of their
values, i.e., the set of all the valid and invalid couples.

(FIXME: I should first ask Tom if he agrees with the following paragraph..)

The Automake test suite is a good example of what should not happen. Automake supports
some form of conditionals, which is a typically feature with a small set of possible values: true
and false. Conditionals can interact with each others, since they can influence the same set of
variables and/or targets. Because it turned out to be much more delicate to implement than
one may first think, the implementation was often changed. Virtually all the modifications were
bug fixes, but they often introduced new ones. Gradually the test suite covered more and more
cases of conditional uses, and today they cover almost the full range of possible values, the very
Cartesian product aforementioned. But this coverage is performed via several handwritten tests,
which are modified copies of the previous tests: merely checking that the coverage is complete
is a delicate task because of the lack of homogeneity across these tests.

If the first test author had devoted some more time to his test, not only would the improve-
ment of conditionals would have been sped up, but the testing framework would also have been
improved because it would have been developed with generalization in mind. This is to parallel
with novice programmers preferring to copy-paste-modify a routine n times for n slightly differ-
ent tasks as compared to the generalization of existing routines to cover these n cases. Which
brings us to our next point...

6 Automatic Test Generation usually refers to the generation of tests from formal specifications of a program,
and possibly from the program itself. Formal specifications are written in a mathematical language, typically
set theory, and describe very precisely the behavior of a program.

216 Programming with GNU Software

Expertise is gained during the test suite life time, and its rethinking is often beneficial. Just
as a regular project, common patterns arise, and factoring can be done. Your test framework
should support some form of programming so that this very factorization be possible.

Conventional Bourne shell based tests are again an excellent example of what should not
be done. Automake, again, suffered from this: because there is function support in Bourne
shell, there is a lot of code duplication, which results in sometimes having to repeat the same
modifications on many different files (there are more than 300 test files). I personally had
to change several times more than a hundred tests to cope with Automake performing some
better sanity checks: these tests, which bypassed the official interface, were no longer “correct”
Automake users (see Section 12.2.3 [Look for Realism]|, page 212): the test suite must be viewed
as a user).

It is common that these factorizations, these new test functions or macros, reveal holes in
the testing. Reading seven invocations to a general routine testing a feature makes it easy to
find the eighth case was lacking. Seven test cases written differently, at different places in the
test suite, make it impossible for the maintainer to complete its coverage.

12.2.7 Other Uses of a Test Suite

In the previous sections, and in particular Section 12.2.3 [Look for Realism|, page 212, we
emphasized the fact that a test suite is a user. As a result, a test suite is no less than a set of
uses of your package, a corpus linguists would say.

It can then become a good set of samples on which profiling your package (see Chapter 15
[Profiling and Optimising Your Code], page 263), much more relevant than a few runs by hand.

There exist compilers that optimize a program thanks to profiling information”: they first
compile the program making some more or less arbitrary choices, and then the program can be
recompiled using logs produced by several runs to make better choices. Again, the test suite,
and especially the torture tests, provide a good set of uses for profile guided compilation.

12.3 What is Autotest

The previous section highlighted that test suites are actual projects: they have to be main-
tained, extended etc. To ease their maintenance, there are a few tools, most notably DejaGNU.
Unfortunately running a DejaGnu test suite requires DejaGNU, which itself requires TCL! As
a consequence, given that few users installed DejaGNU on their machines, the DejaGNU test
suites are rarely run, severely reducing part of their interest: exercising a package on a wide
variety of platforms.

To make sure their users will always be able to run their test suites, many package maintainers
write their test suite as a collection of hand written Bourne Shell scripts. Needless to say that
this is long, tedious, unmaintainable etc.

History already faced this situation and provided an answer: people used to write long
portable shell scripts to configure their package. Autoconf was invented to automatically cre-
ate these configuring scripts from synthetic descriptions. Similarly, Autotest was invented to
automatically create testing scripts. Autoconf is a configuration scripts compiler, Autotest is a
testing scripts compiler. Because they share a significant part of code, Autotest is part of the
package Autoconf.

7 There are several optimization kinds which face the combinatorial explosion: there are many different possi-
bilities amongst which one or several are better than others. Finding an optimum efficiently is then impossible
and approximations are used. Sometimes the concept of “optimum” is bound to the uses (this choice is better
for these uses, that other choice is better for those other uses). In either case, tuning the choice thanks to
actual uses improves the average efficiency.

Chapter 12: Software Testing with Autotest 217

An Autotest test suite is a series of test groups. A test group is a sequence of interwoven
commands that ought to be executed together, usually because one creates data files that a later
test in the same group needs to read. For instance, a Bison test group is typically composed of
three tests: one which runs bison, one which runs the compiler, and one that runs the generated
executable. They form a consistent group: it makes no sense to run the last step if the previous
steps were not, nor to run the last steps if the previous ones failed.

In the following section, Section 12.4 [Running an Autotest Test Suite], page 217, we present
the Autotest test suite from the user’s point of view: “I’'m installing a new package on my
machine: how do I run its test suite?”. The rest of the chapter is dedicated to writing and
compiling an Autotest test suite.

12.4 Running an Autotest Test Suite

An Autotest test suite is often named testsuite, but we advertise for more explicit names,
such as test-m4, test-joepackage etc. This way, it can be installed or sent to other people.

To test a package, such as GNU M4, just run its test suite:

$ cd m4-1.5/tests
$./testsuite

——-——————————————— #i#
GNU m4d 1.5 test suite.
———————— #it

Macro definitions.

1: macros.at:29 ok
2: macros.at:71 ok
3: macros.at:105 ok
Optiomns.
21: options.at:26 ok
22: options.at:52 ok

Composite macros.
Documentation examples.
43: generated.at:14 ok

78: generated.at:1404 ok
79: generated.at:1438 ok

##t ——————————— ##
All 79 tests were successful.
#t ————————————— ##

All the test groups (here, numbered from 1 to 79) are run. If some failed, a log file would
have been created, full of details that might help the GNU M4 maintainer to understand the
failure. For instance in the following example, I have manually changed the test group 44 for it
to fail:

$./testsuite 44

218 Programming with GNU Software

-—-——————
GNU m4 1.5 test suite.
-

44: generated.at:48 FAILED near ‘generated.at:60’
-
ERROR: Suite unsuccessful, 1 of 1 tests failed.
---—-—————---—------->-------

You may investigate any problem if you feel able to do so, in which
case the test suite provides a good starting point.

Now, failed tests will be executed again, verbosely, and logged
in the file testsuite.log.

##t —————————————————— ##
GNU m4 1.5 test suite.
#t ————————————— ##

44 . generated.at:48: testing Define...
generated.at:60: m4 -b -d input.m4

--- - Sat Jan 12 17:31:38 2002

+++ at-stdout Sat Jan 12 17:31:38 2002
@ -1,3 +1,3 @

-Hello world.
+Hello universe.

44. generated.at:48: FAILED near ‘generated.at:60’

- ##
testsuite.log is created.
- #i#

Please send ‘testsuite.log’ to <bug-m4Qgnu.org>,
along with all information you think might help.

Autotest test suites support the following arguments:

‘--list’
-1 List all the tests (or only the selection), including their possible keywords.

To change environment variables, set of tests, or verbosity of the test suite:

‘variable=value’
Set the environment variable to value. The variable AUTOTEST_PATH specifies the
testing path to prepend to PATH.

‘number’

‘number-number’

‘number-’

‘-number’ Add the corresponding test groups to the selection.

‘--keywords=keywords’

‘~k keywords’
Add to the selection the test groups which title or keywords (arguments to AT_SETUP
or AT_KEYWORDS, see (FIXME: Test Groups.)) match all the keywords of the comma
separated list keywords.

Running ‘./testsuite -k autoupdate,FUNC’ will select all the tests tagged with
‘autoupdate’ and ‘FUNC’ (as in ‘AC_CHECK_FUNC’, ‘AC_FUNC_FNMATCH’ etc.) while

Chapter 12: Software Testing with Autotest 219

‘./testsuite -k autoupdate -k FUNC’ runs all the tests tagged with ‘autoupdate’

or ‘FUNC’.
‘——errexit’
‘-e’ If any test fails, immediately abort testing. It implies ‘~-debug’.
‘--verbose’
‘~v’ Force more verbosity in the detailed output of what is being done. This is the

default for debugging scripts.

‘-—debug’

~d’ Do not remove the files after a test group was performed —but they are still removed
before, therefore using this option is sane when running several test groups. Do not
create debugging scripts. Do not log (in order to preserve supposedly existing full
log file). This is the default for debugging scripts.

‘~-trace’

‘-x’ Trigger shell tracing of the test groups.

12.5 Stand-alone Test Suite

Just like for your first experimentations with Autoconf, it is a good idea to build a tiny test
suite independent of all the heavy GNU Build System machinery. Since GNU M4 is an excellent
example of a package to exercise, this section is devoted to playing with Autotest on GNU M4.
Then the next section, Section 12.6 [Autotesting GNU M4], page 235, taking advantage on our
experience, will tackle the problem of embedding the test suite in the whole package.

12.5.1 Simple Uses of Autotest

Just like ‘configure.ac’, the very first thing a test suite needs is an identity: the name
and version of its hosting package, AT_PACKAGE_STRING, an address where failures should be
reported, AT_PACKAGE_BUGREPORT, and optionally, the test suite’s own name, given as argument
to the macro AT_INIT. When a test suite is embedded in a package, its identity is automatically
provided by configure, see Section 12.6 [Autotesting GNU M4], page 235; for the time being
we will simply m4_define them.

Invoking AT_INIT is mandatory, as is AC_INIT in the Autoconf world:

AT_INIT ([name)) [Macro]
Initialize Autotest. Giving a name to the test suite is encouraged if your package includes
several test suites.

Then, of course, it needs tests. A simple test will suffice for our purpose, for instance checking
that m4 supports the most common options required by the GNU Coding Standards: ‘--version’
and ‘--help’.

Process with automd4te to create an —*- Autotest -*- test suite.

m4_define ([AT_PACKAGE_STRING], [GNU Programming 2])
m4_define ([AT_PACKAGE_BUGREPORT], [gnuprog2-devel@sourceforge.orgl)

AT_INIT([Standard Options: 1])

AT_SETUP([Standard Options])
AT_CHECK([m4 --version])
AT_CHECK([m4 --help])
AT_CLEANUP

220 Programming with GNU Software

Example 12.6: ‘std-optl.at’ - An Autotest Source

This test suite is composed of a single test group, named “Standard Options”. This test group
is composed of two steps: checking the reaction of m4 when given ‘--version’ and when given
‘~=help’.

Test groups are enclosed between AT_SETUP/AT_CLEANUP pairs:

AT _SETUP (title) [Macro]
Begin a test group named title. This title is really the identifier of the test group, used in
quiet and verbose outputs. It should be short, but descriptive.

AT _CLEANUP [Macro]
End a test group.

To prevent a test group from corrupting another one (via trailing files, modified environment
variables and so on), test groups are run by distinct sub-shells in distinct subdirectories. As a
direct consequence, test groups cannot share files or variables. To enforce this clean separation
between test groups, Autotest ignores anything that is not in a test group. As a consequence,
you can run the whole test suite or just some selected test groups in any order without fearing
unexpected side effects due to the testing framework itself.

Our unique test group is composed of two steps: ‘AT_CHECK([m4 --version])’ stands for
“run ‘m4 --version’ and expect a success”.

To “compile” this Autotest source file into a Bourne shell-script, run autom4dte:
$ automdte -1 autotest testsuite.at -o testsuite

and then run it:

-

GNU Programming 2 test suite: Standard Options: 1.

-
1: std-optl.at:8 FAILED near ‘std-optl.at:9’

-

ERROR: Suite unsuccessful, 1 of 1 tests failed.

-

You may investigate any problem if you feel able to do so, in which
case the test suite provides a good starting point.

Ugh! Something went wrong in our surprisingly simple test suite! The test suite is then re-
run verbosely, creating a detailed log file, ‘std-optl.log’, and suggesting sending it to the
maintainers.

Chapter 12: Software Testing with Autotest 221

Now, failed tests will be executed again, verbosely, and logged
in the file std-optl.log.

- #H
GNU Programming 2 test suite: Standard Options: 1.
-

1. std-optl.at:8: testing Standard Options...
std-optl.at:9: m4 --version

--- /dev/null Sat Apr 14 10:11:43 2001

+++ at-stdout Tue Oct 2 21:33:14 2001

@ -0,0 +1,6 @

+GNU m4 1.4q
+Written by Rene’ Seindal and Gary V. Vaughan.
+

+Copyright 1989-1994, 1999, 2000 Free Software Foundation, Inc.

+This is free software; see the source for copying conditions. There is NO
+warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
1. std-optl.at:8: FAILED near ‘std-optl.at:9’

- ##
std-optl.log is created.
- ##

Please send ‘std-optl.log’ to <gnuprog2-devel@sourceforge.org>,
along with all information you think might help.

Example 12.7: std-optl Run

Reading the verbose output or ‘std-optl.log’ is frightening at first, but with some practice
you will soon it find rather easy since it is based on common tools such as diff. But let’s first
spot the failed test group and the guilty test:

1. std-optl.at:8: testing Standard Optiomns...
std-optl.at:9: m4 --version

--- /dev/null Sat Apr 14 10:11:43 2001

+++ at-stdout Tue Oct 2 21:33:14 2001

@ -0,0 +1,6 @

+GNU m4 1.4q
+Written by Rene’ Seindal and Gary V. Vaughan.
+

+Copyright 1989-1994, 1999, 2000 Free Software Foundation, Inc.

+This is free software; see the source for copying conditions. There is NO
+warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
1. std-optl.at:8: FAILED near ‘std-optl.at:9’

Each test group is marked at its beginning and its end (‘1. std-optl.at:8’). Then each test
is presented (‘std-optl.at:9’), and, if it failed, some information on the nature of the failure
is reported. There are at most three aspects which are checked: the exit status, the standard
output, and the standard error output. Here, the unified diff header reports the standard output
is not what was expected:

222 Programming with GNU Software

--- /dev/null Sat Apr 14 10:11:43 2001
+++ at-stdout Tue Oct 2 21:33:14 2001
@ -0,0 +1,6 @

+GNU m4 1.4q
+Written by Rene’ Seindal and Gary V. Vaughan.
+

+Copyright 1989-1994, 1999, 2000 Free Software Foundation, Inc.
+This is free software; see the source for copying conditions. There is NO
+warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

In this report, lines starting with a dash correspond to what was expected, and lines starting
with a plus to what was observed. Here, what was observed is

GNU m4 1.4q
Written by Rene’ Seindal and Gary V. Vaughan.

Copyright 1989-1994, 1999, 2000 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

while the expected content was empty. Indeed our first test, ‘AT_CHECK([m4 --version])’,
makes no provision for some output. It reads as “run ‘m4 --version’, expect a success (exit
status should be 0), no standard output, nor standard error output”.

Note that no error was reported for the failure of the second test, exercising ‘--help’. This
is typical of test groups: it suffices that a single test fails for the rest of the test group to be
ignored. The size of test groups is sometimes a matter of taste, but in general a single test
group matches a single use scenario. Making long test groups is attractive (less to type etc.)
and harmless, but testing independent features should always be done in distinct test groups.

In the present case, ‘--version’ and ‘--help’ support are definitely two different features:
they will be part of different test group. But since they are somewhat related, we will simply
keep them close, under the “Standard Options” banner for instance.

We have to fix our tests:

AT _CHECK (commands, [status = ‘0], [stdout], [stderr]) [Macro]
Execute a test by performing given shell commands. These commands should normally exit
with status, while producing expected stdout and stderr contents.

But what shall we actually expect as standard output? Reproducing the exact result of
‘md --version’ means your test suite will fail for any other version of GNU M4, similarly with
‘~=help’. The easiest is to ignore the standard output, by passing ‘ignore’ to AT_CHECK:

AT_CHECK([m4 --version], [], [ignorel])
This is what I would have done if I was not writing an Autotest tutorial... Here, we will make

sure that something is output; and actually, to be even more specific, that both options’ output
contain ‘m4’. It would certainly be a bug if they didn’t...

Autotest does not provide direct support for such content checking®. Its model is strictly
based on equality, therefore we have to find a means to transform our partial control into a strict
equality. There are at least two means to achieve this goal, each having its pros and cons.

The first one that comes to one’s mind simply consists in using grep, or better yet (more for
religious issues than for technically sound reasons), fgrep:

8 Supporting partial checking of contents poses several problems: first it is not an easy task to determine a
priori everything the users will need, and second, providing portable support for such features is yet another
nightmare that Autotest authors do not want to hear about.

Chapter 12: Software Testing with Autotest 223

AT_CHECK([m4 --version | fgrep m4], [], [ignorel)

This solution is definitely the simplest, and that’s actually its only interest... Imagine the
test fails some day: what information will its failure bring?

Almost nothing.

You will not know if m4 failed, since in portable Bourne shell programming there is no means
to determine if an upstream command failed in a pipe: the exit status of the pipe is that of the
last command®. You will not know either if ‘m4 —--version’ output a big fat nothing, or nothing
that satisfied fgrep, since the only output is that of fgrep. And last but not least, in the latter
case, you won’t know what was output.

The second solution circumvents these issues simply by decomposing the pipe: first we run
‘m4 --version’ and save its output, and then we check it:

AT_CHECK([m4 --version >m4-version])
AT_CHECK([fgrep m4 m4-version], [], [ignorel)

Alas, this innocent first test will sooner or later cause you a heart attack: I guarantee
someone will report problems, most likely an Ultrix user... You just fell into one of the obscure
bugs that affect some hosts: they do not support multiple file descriptor redirections. Autotest
definitely needs to save the standard output to check its contents, therefore it does redirect
both the standard output and the standard error output, hence you must not redirect them
again. Equally unfortunate, we know of no way to warn the Autotest user she wrote such an
non portable command, we can only ask her to keep it in mind (and anyway, if she doesn’t, a
fellow Ultrix user will remind her). Note too, that this is why you must use ignore, and not
attempt to redirect the standard output (or error) to ‘/dev/null’.

To address this issue, Autotest may be asked to save the standard output in a file for later
examination: use stdout to save it into the file ‘stdout’:

AT_CHECK([m4 --version], [], [stdout])
AT_CHECK([fgrep m4 stdout], [], [ignorel)

The case of the ‘--help’ is exactly similar, so much indeed that writing a macro would factor
a lot of code.

12.5.2 Writing Autotest Macros

Autotest provides a minimal set of macros, flexible enough to meet the needs, but too limited
to perform strict tests on some executables. This is on purpose: there is no universal magical
way to check an executable (or if you have one, please contact the Autotest maintainers as soon
as possible). You will have to write your testing tools, i.e., since we are describing an M4 based
programming environment, you will have to write your own test macros.

We will write a macro which to factor a whole test group exercising m4 on ‘--version’ and
‘-=help’, and as usual, the most difficult task will be finding a good name for it. I suggest
AT_CHECK_M4_STD_OPTION (users willing to contribute better names are most welcome: send
submissions to gnuprog2-devel@sourceforge.org, along with all information you think might
help). The whole ‘std-opt2.at’ now contains:

9 Modern shells no longer have this deficiency, for instance with Zsh:

$ false | cat >/dev/null; echo "$7; $pipestatus[1]; $pipestatus[2]"
0; 1; O

224

Programming with GNU Software

Process with autom4te to create an —-*- Autotest —-*- test suite.

m4_define ([AT_PACKAGE_STRING], [GNU Programming 2])
m4_define ([AT_PACKAGE_BUGREPORT], [gnuprog2-devel@sourceforge.org])

AT_INIT([Standard Options: 2])
AT_BANNER([Standard Options.])

AT_CHECK_M4_STD_OPTION(OPTION)

Check that ‘m4 OPTION’ outputs something containing ‘m4’.
m4_define ([AT_CHECK_M4_STD_OPTION],

[AT_SETUP([$1 support])

AT_CHECK([m4 $1], [1, [stdout])

AT_CHECK([fgrep m4 stdout], [1, [ignorel)

AT_CLEANUP])

AT_CHECK_M4_STD_OPTION([--version])
AT_CHECK_M4_STD_OPTION([--help])

Example 12.8: ‘std-opt2.at’ - An Autotest Source

which gives:

-
GNU Programming 2 test suite: Standard Options: 2.
- #4

Standard Options.

1: std-opt2.at:19 ok
2: std-opt2.at:20 ok

—————————————————————— #it
All 2 tests were successful.
———————————————— #i#

Example 12.9: std-opt2 Run

Tada!

Let’s go a step further: after all, these two test groups are fairly generic: we could very

well introduce a higher level macro to check whether some program supports ‘--version’ and
‘-=help’! We will exercise autoconf, gcc, litbool, and m4.

Process with automd4te to create an —-*- Autotest -*- test suite.

m4_define ([AT_PACKAGE_STRING], [GNU Programming 2])
m4_define ([AT_PACKAGE_BUGREPORT], [gnuprog2-devel@sourceforge.org])

AT_INIT([Standard Options: 3])

Chapter 12: Software Testing with Autotest 225

_AT_CHECK_STD_OPTION(PROGRAM, OPTION)

Check that ‘PROGRAM OPTION’ outputs something containing ‘PROGRAM’.
m4_define ([_AT_CHECK_STD_OPTION],

[AT_SETUP([$1 $2 support])

AT_CHECK([$1 $2], [1, [stdoutl])

AT_CHECK([fgrep $1 stdout], [1, [ignorel)

AT_CLEANUP])

AT_CHECK_STD_OPTIONS (PROGRAM)

Check that PROGRAM respects the GCS wrt --version, and --help.
m4_define ([AT_CHECK_STD_OPTIONS],

[AT_BANNER([$1 Standard Options.])

AT_TESTED([$1])

_AT_CHECK_STD_OPTION([$1], [--version])
_AT_CHECK_STD_OPTION([$1], [--helpl)

D

AT_CHECK_STD_OPTIONS([autoconf])
AT_CHECK_STD_OPTIONS ([gcc])
AT_CHECK_STD_OPTIONS([1libtool]l)
AT_CHECK_STD_OPTIONS([m4])

Example 12.10: ‘std-opt3.at’ - An Autotest Source

which produces:

-
GNU Programming 2 test suite: Standard Options: 3.
B #i#

autoconf Standard Options.

1: std-opt3.at:27 ok
2: std-opt3.at:27 ok

gcc Standard Options.

3: std-opt3.at:28 FATLED near ‘std-opt3.at:28’
4: std-opt3.at:28 ok

libtool Standard Options.

5: std-opt3.at:29 ok
6: std-opt3.at:29 ok

m4 Standard Options.

7: std-opt3.at:30 ok

8: std-opt3.at:30 ok
-----——————--------—--————
ERROR: Suite unsuccessful, 1 of 8 tests failed.
-

226 Programming with GNU Software

You may investigate any problem if you feel able to do so, in which
case the test suite provides a good starting point.

Now, failed tests will be executed again, verbosely, and logged
in the file std-opt3.log.

#--—-——— ##
GNU Programming 2 test suite: Standard Options: 3.
#H - ##

3. std-opt3.at:28: testing gcc --version support...
std-opt3.at:28: gcc --version

stdout:

2.95.2

std-opt3.at:28: fgrep gcc stdout

stdout:

std-opt3.at:28: exit code was 1, expected O

3. std-opt3.at:28: FAILED near ‘std-opt3.at:28’

- ##
std-opt3.log is created.
- ##

Please send ‘std-opt3.log’ to <gnuprog2-devel@sourceforge.org>,
along with all information you think might help.

Example 12.11: std-opt3 Run

Please note that we clearly achieved our goal thanks to the two step test: we know exactly
why it failed with gcc, since the whole output is displayed in the logs, there is no need for
additional interaction with the user, had the failure occurred on such a “remote” environment.

12.5.3 Checking dnl and define

Now that our snacks have been digested, let’s focus again on our main goal: designing a
GNU M4 test suite, i.e., exercising the real core features of M4. We will write simple tests for a
few basic builtins, and we will be sure to exercise them in some invalid way (see Section 12.2.3
[Look for Realism], page 212).

Specifying the identity of the hosting package is also painful, in particular because a proper
definition of the AT_PACKAGE_STRING must include its version. To factor the definition of these
variables from now we will rely on the existence of ‘package.m4’:

Signature of the current package.
m4_define ([AT_PACKAGE_STRING], [GNU Programming 2E])
m4_define ([AT_PACKAGE_BUGREPORT], [gnuprog2-devel@sourceforge.org])

Example 12.12: A Simple package.m4’

You don’t have to m4_include it, or pass it as an argument to automdte: ‘automédte
--language=autotest’ automatically includes this file if present.

Two candidates are already laid in the test bed: dnl, being the most commonly used builtin'?,
and define, so that we can test the user macro expansion. Exercising m4 typically consists in

10 The Fileutils’ ‘configure.ac’ invokes dnl 198920 times, followed by shift (119196), ifdef (88623). The most
used Autoconf macro was AC_PROVIDE, with a miserable score of 4202. While YMMV, be sure that AC_INIT
was invoked once.

Chapter 12: Software Testing with Autotest 227

running it on some files. You are absolutely free to create the files the way you want, for instance
using AT_DATA.

AT _DATA (file, contents) [Macro]
Initialize an input data file with the given contents. Of course, the contents have to be
properly quoted between square brackets to protect against included commas or spurious m4
expansion; no shell expansion of any sort is performed. The contents ought to end with an
end of line.

Testing dnl is exceedingly simple: give it something to swallow, and observe it did:

Process with automd4te to create an —*- Autotest -*- test suite.
dnl.at -- Testing GNU M4 ‘dnl’ and ‘define’ builtins.

AT_INIT([m4])

AT_SETUP([Dn1])
AT_DATA([[input.m4]],

[[dnl This is killed.

This is not

1)

AT_TEST([[m4 input.m4]], (I,
[[This is not

1

AT_CLEANUP

Example 12.13: ‘dnl.at’ (i) - A Broken Autotest Source Exercising dnl

$ autom4te -1 autotest dnl.at -o dnl
dnl.at:8: error: possibly undefined macro: dnl
dnl.at:11: error: possibly undefined macro: AT_TEST

$

Arg! Yet another zealous useful feature: autom4te makes sure there are no suspicious tokens
in the output which could result from improper quotation, or typing errors. And there is one
indeed: the author of the test suite meant AT_CHECK, not AT_TEST. But in this test suite we
really want to refer to dnl.

There are two means to explain this to autom4dte.

One first solution consists in using the empty quadrigraph, ‘@&t@’, to mark valid occurrences
of dnl in the output, as in:

AT_DATA([[input.m4]],
[[de&t@nl This is killed.
This is not

1D

But autom4te still complains, this time, being unable to find the source of the guilty dnl in
‘dnl.at’, its input, it reports the location in the output file:

$ automdte -1 autotest dnl.at -o dnl
dnl:209: error: possibly undefined macro: dnl
$ sed -n 209p dnl

1: dnl.at:6 Dnl

Aha! The culprit is no less than the filename! Therefore we have no other choice than using
the second solution (except renaming the file): completely disabling the checking of dnl in

228 Programming with GNU Software

the output. As matter of fact, we will use dnl so heavily while testing m4 that tagging each
occurrence would obfuscate too much: just add ‘m4_pattern_allow([~dnl1$])’!!

The first solution is definitely the safest, because you tagged exactly the occurrences of dnl
which are meant to be output. Any other accidental unexpanded dnl will still be caught. But
sometimes simplicity and risks are to be preferred to strictness and safety.

And now for something completely different: define. Contrary to dnl, define has a precise
arity: without arguments it is ignored, otherwise it takes one or two arguments, it should warn
for any other arity (obviously we won’t test them all). Let’s first check by hand:

$ cat define.m4

define

define()

define(‘one’)one

define(‘two’, ‘Two’)two
define(‘three’, ‘Three’, ‘THREE’)three
$ m4 define.m4

define

Two
m4: define.m4: 5: Warning: define: too many arguments (ignored): 3 > 2
Three
It is then a simple matter of separating the standard output from the standard error output,
and just wrap this into a test case:

AT_SETUP([[Definell)

AT_DATA([[define.m4]],

[[define

define()

define(‘one’)one

define(‘two’, ‘Two’)two
define(‘three’, ‘Three’, ‘THREE’)three
1D

AT_CHECK([[m4 define.m4]], [J,
[[define

Two
Three
11,

[[m4: define.m4: 5: Warning: define: too many arguments (ignored): 3 > 2

1D

AT_CLEANUP
Example 12.14: ‘dnl.at’ (i) — An Autotest Source Exercising define

Create the test suite, launch it: good, it passes with success. Let’s try it on our fetal m4, not
yet installed:

1 You might have considered ‘m4_pattern_allow([~dnl\.at$])’, but this won’t work since the output is split

into words, and here there are two: ‘dnl’ and ‘at’.

Chapter 12: Software Testing with Autotest 229

$./dnl AUTOTEST_PATH=$HOME/src/m4/src

##-----———————-- ##
GNU Programming 2E 0.0a test suite: Dnl and Define.
------—-------—-——-------- #i#
1: dnl.at:7 ok
2: dnl.at:17 FAILED near ‘dnl.at:35’
##-----——————-— ##
ERROR: Suite unsuccessful, 1 of 2 tests failed.
-----————--——----------———

You may investigate any problem if you feel able to do so, in which
case the test suite provides a good starting point.

Now, failed tests will be executed again, verbosely, and logged
in the file dnl.log.

- ##
GNU Programming 2E 0.0a test suite: Dnl and Define.
- ##

2. ./dnl.at:17: testing Define...

./dnl.at:35: m4 define.m4

-—— - Tue Sep 4 18:04:30 2001

+++ at-stderr Tue Sep 4 18:04:30 2001

@ -1,2 +1,2 @

-m4: define.m4: 5: Warning: define: too many arguments (ignored): 3 > 2
+1t-m4: define.m4: 5: Warning: define: too many arguments (ignored): 3 > 2

2. ./dnl.at:17: FAILED near ‘dnl.at:35’

-
dnl.log is created.
-

Please send ‘dnl.log’ to <gnuprog2-devel@sourceforge.org>,
along with all information you think might help.

Example 12.15: dnl Run on an Installed m4

Because it is the paragon of dynamic module based software, GNU M4 is built with Libtool;
because of obscure but very well founded reasons which are beyond the scope of this chapter
(FIXME: Ref to Libtool?.), ‘bin/m4’ is actually a shell script. It runs an executable named
1t-m4. This is why the signature in the error message is “wrong”. We have a serious problem,
for our ultimate goal is to write a test suite shipped with GNU M4.

One possibility consists in adjusting the expected error messages to using ‘1t-m4’. This would
prevent us from using our test suite on any other m4. In addition it clashes with an important
motto: the test suite is a user, see Section 12.2.3 [Look for Realism], page 212.

Another is having the test suite be robust enough to work with different signatures, i.e.,
applying the same techniques as those we used in the previous section: save the standard error
output, standardize it, check it. What a hassle! But why not, an AT_CHECK_M4 macro could
hide those gory details.

For the time being, let us just imagine we didn’t read Section 12.2 [Designing a Test Suite],
page 211. We chose this solution, and proceed to other kinds of tests.

230 Programming with GNU Software

12.5.4 Checking Module Support

A major aspect of GNU M4 is its wonderful handling of modules. As a matter of fact, the
executable m4 is nothing but an empty shell which sole ability is almost reduced to handling
‘~~help’ and ‘--version’ (which we already exhaustively tortured). Such a major feature must
be exercised, and in fact, any conscientious maintainer will take a sadist pleasure at writing the
most perverted possible tests. Gary is one such person, and we will follow his tracks, checking
that modules can be loaded and unloaded.

Our victim will be the gnu module, which contains both builtins, such as builtin,
and macros, such as __gnu__. We will check that they are undefined at start up when
‘-—traditional’ is specified, defined when gnu is loaded, and undefined again when the module
is unloaded, and defined when loaded again:

Process with automd4te to create an —-*- Autotest -*- test suite.
modules.at -- Testing GNU M4 module support.

AT_INIT([Modules support])
AT_SETUP([Modules loading and unloading])

AT_DATA([[input.m4]],

[[define(‘status’,

“¢$1°: ifdef(‘$1’, ‘defined’, ‘non defined’)’)
status(‘builtin’), status(‘__gnu__’)
load(‘gnu’)status(‘builtin’), status(‘__gnu__’)
unload(‘gnu’)status(‘builtin’), status(‘__gnu__’)
load(‘gnu’)status(‘builtin’), status(‘__gnu__’)
1D

AT_CHECK([[m4 --traditional --load-module=load input.m4]], [],
Ct

builtin: non defined, __
builtin: defined, __gnu__: defined
builtin: non defined, __gnu__: non defined
builtin: defined, __gnu__: defined

1D
AT_CLEANUP
Example 12.16: ‘modules.at’— An Autotest Source Checking M4 Modules Support

gnu__: non defined

which indeed runs as expected: 100% of one test passes. Note however that this test is actually
quite weak, with some more effort it would have been better to check that the functionalities of
builtin and __gnu__ are still working.

3

Now, again, we can run the test suite on our working copy of m4, by a simple ‘. /modules
AUTOTEST_PATH=$HOME/src/m4/src’. But observe that if you replace ‘m4’ with ‘strace m4’ or
something equivalent, and ask for the standard error to be ‘ignore”d, then you get something
similar to:

$./modules -v AUTOTEST_PATH=$HOME/src/m4/src | grep gnu
open("/home/akim/src/m4/modules/.1ibs/gnu.so.0", O_RDONLY) = 3
open("/usr/local/libexec/m4/gnu.la", O_RDONLY) = 4

read(4, "# gnu.la - a libtool library fil"..., 4096) = 708
open("/usr/local/libexec/m4/gnu.la", O_RDONLY) = 4
read(4, "# gnu.la - a libtool library fil"..., 4096) = 708

Chapter 12: Software Testing with Autotest 231

Although ‘/home/akim/src/m4/modules/.libs/gnu.so.0’ is reassuring, since it demon-
strates that Libtool took care of loading the non installed version of the gnu module, the
‘/usr/local/libexec/m4/gnu.la’ part is still a bit frightening: what if, after all, we were
mixing installed modules with a non installed m4? As a matter of fact, this problem is extremely
frequent since today many executables use auxiliary files. For instance the Autoconf collection
heavily depends on a configuration file named ‘autométe.cfg’ and on many M4 files, Bison and
Flex need to find “skeleton” files!'?, Automake needs scripts like ‘install-sh’ and ‘missing’,
Makefile components ‘*.am’ etc. When testing the working copy of these tools the risk of mixing
installed and non installed bits is high, and will of course result in insignificant results, whether
the test suite passes or not.

The most common answer is having the test suite pass some combinations of options and
environment variables to make sure the tools load non installed files. In the current case, it
means replacing the previous AT_CHECK invocation with something like

AT_CHECK([[m4 -G -M $HOME/src/m4/modules -m load input.m4]],

Now we have the converse problem: the test suite will always involve non installed modules,
even when exercising an installed m4.

The easy answer to this dilemma is: “forget about testing an installed program, after all it
should have been tested before being installed”, in other words “forget about testing any other
copy of the program than the one in the same build tree as this test suite”.

It is worth mentioning the case of programs invoking other programs in the same package.
Autoconf is a typical example: automédte is slaved by autoconf, autoheader, autoscan and
autoupdate, all of them being run by autoreconf! Yet this is an improvement over the previous
situation where, for instance, autoheader ran autoconf, itself using autom4te. In order to
enforce this relationship, all of them had hard coded heuristics like this:

Default AUTOCONF to the name under which ‘autoconf’ is installed
when ‘./configure --program-transform-name’ and similar is used.
: ${AUTOCONF=Q@autoconf-name@}
dir=‘echo "$0" | sed -e ’s,["/]1%$,,’°¢
We test "$dir/autoconf" in case we are in the build tree,
in which case the names are not transformed yet.
for autoconf in "$AUTOCONF" \
"$dir/@autoconf-name@" \
"$dir/autoconf" \
"@bindir@/@autoconf-name@"; do
test -f "$autoconf" && break
done

Example 12.17: FExcerpt of autoheader Looking for autoconf

Let’s list a few consequences:

— Because directories are hard coded, if you move something, the behavior is undefined.

3

— The innocent ‘test -f "$autoconf"’ is hell! If the user specified some option ‘--foo’ in

AUTOCONF, then this snippet will look for the file ‘autoconf --foo’.

— If the user specified ‘AUTOCONF=autoconf-2.13’, then again it won’t be honored since in-
stead of letting the system look for it in the PATH, this snippet just checks if autoconf-2.13
is present in the current directory.

12 Bison and Flex both generate tables describing the grammar specificities, but the engine, the code which

“executes” these tables is independent of the grammar. This code, instead of being hard coded in the
executables, is stored in a file named the skeleton. (FIXME: Didier says this footnote should be removed.
Once Bison and Flex documented, ref to there..)

232 Programming with GNU Software

— User specifications are silently ignored! In neither of the previous cases the user will be
warned of what happened.

The explosion of the European Launcher, see Section 12.1.3 [Ariane 501], page 210, caused
by a $500 000 000 bug, was caused by a comparable kind of problem: the real application was
polluted with code unrelated to a normal use. Today, the Autoconf programs simply include:

: ${AUTOCONF=@autoconf-name@}

and that’s all! Let PATH handle the rest: when being tested in the build tree, the wrappers are
run and handle all the dark magic. Now the behavior, relying on standard Unix interface, is
predictable, and will properly fail when it should.

It is a mistake to dedicate a test suite to the special layout of a package in the process of
being built. We strongly discourage you from going to the dark side of the testing force.

So, we are back to our problem: how can we test both an installed program, and an non
installed program while having each copy use its own files? Keep in mind that a test suite must
be seen as a user, albeit eccentric and demanding: present the same interface in both cases to
the test suite. Then the answer is obvious: provide a wrapper, a small shell script which takes
care of running a non installed program, and let the PATH handle the rest.

This wrapper must give a perfect illusion, it must pass the Turing test: an observer shouldn’t
be able to tell the difference. Note that we also just solved the problem left in the previous section
—1t-m4’ vs. ‘m4’ in error messages—: this wrapper must hide this detail. Since this wrapper
depends upon configuration options, it is configure which will instantiate from a template.

In the case of m4, this template, ‘m4.in’, is just:

#! /bin/sh
Qconfigure_input@
Wrapper around a non installed m4 to make it work as an installed one.

"Q@top_buildpath®@/src/mé" \
--module-directory="@top_buildpath@/modules" \
${1+"$@"} 2>/tmp/mi4-$$

status=$7

Normalize stderr.

sed ’s, [T:]*[1t-1*m4[.ex]*: ,md:,’ /tmp/mé-$$ >&2

rm /tmp/m4-$$

exit $status

Example 12.18: m4.in’ — A Wrapper around a non installed m4

¢

How does this script work? We pass the option ‘--module-directory’ so that it uses the
non installed modules instead of those possibly installed on the system; and we used sed to
normalize the name of the executable in the error messages. This sed invocation deserves some
explanations:

M X aims at removing the possible leading path. In particular, when configured with
‘-—disable-shared’, ‘@top_buildpath®@/src/mé’ is an genuine binary, which will
display its full path.

‘[1t-1*’ is a portable approximation of ‘\(1t-\)\?’, matching Libtool’s prefix when not
configured with ‘--disable-shared’. In this case, there is no real need to normalize
a possible directory specification because the ‘bin/m4’ wrapper modifies the PATH
to run the actual executable, in which case the name is indeed simply ‘m4’.

Chapter 12: Software Testing with Autotest 233

‘[.ex]*’ takes care of the possible ‘.exe’ extension on some poor hosts.

Approximating even further, for instance with ‘s/~ [~ :1*:/m4:/’, will sooner or later destroy
other standard error output than m4’s signature, the output of dumpdef for instance. One could
also rely on a redefinition of PATH in which case the normalization can be simplified.

Note that these wrappers are also a good place where special magical tricks can be performed.
For instance, as described in Section 12.2.7 [Other Uses of a Test Suite], page 216, the test suite
can be a good place for profiling. Configure the package using ‘./configure CFLAGS=’-pg’’
(and ‘--disable-shared’ if, as is the case of GNU M4, the application is heavily composed of
libraries), and add a few lines to save the profiling data file, ‘gmon.out’, for a later use (see
Chapter 15 [Profiling and Optimising Your Code], page 263):

#! /bin/sh
Q@configure_input@
Wrapper around a non installed m4 to make it work as an installed one.

"@top_buildpath@/src/m4" \
--module-directory="Q@top_buildpath@/modules" \
${1+"$e"} 2>/tmp/m4-$$

status=$7

test -d gmon || mkdir gmon

mv gmon.out gmon/$$

Normalize stderr.

sed ’s, [T:]*[1t-1*m4[.ex]*:,md:,’ /tmp/mé-$$ >&2

rm /tmp/m4-$$

exit $status
Example 12.19: m4.in’ — A Profiling Wrapper

then run the test suite, then ‘gprof -s ../src/m4 gmon/* && rm -rf gmon’, and finally ‘gprof
../src/mé4 gmon.sum’. Enjoy!

Well, there is not much to enjoy, because the GNU M4 test suite is really paying attention to
testing independent features, and includes almost no torture tests. But applying the same trick
on an M4 based package, such as Autoconf (i.e., installing the wrapper above as ‘tests/m4’ in
Autoconf’s ‘tests’ directory) provides a excellent base for profile-guided improvements.

12.5.5 Testing Optional Features

Some packages provide optional features, possibly depending upon configuration options.
Therefore a test suite will exercise programs with different behaviors at runtime, or put more
simply, it will test different programs sharing the same name. Quite by a mere chance, GNU M4
is one such program: depending upon the system and/or the user’s will, support for extended
precision arithmetics based on GMP'? might be compiled.

Therefore we need optional tests. The special exit status value ‘77’ tells AT_CHECK to disregard
the rest of the test group, independent of the results (unless the test expects 77 as exit value,
see (FIXME: Inside Test Groups.), AT_CHECK, for more details).

Autotest based test suites provide the user with a means to pass configuration options to the
tests: ‘atlocal’. The file ‘atlocal’ is automatically generated from its template, ‘atlocal.in’,

13 gmP, the aNU Multiple Precision arithmetic library, is a portable library written in C for arbitrary precision

arithmetic on integers, rational numbers, and floating-point numbers. It strives to provide the fastest possible
arithmetic for all applications that need higher precision than is directly supported by the basic C types.

234 Programming with GNU Software

by AC_CONFIG_TESTDIR ((FIXME: Embedding an Autotest Test Suite.)), and is loaded (when
present) by any Autotest test suite. In our case, we merely need to know if GMP support was
compiled in, which configure knows via the value of the variable USE_GMP: either ‘yes’ or ‘no’.
Therefore, our template ‘atlocal.in’ is:

—*- shell-script -*-

Qconfigure_input@

Configurable variable values for M4 test suite.

Copyright 2000, 2001 Free Software Foundation, Inc.

Some tests cannot be performed with all the configurations.
USE_GMP=QUSE_GMPQ@

Example 12.20: ‘tests/atlocal.in’ — User Test Variables

There remains to write the test itself, exercising the mpeval module:

Process with automd4te to create an —-*- Autotest -*- test suite.
mpevall.at -- Testing GNU M4 GMP support.

AT_INIT([GMP support])
AT_SETUP([GMP: Exponentiation])
AT_CHECK([test "$USE_GMP" = yes || exit 77])

AT_DATA([[input.m4]],
[[mpeval (‘2**100°)
1D

AT_CHECK([[m4 -m mpeval input.m4]], O,
[[1267650600228229401496703205376
1D

AT_CLEANUP
Example 12.21: ‘mpevall.at’ — Exercising an Optional Feature Using ‘atlocal’

create mpevall, and run it:

R ##

GNU Programming 2E 0.0a test suite: GMP support.

oo ##
1: mpeval.at:6 ok (skipped near ‘mpeval.at:8’)

e i

A1l 1 tests were successful (1 skipped).

B —mmm e #

Hm... Something went wrong.... I'm sure the m4 I just installed has GMP support...

If you spend some time analyzing the failure, you’ll find a simple explanation: the example is
presented as it if were part of GNU M4 distribution, while in fact it’s part of a different package,
gnu-prog2. The latter has no information with respect to the configuration options used for
the GNU M4 which was installed!

The problem we face is well known to Autoconf gurus: differences between configure time
data (not very different from compile time data), and ezecution time data. Some softwares make
decision with regards to their behavior at runtime, e.g., some hosts can be big endian or little
endian depending on runtime environment. In such a case, you should just follow the program’s
footsteps and adjust your tests to runtime conditions. As a matter of fact, still following the

Chapter 12: Software Testing with Autotest 235

motto “the test suite is a user” (see Section 12.2.3 [Look for Realism], page 212), you should
depend as little as possible on configuration options: a user has no reason to know the decision
made by her system administrator. In the case of GMP, it means first asking m4 whether it knows
a module named mpeval, and then checking it:

Process with automd4te to create an —*- Autotest -*- test suite.
mpeval2.at -- Testing GNU M4 GMP support.

AT_INIT([GMP support: Runtime Check])
AT_SETUP([GMP: Exponentiation])
AT_CHECK([m4 -m mpeval </dev/null || exit 77])

AT_DATA([[input.m4]],
[[mpeval (¢2x*100°)
1D

AT_CHECK([[m4 -m mpeval input.m4]], O,
[[1267650600228229401496703205376
1D

AT_CLEANUP

Example 12.22: ‘mpeval2.at’ — Fzxercising an Optional Feature at Runtime

This time, the mpeval module is properly exercised:

- ##

GNU Programming 2E 0.0a test suite: GMP support: Runtime check.

-
1: mpeval.at:6

-

All 1 tests were successful.

- ##

Creating stand-alone test suites is still rare, and hackers writing test suites for other people’s
packages are even less common'*: the most common use of Autotest is writing a portable test
suite shipped with the tested package, within the GNU Build System, together with Automake
and Autoconf. It turns out miraculously to be the topic of the next section, Section 12.6
[Autotesting GNU M4], page 235.

12.6 Autotesting GNU M4

In this section, as a demonstration of the principles presented in the previous sections, we
explore the main steps followed in the design of the GNU M4 test suite. As a matter of fact
GNU M4 already had a test suite composed of tests generated from the documentation, and a
set of small shell scripts implementing test groups. Hence, its Autotestification merely consisted
in re-engineering it.

14 People performing torture tests to telnet, su etc. are named crackers, not hackers, and therefore they do
not invalidate my sentence.

236 Programming with GNU Software

12.6.1 The GNU M4 Test Suite

Based on the general advice presented in Section 12.2.4 [Ordering the Tests|, page 213,
the first steps consisted in determining the sequence of kinds of tests to be performed: (i)
exercising macro and builtin definitions and uses, (ii) builtins (‘builtins.at’, (iii) special
options (‘options.at’, (iv) complex hand crafted tests (‘others.at’), (v) module support
(‘modules.at’, and (vi) generated tests, automatically extracted from the documentation
(‘generated.md’).

Because we repeatedly run m4 with some common options, we also define two macros which
will make our life easier: AT_CHECK_M4 which is a simple check, and AT_TEST_M4, which is a
whole test group in itself. As advised in Section 12.2.3 [Look for Realism], page 212, for options
such as ‘--warning’, we pass ‘-d’, ‘-—debug’, to constantly check the debugging output (which
is actually produced only when special macros such as traceon are invoked). We also pass the
option ‘-b’, ‘--batch’, to make sure the test suite is interruptible. This point deserves some
slightly out off-topic detailed explanations, typically a footnote, but that too lengthy to fit down
there...

Interactive programs, such as shells, often check whether their standard input is a
TTY (basically meaning that the standard input is the user herself, not a file), and
then neutralize CTRL-c, since it would result in exiting the shell. ¢NU M4 follows
the same rule, and therefore, if you run ‘m4’, typing CTRL-c will have no effect,
while running ‘m4 <input.m4’ keeps CTRL-c activated. But what happens when
running ‘m4 input.mé4’? The standard input is not ‘input.mé’; the latter is just an
argument passed to m4 on its command line, but the standard input is not redirected,
and therefore it remains the same as before (typically, users run ./testsuite from
an interactive shell, hence the standard input of testsuite is a TTY, inherited by
m4, therefore m4 considers it is in interactive mode!).

If for some reason ‘input.m4’ makes m4 go into in infinite loop, then you are doomed,
you will have to use kill to terminate the process. It should be noted that other
interactive programs are still sensible to CTRL-c: they stop the current operation
and resume to the prompt. GNU M4 has no such feature, which makes it even worse.
I strongly encourage using systematically ‘—-batch’.

Finally, please note that sometimes, for some reason, a test might not behave as
expected and may be expecting some input from the standard input. Then the test
suite will appear to be stuck. If you experience this, if some user reports a never
ending test group, suggest that they run ‘./testsuite </dev/null’. If this time
the test group ends, ask her to run ‘./testsuite -x’: the last command was the
one expecting data from the standard input.

Example 12.23: Testing Interactive Programs

Putting all this together gives the following ‘testsuite.at’. To save trees, the license is not
included below.

Process with automd4te to create an —-*- Autotest -*- test suite.

Test suite for GNU M4.
Copyright 2001 Free Software Foundation, Inc.

We need at least Autotest 2.52g, otherwise fail now.
m4_version_prereq([2.52g])

Chapter 12: Software Testing with Autotest 237

AT_CHECK_M4 (ARGS, [EXIT-STATUS = 0], [STDOUT = ¢’], [STDERR = ‘’])

m4_define ([AT_CHECK_M4],
[AT_CHECK([m4 -b -4 $11, [$2]1, [$3]1, [$41)
D

AT_TEST_M4(TITLE, INPUT, [STDOUT = ‘’], [STDERR = ‘’])

Run m4 on INPUT, expecting a success.
m4_define ([AT_TEST_M4],

[AT_SETUP([$1])

AT_DATA([[input.m4]l], [$2])
AT_CHECK_M4([[input.m4]], 0, [$3], [$41)
AT_CLEANUP

D

We use ‘dnl’ in zillions of places...
m4_pattern_allow([~dnl$])

We exercise m4.
AT_TESTED ([m4])

-
The suite.
———————
AT_INIT

Macro definitions, uses, tracing etc.
m4_include([macros.at])

Torturing builtins.
m4_include([builtins.at])

Options.
m4_include([options.at])

Hand crafted tests.
m4_include([others.at])

Torturing the modules support.
m4_include([modules.at])

From the documention.
m4_include([generated.at])

Example 12.24: GNU M4’s ‘testsuite.at’

Most tests are straightforward and do not deserve special attention; to see AT_CHECK_M4 and
AT_TEST_M4 in action, see the GNU M4 distribution. We will focus on excerpts of ‘modules.at’
and ‘generated.at’.

Originally, when the test suite was only a set of handwritten shell scripts, a few of them
were testing the loading and unloading of modules, sometimes testing relative path to modules,
sometimes absolute paths, some were exercising the option ‘--module-directory’, others the
environment variable MAMODPATH, and others LTDL_LIBRARY_PATH. Looking at this set of shell
scripts it was barely possible to verify their coverage: were there cases which were not tested?
In addition, did all the tests have the same strength (the inputs were sometimes different)? As

238 Programming with GNU Software

advised in Section 12.2.6 [Maintain the Test Suite], page 215, these specific tests were gener-
alized into a unique test group macro, and it then became easy to be sure all the possibilities
were covered. Since in addition these tests depend on modtest, a module written specially for
exercising the modules, and therefore which is not to be installed, the macro is equipped with a
preliminary test to skip the test group when it missing. Please note that since these tests aim
at checking that modtest can be found, using ‘AT_CHECK([m4 -m modtest.la || exit 77]) is
taking the risk that actual failures be considered as skipped tests.

- #i#
Exercising the test module.
- #i#
AT_TEST_M4_MODTEST(TITLE, ENV-VARS, M4-0PTIONS)

Skip if modtest is not present (we are not in the package).
m4_define ([AT_TEST_M4_MODTEST],

[AT_SETUP([$11)

AT_KEYWORDS ([module])

AT_CHECK([test -f $top_builddir/modules/modtest.la || exit 77])

AT_DATA([input.m4],
[[load(‘modtest’)

test

Dumpdef: dumpdef (‘test’).
unload(‘modtest’)

test

Dumpdef: dumpdef (‘test’).
1D

AT_CHECK([$2 m4 -m load -d input.md4 $3], O,

L[
Test module called.
Dumpdef :

test
Dumpdef:

11,

[[Test module loaded.

test: <test>

Test module unloaded.

m4: input.m4: 6: Warning: dumpdef: undefined name: test

1D

AT_CLEANUP
D

AT_TEST_M4_MODTEST([--module-directory: absolute path],
(1, [-M $top_buildpath/modules])

AT_TEST_M4_MODTEST([--module-directory: relative path],
[0, [-M $top_builddir/modules])

AT_TEST_M4_MODTEST ([MAMODPATH: absolute path],
[M4MODPATH=$top_buildpath/modules], [])

Chapter 12: Software Testing with Autotest 239

AT_TEST_M4_MODTEST ([M4MODPATH: relative path],
[MAMODPATH=$top_builddir/modules], [])

AT_TEST_M4_MODTEST([LTDL_LIBRARY_PATH: absolute path],
[LTDL_LIBRARY_PATH=$top_buildpath/modules], []1)

AT_TEST_M4_MODTEST([LTDL_LIBRARY_PATH: relative path],
[LTDL_LIBRARY_PATH=$top_builddir/modules], [])

The last bit of testing we will pay attention to is the case of the tests extracted from the
documentation. The file ‘generated.at’is produced by a simple Awk program, ‘generate.awk’,
which we won’t detail here, see the aNU M4 distribution. The idea is simple: convert the
example from the Texinfo documentation into actual tests. For instance, the following excerpt
of the node “Dumpdef” of ‘m4.texinfo’ (see section “Displaying macro definitions” in GNU m4
— A powerful macro processor):

Q@example

define(‘foo’, ‘Hello world.’)
@result{}

dumpdef (‘foo’)

@error{}foo: ‘Hello world.’
@result{}

dumpdef (‘define’)
Q@error{}define: <define>
@result{}

Q@end example

rendered as

define(‘foo’, ‘Hello world.’)
=

dumpdef (‘foo’)
foo: ‘Hello world.’
=

dumpdef (‘define’)
define: <define>
=

is turned into:

-
Dumpdef.
- #it

AT_SETUP ([[Dumpde£f]])
AT_KEYWORDS ([[documentation]])

../doc/mé.texinfo:1673
AT_DATA([[input.m4]],
[[define(‘foo’, ‘Hello world.’)
dumpdef (‘foo’)

dumpdef (‘define’)

11

240 Programming with GNU Software

AT_CHECK_M4([[input.m4l], O,
L[

11,
[[foo: f‘Hello world.’
define: <define>

1D
AT_CLEANUP

12.6.2 Using Autotest with the GNU Build System

As far as Autoconf is concerned, you only have to invoke AC_CONFIG_TESTDIR:

AC_CONFIG_TESTDIR (test-directory, [autotest-path = test-directory]) [Macro]
Ask for the creation of ‘test-directory/atconfig’, which contains Autotest private infor-
mation related to the layout of the package tree.

The test suite default path, AUTOTEST_PATH, is set to autotest-path. This colon-separated
path should include the directories of the programs to exercise, relative to the top level of
the package.

and create the wrapper around m4:

AC_CONFIG_TESTDIR(tests)
AC_CONFIG_FILES([tests/m4], [chmod +x tests/m4])
AC_CONFIG_FILES([tests/Makefile tests/atlocall)

Given that the current version of Automake, 1.5, does not provide Autotest support, one
merely uses the regular Makefile snippets in ‘Makefile.am’ ((FIXME: Embedding an Autotest
Test Suite.), and in particular ezample 12.5).

One interesting bit is the handling of the generated tests. Because the source files of the tests
are expected to be found in the source tree, even though ‘generated.at’ is generated (surprise!),
we have to qualify its path:

mé4_texinfo = $(top_srcdir)/doc/mé.texinfo
generate = $(AWK) -f $(srcdir)/generate.awk
$(srcdir)/generated.at: $(srcdir)/generate.awk $(m4_texinfo)
$(generate) $(mé4_texinfo) >$0t
mv $0t $e

As already described in (FIXME: Embedding an Autotest Test Suite.), you hook the
testsuite to Automake’s check-local target:

check-local: atconfig $(TESTSUITE)
$ (SHELL) $(srcdir)/$(TESTSUITE)

and finally, after so many pages to read, you can run happily ‘make check’, and stare happily at

———————————————————————— i
All 76 tests were successful.
———————————————

One of the most important targets provided by Automake is distcheck, which basically
checks that your packages behaves properly: it compiles cleanly when using a separate build
directory, the test suite succeeds, installs the package in some temporary directory etc. This
gives you the guarantee that all the files needed to compile and test your package are shipped.
Run it, and see how Autotest boxes are so much more beautiful than Automake’s...

Chapter 12: Software Testing with Autotest 241

Hl —mm e m oo #t

All 76 tests were successful.

R it

m4-1.5.tar.gz is ready for distribution

Unfortunately, although a plain distcheck is a very significant sign that your package be-
haves properly, it offers no guarantee that you did not forget to install some files! Don’t laugh, 1
have already been trapped; it even happened that I produced incorrect paths in installed config-
uration files, while the test suite and distcheck were very happy because... they were not using
the package as a user would do, they were bypassing configuration files etc. Lack of realism...

Fortunately Automake provides the installcheck target, which is run by distcheck, after
the package was installed! Alleluia!l Hook the test suite to installcheck, but setting the
AUTOTEST_PATH so that the installed m4 be run:

Run the test suite on the *installed* tree.
installcheck-local:
$(SHELL) $(TESTSUITE) AUTOTEST_PATH=$(exec_prefix)/bin

This time, we really did all we could to test our package.

242 Programming with GNU Software

Chapter 13: Source Code Management with CVS 243

13 Source Code Management with CVS

Now that we have built up a huge example project, filled with source code, test code and
portability scripts, it is time to protect it and organize it. We want to protect it from accidental
deletion, and we want to organize the archiving of it so that we can find particular revisions of
the software very easily. These activities fall under the rubric of “Configuration Management”.

13.1 Why the bother

Configuration Management is crucial to building reliable systems consistently. It encompases
not only software compatiblities, but hardware, infrastructure and many other issues. This is a
software book.

Software Configuration Management is crucial to building reliable software systems con-
sistently. It encompasses source code management, tracking status, correlating changes with
problem reports, recording versions of tools used to build products and many other issues im-
portant for auditing past product builds and repeatability in building past and current products.
The bibleography will help you find resources for these advanced topics. This book is focused
on developing for relatively smaller projects without comprehensive repeatability requirements.
Here, we cover Source Code Management.

On any development project, especially one involving several people, a certain amount of
confusion is inevitable. Writing solid code quickly is a matter of organizing the chaos. Config-
uration management in general and source code management in particular is basically for the
purpose of managing (taking control of) the chaos.

The most important elements in this are

e Keeping track of the history of the evolution of the software.

e Allowing you to extract copies of the software at marked and unmarked points in time.
Most likely, points in time that correspond to releases.

e Providing a branching capability so that you can stabilize a release branch while continuing
the development on the main code branch.

e Providing a branching capability so that you can destabilize a branch on a special project
involving substantial rework.

e Supporting the re-integration of work that was done on one branch into another branch.
For example, in the interest of reducing chaos you do not want all the reintegration of a
long project to occur exclusively at the end of the project. That way lies madness.

With the advent of graphical diff/merge tools, great strides have been made here in the last
few years.

There are many open source tools available that meet these criteria, See Section 13.9 [Other
Resources|, page 246. However, we will focus on CVS, since it is more widely used and understood
than the others. So, we will give you just enough information to be dangerous.

Even still, there is other useful, but not as crucial, criteria in choosing one product over
another:

e Does it support configuration management capabilities? Viz.,

‘change management’
It can be very useful to be able to track changes related to particular bug reports
and development projects.

‘build support’
Many SCM products are integrated with certain or various build tools. These
products ensure that the software build process produces results based on con-
sistent versions of the source. It also eliminates the situation where only build

244 Programming with GNU Software

meisters have the knowledge and skills to build a product. Such situations are
common and not generally a "good thing."

‘release support’
A few SCM products actually track which customers have which versions of
which products. Using that information, it is possible to focus "emergency
releases" on only the affected customers. Doing that is a good thing.

‘process management’
It is useful to understand how you do what you do, especially if you are trying
to meet ISO 9000 or capability maturity model requirements. It is very easy
for such procedures to become enmeshed in otherwise useless bureaucratic pa-
perwork. Some of the tools can facilitate some of this burden. Programmers
prefer that.

e Is the interface integrated and consistent? You do not want to have to refer to documen-
tation all the time. The functions and interfaces should be generally intuitive and obvious,
based on simple introductory information.

e Is the functionality accessable with a GUI interface? Good GUI’s can make doing things
much more obvious.

e over a network Since individual workstations tend to not be backed up, you definitely want
to try to centralize your repositories on systems that do get backed up.

These are "things to consider" for large scale institutional SCM implementations.

13.2 Creating a new CVS repository

In general, it is better to have a single repository that can be professionally maintained and
backed up. That may not be possible if there is none available or if there are reasons why you
must keep your work in a separate repository. In such cases, you will need to create your own.
Fortunately, that is easily done.

First, you must determine where you can and should place it. The repository will start out
somewhat larger than the original sources and will tend to grow monotonically with time. That
is to say, it is rare to see the size do anything except get bigger. Much bigger. Another reason
for looking beyond your home directory is that you may wish to share the data with others.
Home directories are considered fairly private places.

Before we go and create the repository, though, a few things need to be decided. If this new
repository is for the use of a single user, you need to make sure that the created repository has
user-only write permissions on the directories. Otherwise, access control in CVS is generally
based on group membership permissions. Consequently, it is generally a good idea to set up a
special purpose group ID so that the various CVS users can become members of it.

Now, create the repository directory with the appropriate group ownership and group write
privileges:
CVSRO0T=/path/to/repository
cvs -d $CVSROOT init
find $CVSROOT | xargs chmod g+w

For a personal repository, the only required command is the ““cvs init’” command. For a
shared repository, the “find ... | xargs chmod’ thing is crucial in order to allow other group
members access to the repository.

¢ 7

At this point, it would also be convenient to save the value of the CVSROOT environment
variable where your login shell will find it for the next time you login. You can do this by editing
your initialization script file for your particular shell to contain either this:

Chapter 13: Source Code Management with CVS 245

CVSROOT=/path/to/repository
export CVSROOT

or something fairly similar, if you use ‘csh’ or a derivative. CVS uses that environment variable
when it cannot locate “‘./CVS/Root’.

At this point, you now have a working CVS repository. It’s just empty. It is time to either
start a new project, See Section 13.3 [Starting a new project], page 245, or install a pre-existing
project, See Section 13.4 [Installing a pre-existing project], page 245.

13.3 Starting a new project

If your project is a component of a larger project, you would extract (‘checkout’) a copy of
the source tree, ‘cd’ into the appropriate directory and:
mkdir proj-dir-name
cvs add proj-dir-name
cd proj-dir-name
and then create and ‘cvs add’ the new files and directories that constitute the new project.

If the project is to be completely separate from other projects in the repository, then you
must create some of the files and directories that will constitute the new project and ‘import’
them as if you were installing a pre-existing project, See Section 13.4 [Installing a pre-existing
project|, page 245.

13.4 Installing a pre-existing project
To install a pre-existing project into a CVS repository, you ‘cvs import’ the source tree.

13.5 Extracting a copy of the source

13.6 Returning changes to the repository

13.7 Marking the revisions in a release

13.8 Bibliography

[FOGEL99] _Open Source Development with CVS_ Karl Fogel; Coriolis Open Press, Scotts-
dale, Arizona, 1999

This book was written by a co-founder of Cyclic Software, the company that underwrites
and manages most of the CVS development. This is a very comprehensive treatment of CVS.
Useful if you intend to manage a repository for others’ use.

[BABICHS&6] _Software Configuration Management_ by Wayne A. Babich; Addison-Wesley,
Reading, Massachusetts, 1986

[BERLACK92| _Software Configuration Management_ by H. Ronald Berlack; John Wiley and
Sons, Inc., New York, New York, 1992

[BUCKLEY92] _Implementing Configuration Management: Hardware, Software and
Firmware_ by Fletcher J. Buckley; IEEE Press, 1992.

[COMPTONO93] _Configuration Management for Software_ by Stephen B. Compton and Guy
R. Conner;Van Nostrand Reinhold; John Wiley and Sons, Inc., New York, New York, 1993

246 Programming with GNU Software

13.9 Other Resources

‘CVs’ http://www.cvshome.org

‘BitKeeper’
http://www.bitmover.com/bitkeeper

‘PRCS’ http://prcs.sourceforge.net
‘aegis’ http://www.canb.auug.org.au/ "millerp/aegis/aegis.html

‘subversion’
http://subversion.tigris.org/

‘General Information’
http://www.cmtoday.com/yp/configuration_management.html

‘news group’
news://comp.software.config-mgmt

Chapter 14: Debugging with gdb and DDD 247

14 Debugging with gdb and DDD

This chapter will explain what debugging is, and the tools available to carry it out. There
are debugging tools which allow you to watch a program as it runs, and even change what it
does to a small extent. There are others which replace library routines such as malloc with other
rutines which give far more information and allow you to track down problems such as memory
which is allocated but no longer used (memory leaks), or pointers which point to places that
aren’t valid anymore.

14.1 Why Do I Want A Debugger?

When you have finally got your program to compile with no errors, the next step is to
execute it. If you are incredibly lucky or an astonishingly good programmer, then you can skip
this chapter. Otherwise you will sooner or later need to use a debugger.

Once the program is executing, it may do any of a number of things. Typically, it will do
what you expected, except for a few small details - taking the wrong branch, or calculating
values which are too high or too low, or just plain ridiculous.

Most of these problems are head-slappers - you understand immediately what is wrong and
run through the edit-compile-test cycle again. An example of this would be FIXME

The next stage you get to is the more subtle problems. This is where the program runs for
a long time then inexplicably dies with a core dump, or one of the ouput values occasionally
comes out negative when it shouldn’t be able to. That’s when you need a debugger.

A debugger allows you to take control of the running program. You can start it, stop it,
make it run one line at a time, examine the values of variables at each step, and even change
their values to see what would happen. Sometimes it may take 20 minutes for a program to run
to the point where it all goes wrong - you can put a breakpoint in the code and the debugger
will allow it to run normally until that point, then stop and give you full control.

14.2 How to Use a Debugger

14.2.1 A Program With Bugs

This is the example program we’ll be using to demonstrate how you would typically use gdb
to track down bugs. It has a number of bugs, some obvious, some not so obvious. It compiles
with no warnings using ’gcc -g ecountl.c -o ecountl’

The program has a simple task to perform - it takes one parameter, a single word, and counts
the number of letter ’e’s in it. It prints the result to the screen. That shouldn’t be too difficult,
should it?

/*
ecountl.c Simple program to count the number of letter ’e’s that
appear in the word given as the only parameter

WARNING: This program contains several deliberate bugs

*
*
*
*
* (and possibly some others...)

*/

#include <stdio.h>

248 Programming with GNU Software

int main(int argc, char xargv[])

{
char *buf=NULL;
int count, i;
/* check we have a parameter */
if(argc = 1)
{
printf("Usage: ecount <word>\n");
exit(1);
}
/* Make our own local copy of argv[1] */
strepy(buf, argv[1]);
/* print it out to show we received it correctly
printf("The word is ’%s’\n", buf);
/* Now step through counting letter ’e’s */
for(i=0; i<strlen(buf); ++i)
{
if(buf[i] == ’e’) ++count;
}
return(0) ;
}

14.2.2 Compiler Options

While it is possible to run any executable under a debugger, it is much easier if you use some
compiler options and don’t use others. Usually, to make the executable smaller, much of the
symbolic information (variable names, function names etc.) are thrown away by the compiler
when it has finished with them. This means that the debugger can’t tell what the value it’s
looking at is called, and makes the debugging session very cryptic.

The way around this is to use the ’-g’ compiler flag. This causes the compiler to insert lots of
debugging information into the executable, so the debugger knows everything it needs to know.
Using this flag will make the executable noticeably bigger, but won’t affect the performance too
much - it just appends tables of symbolic information to the executable file.

A lot of people are under the impression that the ’-g’ debugging flag makes a program
run slower. The reason for this is that to use a debugger, you generally need to turn off any
optimisation flags (>-O” or -01-9’). This can make a significant difference to the speed of the
program, as the optimisers on modern compilers are pretty good.

The GNU compiler collection, gce, is unusual in that it allows you to use ’-g’ alongside ’-O’
flags. While this seems like a good thing, there are hidden dangers - the optimiser may have
rearranged the order of some bits of your code, and variables you used may not be changed
when you think they should be, or they may have disappeared altogether!

In general, then, always use *either* -g’ *or* -O’, not both together.

Chapter 14: Debugging with gdb and DDD 249

14.2.3 The First Attempt

To start with, we need to compile our example. Following the above advice about compiler
flags, we will use the following command line to compile it:

‘gcc -g ecountl.c -o ecountl’

This will make the executable ‘ecount1’ from the source ‘ecount1.c’, using the -g flag to turn
on debugging information in the executable and the -o flag to name the output file ‘ecount1’
instead of the default ‘a.out’.

Now we will try to run the program and see what happens.
‘pash$ ecountl’ ‘Usage: ecount <word>’

We forgot to include the word for it to count the number of ’e’s in! So it correctly gave us a
usage message. Let’s try again.

‘bash$ ecountl example’ ‘Usage: ecount <word>’

Oh dear. Even when we include an argument, it still gives us an error message. We could
probably fix this one by inspecting the code, but this chapter is about using the debugger, so
let’s do that...

14.3 An example debugging session using gdb

The program was compiled with the ’-g’ flag set, so you can run it under control of the
debugger. The easiest way to do this is to start the debugger with the name of the program as
an argument. I will be describing ’gdb’, the GNU debugger, so for the example program you
would use ‘gdb ecountl’.

This makes the debugger start up, load the executable and all of it’s source code and variable
names into memory, then wait for your command. At this point the program is not yet running,
but the debugger knows everything it needs to know about it.

bash$ gdb ecountl

GNU gdb 5.0

Copyright 2000 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.|]
Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-slackware-linux'...

(gdb)

‘gdb’ is now ready to run the program.

14.3.1 Attaching to an Already Running Program

It is possible that the program is not started directly from the command line - it might be
run from another program, or be created by an incoming network request.

In this case it may not be possible to run it independently and still observe its behaviour. All
is not lost, however. If you have the process ID of the process you want to debug, then you can
just use ‘gdb executable-name process-id’ and gdb will attach itself to the running process
and stop it wherever it is, ready for your commands.

Alternatively you can start gdb as if you were about to debug the executable normally, with
‘gdb executable-name’, then type ‘attach’ at the command line.

250 Programming with GNU Software

This will give you a menu of all the processes of that name on the system so you can select
the one you want FIXME

Tip: if the process starts up then immediately crashes, then you can add a line such as
‘sleep(30);’ immediately after the start of ‘main()’ which will give you 30 seconds to get the
PID and attach to the process. Remember to take this ‘sleep()’ out again before releasing the
code. DAMHIKT. FIXME

14.3.2 Running the Executable

Since we are now at the gdb prompt with our program loaded, let’s start it. For a program
with no arguments, you can just type ‘run’, but for our program we need a word for it to work
on, so we use ‘run example’. Note that gdb already knows the executable name, so you just
give the ‘run’ command the argument(s).

If you need to run a program many times in a debugging session, then it remembers the
arguments you used last time, and passes them in again unless you specify others. The way
to run it with no arguments again is to use ‘set args’. You can use ‘show args’ to see what
arguments will be used next time you type ‘run’.

So, let’s run it:

(gdb) run example
Starting program: /home/paul/gnuprog2/src/debugging/ecountl example

Program exited with code 01.
(gdb)
First problem - the program just ran right through to the end without stopping and finished.

So we need a way to stop it and take control.

14.3.3 Taking Control of the Running Program - Breakpoints

Breakpoints are special markers the debugger uses to tell it where to stop. When a breakpoint
is set on a particular line of code, then the program is allowed to run at normal speed until it
reaches that line, then it is stopped and the debugger takes over. It puts up the prompt and
allows you to control the program however you like.

Since this program is so short, we will place a breakpoint on the ‘main()’ function, so we
take control as soon as the program starts.

‘gdb’ understands a number of ways to specify where to place a breakpoint, such as a line
number, or a function name, or a certain number of lines forwards or backwards from the current
position. We want to stop on entry to ‘main’ so we’ll use ‘break main’.

(gdb) break main

Breakpoint 1 at 0x8048496: file ecountl.c, line 13.

(gdb) run example

Starting program: /home/paul/gnuprog2/src/debugging/ecountl example

Breakpoint 1, main (argc=2, argv=0xbffff914) at ecountl.c:13
13 char *buf=NULL;
(gdb)

‘gdb’ is now stopped at the beginning of main waiting for us to tell it what to do.Notice that
the breakpoint was actually set at line 13, which is the first line of actual code in the program.
‘gdb’ cannot set a breakpoint on lines where nothing is actually executed (comments, function
declarations etc.). If you ask it to, then it will place it at the next available location.

Chapter 14: Debugging with gdb and DDD 251

14.3.4 One Step at a Time - Step+Next

What we need to do now is run the program a line at a time and see if we can spot the
problem that is causing us to get a ‘Usage:’ message even when the arguments are correct.

Let’s look at the program again. We’ll use the gdb ‘list’ command to examine the code.

(gdb) list

8

9 #include <stdio.h>

10

11 int main(int argc, char *argv([])
12 {

13 char *buf=NULL;

14 int count, i;

15

16 /* check we have a parameter */

17

18 if(argc = 1)

‘gdb’ is sat at line 13, where NULL is assigned to ‘buf’. There are two commands which will

cause us to move one line forward in the file, ‘step’ and ‘next’.

‘step’ will always go to the next line to be executed, following function calls if there are any
on the line. ‘next’ will run until the next line which executes without following function calls.
A large amount of your program can be run between two ‘next’ commands, whereas only one
line of code can run between ‘step’ commands.

Since we have no functions to go into, we’ll generally use ‘step’.
(gdb) next
18 if(argc = 1)
(gdb)
We are now on line 18. Why didn’t it run to line 147 That’s because there are only variable
declarations on that line, so no code was actually executed for that line. All it does is tell the
compiler those variables exist.

14.3.5 Examining Variables - Print

So now we are at an ‘if’ statement. This is the one that is going wrong, so let’s examine it.

The only thing we can check is ‘argc’, so let’s do that.
(gdb) print argc
$1 = 2
(gdb)

This is slightly cryptic, so let’s look a bit deeper at it. The answer is 2, which is what we
expect for arge with one argument given (one element for the name of the program, one for the
argument).

The ‘$1’ is the identifier given this value in ‘gdb’s ’value history’. This works like the history
in a shell, storing the values you have looked at ready for you to refer back to later.

FIXME

For instance, if you ‘print’ed a complicated expression such as ‘myptr+i*sizeof (struct
mystruct)’ to get the result ‘$27 = Oxffffeb2c’, then to see the contents of that structure you
could use ‘print *$27’ instead of repeating the calculation or copying the hex address.

Use ‘show values’ to see the last ten values in the history, or ‘show values n’ to show the
ten values centred on history item number ‘n’.

252 Programming with GNU Software

14.3.6 The First Bug

The value of ‘argc’ was correct, so lets move on a step and see what happens.

(gdb) next

20 printf("Usage: ecount <word>\n");
(gdb) list

15

16 /* check we have a parameter */

17

18 if(argc = 1)

19 {

20 printf("Usage: ecount <word>\n");
21 exit(1);

22 }

23

24 /% Make our own local copy of argv[1] =*/
(gdb) print argc
$2 = 1
(gdb)
Here we see that execution moved into the ‘if ()’ statement, which we didn’t expect based
on the value of ‘argc’. I have listed the code to remind myself of the surrounding structure,
then checked the value of ‘argc’ again.

‘argc’ is now 1, not 2! Looking closer at the code we see that the comparison operator in
the ‘if ()’ statement was incorrectly written as ‘=" instead of ‘==". This assigned 1 to ‘argc’ and
returned 1 as the expression value, so the ‘if’ evaluated as true and execution went into the
‘if’ block.

14.3.7 Try Again...

Let’s correct this and try again. For example purposes, the new code is in ecount2.c.

bash$ gcc -g ecount2.c -o ecount2
bash$ ecount2 example
Segmentation fault (core dumped)

14.3.8 Core Dumps - What Are They?

Now the program has caused a ‘Segmentation fault’ and dumped a ‘core’.

(If your program just said ‘Segmentation fault’ and didn’t say ‘core dumped’ then your
shell has core dumps disabled. Type ‘ulimit —-c 10000000’ to enable them and run ecount?2
again)

What is a ‘Segmentation fault’? How about a ‘core dump’?

Part of the multi-user aspect of UNIX is that programs that attempt to write to memory
that doesn’t belong to them get caught and killed by the operating system. This is a major
factor in the long term stability of UNIX compared to lesser OSes.

A ‘segmentation fault’ happens when a process attempts to write to memory outside of
the address range that the OS has tagged as accessible to it. Since this is a good sign that the
process is out of control, the OS takes immediate and severe action, and kills the process.

To aid in debugging the process, the OS then places a copy of all the memory occupied by the
program and it’s data into a ‘core’ file, which it stores in the programs ‘current directory’.

Chapter 14: Debugging with gdb and DDD 253

Since in our example we haven’t changed that directory, there should now be a file called ‘core’
in the same place as ‘ecount2.c’ and ‘ecount?2’.

bash$ 1s -1

total 320

“rW-—-———- 1 paul users 65536 Sep 5 21:11 core
—TWXI—XIr—X 1 paul users 21934 Sep 5 20:45 ecountl
“IW-r——r—- 1 paul users 732 Aug 30 21:01 ecountl.c
—IWXr-Xr-x 1 paul users 22006 Sep 5 20:45 ecount2
-IW-r--r—- 1 paul users 790 Aug 30 21:02 ecount2.c

Here we see that the file called ‘core’ is present in the working directory, and has been given
permissions for the user *only* to read and write it. This is because the core file will contain
all the information the program knew at the time it crashed, which may include passwords or
personal information you had entered into it.

If your program uses lots of memory, then the core dump will be at least as big as the
executable size plus the total data size, and possibly a lot bigger, as the OS will dump every
‘page’ of memory the program has used in its entirety. This is the reason why some default
configurations disable core dumps - they are only useful if you are in a position to debug the
process, and can be several megabytes in size.

14.3.9 How to Use a Core Dump

To use the core dump, we give it as another argument to ‘gdb’:

bash$ gdb ecount2 core
Core was generated by ‘ecount2 example’.
Program terminated with signal 11, Segmentation fault.
Reading symbols from /1ib/libc.so.6...done.
Loaded symbols for /lib/libc.so.6
Reading symbols from /lib/ld-linux.so.2...done.
Loaded symbols for /lib/ld-linux.so.2
#0 strcpy (dest=0x0, src=0xbffffadd "example")
at ../sysdeps/generic/strcpy.c:40
40 ../sysdeps/generic/strcpy.c: No such file or directory.
(gdb)

Here we see that ‘gdb’ loads the executable as usual, but also loads the core file. It can tell
us what arguments the program was called with, and why the core was dumped (Segmentation
Fault in this case).

‘gdb’ then loads the symbol tables of all the shared libraries that our program had loaded at
the time it crashed, so it has all the information at its fingertips.

Next we have a line starting with ‘#0’ which tells us that the program crashed in routine
‘strcpy ()’ with two arguments, ‘dest=0x0’ and ‘src=0xbffffadd’, which ‘gdb’ helpfully ex-
pands to show that it points to the string ‘example’.

This function is in one of the system libraries, so although ‘gdb’ knows which source file and
line the crash occurred on, it has not got access to the source and complains. Thanks to the
wonders of Open Source, we could get the source code for the appropriate library and tell ‘gdb’
via its ‘directory’ command. Try ‘help directory’ in ‘gdb’ for more details.

Usually, you don’t really need to get into library source, unless you know you are using a
locally produced or bleeding edge library, so we won’t worry about that.

If we look up the manpage for ‘strcpy()’, we find that it takes two parameters, the first a
char * pointing to the space to store the copy, and secondly the string to be copied from.

254 Programming with GNU Software

In the line starting #0 we see that the first parameter is a NULL pointer. Trying to write
to this is what caused the segmentation fault which killed the program.

That’s all well and good, but where in our code is this happening?
14.3.10 Finding Out Where You Are - Backtrace

‘gdb’ keeps track of where you are in your program and how you got there. The line starting
with ‘#0’ is the first entry in the ‘call stack’ which it keeps for all this information. If you
use the command ‘backtrace’ (for which you can use the abbreviation ‘bt’ or the synonym
‘where’), then it will show you the whole call stack.

(gdb) backtrace

#0 strcpy (dest=0x0, src=0xbffffadd "example")
at ../sysdeps/generic/strcpy.c:40

#1 0x80484d5 in main (argc=2, argv=0xbffff964) at ecount2.c:26

#2 0x400382eb in __libc_start_main (main=0x8048490 <main>, argc=2,
ubp_av=0xbffff964, init=0x8048308 <_init>, fini=0x804856c <_fini>,
rtld_fini=0x4000c130 <_dl_fini>, stack_end=0xbffff95c)
at ../sysdeps/generic/libc-start.c:129

(gdb)

Here we see that the call to ‘strcpy()’ came from line 26 of ‘main()’. Above that in
the call stack (although confusingly ‘gdb’ prints the stack out lowest level first...) 1is the
‘__libc_start_main()’ function, which is used by the compiler to do any initialisation etc.
that it needs to before calling our ‘main()’ function. It is hardly ever worth going any higher
than main unless you are debugging compilers themselves...

14.3.11 Moving Around the Call Stack - Up+Down

We now have just enough information to find the line which caused the segmentation fault,
but it would be nice to have ‘gdb’ sat on that line so we can use the source listing and variable
prnting commands to find out why it happened.

‘gdb’ will only allow you to examine variables which are in scope at the place where it is, so
we cannot examine local variables of ‘main()’ from inside ‘strcpy’.

The answer to this is the ‘up’ and ‘down’ commands. As the names suggest, ‘up’ moves one
step up te call stack, to ‘#1 main()’, while ‘down’ moves down one step. We can’t go down from
here as we are already at the lowest level, so let’s try ‘up’

(gdb) up
#1 0x80484d5 in main (argc=2, argv=0xbffff964) at ecount2.c:26
26 strcpy(buf, argv[1i]);

(gdb) list

21 exit(1);

22 }

23

24 /* Make our own local copy of argv[1] =*/

25

26 strcpy(buf, argv([1l]);

27

28 /*x print it out to show we received it correctly
29

30 printf("The word is ’%s’\n", buf);

Chapter 14: Debugging with gdb and DDD 255

Now we are back in the situation we were in before, at line 26 in main.c. We can examine all
the variables and list the source. Note that we can’t use the ‘step’ and ‘next’ commands from

here because we don’t actually have a running program to step through, only an image of the
state it was in when it crashed.

We can now see that the first argument to ‘strcpy’ was the variable ‘buf’; so let’s look at
what has been done to that. In a comlex program, we would use an editor or even a class
browser to do this, but here we know it is defined at the top of main, so let’s have a look there.

(gdb) list main

8

9 #include <stdio.h>

10

11 int main(int argc, char *argv([])
12 {

13 char *buf=NULL;

14 int count, i;

15

16 /* check we have a parameter */
17

(gdb)

So ‘buf’ was initialised to NULL, and no memory was ever allocated to it. I think we have
found our bug. Let’s fix it and try again with ‘ecount3.c’.

14.3.12 The Third Bug

Now we have changed ‘char *buf;’ to ‘char buf [10];’. This will do for our example, but in
real’ code we should really use a safer mechanism such as using ‘malloc’ to allocate the right
amount of space (including the terminating ‘>\0°’, then using the safer ‘strncpy ()’ to copy the
string into it.

Let’s run ‘ecount3’ and see what happens.

bash$ ecount3 example
There are 1074045242 ’e’s in ’example’.

Can you spot what went wrong there? I only count 2 ’e’s in ’example’.

Lets fire up ‘gdb’ again and see where this number comes from.

14.3.13 Fun With Uninitialised Variables

bash$ gdb ecount3

(gdb) b main

Breakpoint 1 at 0x8048496: file ecount3.c, line 18.

(gdb) r example

Starting program: /home/paul/gnuprog2/src/debugging/ecount3 example

Breakpoint 1, main (argc=2, argv=0xbffff914) at ecount3.c:18
18 if(argc == 1)
(gdb) n
26 strcpy(buf, argv[1]);
Now we are on the line that first uses the string we supplied. We could test it here, but ‘gdb’

prints the line we are *about to execute®, not the line just done. So ‘buf’ won’t yet have the
string in it. Let’s move on one more line and see what’s in ‘buf’ then.

256 Programming with GNU Software

(gdb) n
34 for(i=0; i<strlen(buf); ++i)
(gdb) p buf
$1 = "example\000"
So ‘buf’ does have the right string in it - but ‘gdb’ has printed the whole of the char array,
since it knows how long it is. This leads to it showing the ‘>\0’’ on the end, plus some trailing
garbage. Usually we could just ignore that, but for the purposes of the example I'll tidy it up.

(gdb) set print null-stop
(gdb) p buf
$4 = "example"
‘set print null-stop’ tells ‘gdb’ to treat char arrays like C strings, and stop when it reaches
a “’>\0’".
Now let’s get back to this crazy value for ‘count’. We’ll start off by printing it’s value before
we’ve done anything to it.

(gdb) p count
$6 = 1074045240

Aha! Tt starts off with a very high value - we forgot to initialise it in the first place. Rather
than go through the whole edit-recompile-build cycle again, let’s use a powerful feature of ‘gdb’
and edit it in place.

(gdb) set count=0
(gdb) p count
$7 =0
So now it’s initialised as it should be (and will be once we’ve put it right....if we remember!).

We are at the start of the loop that counts ’e’s, so let’s step inside it then have a good look
at what goes on during the loop. Here we *could* use ‘print’ after every step, but if we use
‘display’ instead, then ‘gdb’ will automatically print the values every time it stops.

(gdb) n

36 if(buf[i] == ’e’) ++count;

(gdb) display count

1: count = 0

(gdb) display buf[i]

2: buf[i] = 101 ’e’

Now we can step through the loop and watch the value of ‘count’ change along with the

letter it’s currently examining.

(gdb) n

34 for(i=0; i<strlen(buf); ++i)
2: buf[i] = 101 ’¢’

1: count =1

(gdb) n

36 if(buf[i] == ’e’) ++count;
2: bufl[i] = 120 ’x’

1: count =1

(gdb) n

34 for(i=0; i<strlen(buf); ++i)
2: buf[i] = 120 ’x’

1: count =1

(gdb) n

36 if(buf[i] == ’e’) ++count;
2: buf[i] = 97 ’a’

Chapter 14: Debugging with gdb and DDD 257

1: count =1

(gdb) n

34 for(i=0; i<strlen(buf); ++i)
2: buf[i] = 97 ’a’

1: count =1

(gdb) n

36 if(buf[i] == ’e’) ++count;
2: buf[i] = 109 ’m’

1: count =1

(gdb) n

34 for(i=0; i<strlen(buf); ++i)
2: buf[i] = 109 ’'m’

1: count = 1

(gdb) n

36 if(buf[i] == ’e’) ++count;
2: buf[i] = 112 ’p’

1: count =1

(gdb) n

34 for(i=0; i<strlen(buf); ++i)
2: buf[i] = 112 ’p’

1: count =1

(gdb) n

36 if(buf[i] == ’e’) ++count;
2: buf[i] = 108 1’

1: count =1

(gdb) n

34 for(i=0; i<strlen(buf); ++i)
2: buf[i] = 108 ’1°

1: count =1

(gdb) n

36 if(buf[i] == ’e’) ++count;
2: buf[i] = 101 ’e’

1: count =1

(gdb) n

34 for(i=0; i<strlen(buf); ++i)
2: buf[i] = 101 ’¢e’

1: count = 2

(gdb) n

39 printf("There are %d ’e’s in ’%s’.\n", count, buf);
2: buf[i] = 0 ’\000’

1: count = 2

So now we’ve stepped through the loop and found the two ’e’s correctly. The two ‘display’
expressions are still active, so we’d better stop them.

(gdb) undisplay

Delete all auto-display expressions? (y or n) y
(gdb) n

There are 2 ’e’s in ’example’.

All looks good so far, once we’ve made the change to the initialisation of ‘count’.

258 Programming with GNU Software

14.3.14 Try Again - Again...

Now we have example program ‘ecount4.c’ which looks like this at the top of ‘main()’

11 int main(int argc, char *argv[])
12 {

13 char buf[10];

14 int count=0, i;

We compile it with ‘gcc —~g ecount4.c —o ecount4’ and get the following result:

bash$ ecount4 example
There are 2 ’e’s in ’example’.

14.3.15 Success! ...or is it?

So we can be proud of ourselves now - we have a working program at last!
Hold on a moment, though - let’s look back through the code.

24 /* Make our own local copy of argv[1] =*/

25

26 strcpy(buf, argv[i]);

27

28 /* print it out to show we received it correctly
29

30 printf("The word is ’%s’\n", buf);

31

32 /* Now step through counting letter ’e’s */
33

34 for(i=0; i<strlen(buf); ++i)

What happened to line 307 We should have seen the word printed out, but there was no sign
of it.

Looks like we have yet another bug to find. (I'm glad I made this program up to demonstrate
bug finding - I'd hate to make this many errors in a real program. Although I have had days
like that...)

14.3.16 The Fourth Bug

Let’s fire up ‘gdb’ and see what’s going on.

bash$ gdb ecount4d

(gdb) list 30

25

26 strcpy(buf, argv([1l]);

27

28 /% print it out to show we received it correctly
29

30 printf("The word is ’%s’\n", buf);

31

32 /* Now step through counting letter ’e’s */
33

34 for(i=0; i<strlen(buf); ++i)

(gdb) b 30

Chapter 14: Debugging with gdb and DDD 259

We'’ve started ‘gdb’, looked at the lines around line 30 and seen nothing obviously wrong.
Notice we have given the list command a line number to work with - it will display lines centred
on the supplied line number.

Then we’ve set a breakpoint on line 30, using ‘b 30’. Many ‘gdb’ commands can be abbrevi-
ated to their shortest unique abbreviation.

The next step is to run the program. It should stop on the line which seems not to be being
executed.

Breakpoint 1 at 0x80484d8: file ecount4.c, line 30.

(gdb) run example
Starting program: /home/paul/gnuprog2/src/debugging/ecount4 example

Breakpoint 1, main (argc=2, argv=0xbffff914) at ecount4.c:34
34 for(i=0; i<strlen(buf); ++i)
Well it *should* have stopped on line 30, but it has actually stopped at line 34, at the start

of the counting loop. Let’s stop the program in mid-execution and put a breakpoint earlier, so
we can see what happens.

(gdb) kill

Kill the program being debugged? (y or n) y

(gdb) b 26

Breakpoint 2 at 0x80484cO: file ecount4.c, line 26.
(gdb) run

Starting program: /home/paul/gnuprog2/src/debugging/ecount4 example

Breakpoint 2, main (argc=2, argv=0xbffff914) at ecount4.c:26
26 strcpy(buf, argv([1l]);
(gdb) n

Breakpoint 1, main (argc=2, argv=0xbffff914) at ecount4.c:34
34 for(i=0; i<strlen(buf); ++i)

‘kill’ will stop the program being run, taking it back to the state it was in when ‘gdb’ first
started up. All breakpoints, displays etc. will remain set up, so this is useful for cases like this
where we want to keep going over the same part of a program without exiting and re-entering
‘gdb’ and setting up all the breakpoints again.

When we run it again, we see that it definitely goes from line 26 (‘strcpy()’) to line 34
(‘for() loop’). There is no doubt in ‘gdb’’s mind that line 30 is just not there. The only way
this could happen is if it was removed by the preprocessor, either by a macro substitution or a
comment.

Closer examination reveals that the comment on line 28 is not closed - so the preprocessor
will have just carried on reading and throwing lines of code away until it came to a comment
closing sequence - ‘>*/°’. This is on line 32, which explains why line 30 was being missed out.

14.3.17 One More Time...

When we recompile as ‘ecount5’ we get this result:

bash$ ecount5 example
The word is ’example’
There are 2 ’e’s in ’example’.

Hurray! Finally it has worked correctly.

There are still a few things in the program which *will* catch us out later, though.

260 Programming with GNU Software

For instance, when we made buf into a local array defined on the stack, we only made it ten
characters long. What will happen if someone enters ‘Supercalifragilisticexpialidocious’
as a word? It will scribble all over the stack and the results will be completely undefined - it may
work, it may crash, or most dangerous of all it may appear to work but actually have corrupted
some other variables or the return address of the function, so it will crash when it returns, much
later on...

14.3.18 So What Have We Learned?

This is the end of the first section of this chapter. We have gone through a simple program
with lots of bugs, and seen how to use a debugger to investigate the problem.

We can run the debugger with ‘gdb programname’, then run it with parameters using ‘run
paraml param2’. Breakpoints are inserted with ‘break main’ or ‘break 34’ to force the program
to stop at the start of ‘main()’ or at line 34 respectively.

Once the program has stopped and is under our control, we made it go one step at a time
using ‘step’ or ‘next’. At each step we could examine the value of local or global variables
which were in scope at that point using ‘print’.

We found out what a ‘core dump’ actually is, and how to examine it to see what caused the
program to crash, and where, using ‘gdb programname core’. ‘backtrace’ and ‘up’ and ‘down’
are used to move around the stack frames to see what led us to where the program crashed.

We saw how ‘gdb’ has the power to alter variables while the program is running, to try out
potential solutions without having to recompile the whole thing.

Now you know enough to carry out most of the day-to-day debugging most people need to
do.

There are two parts to the rest of the chapter - the next one will look at GUI front ends which
may make your debugging task easier, then the final one looks at more complicated debugging
scenarios - debugging multithreaded code, overloaded C++ functions, making it stop only when
it’s just about to go wrong, that sort of thing.

14.4 Debugging the Pretty Way - GUI Front ends

14.4.1 Why a GUI?

14.4.2 Whats the choice?

14.4.3 DDD - Some History

14.4.4 Revisiting the same example

(DDD - the easy way (now we’ve seen the ‘hard’ way). Give a brief description, use lots of
screenshots since it’s main advantage is the GUI.)

(Run through doing the same example as with gdb, but in a friendly’ way. And quicker.)

(Show off the extra abilities you have with DDD: point and click breakpoints, Dynamic Data
Display, array graphing using gnuplot etc.)

Chapter 14: Debugging with gdb and DDD 261

14.5 More complicated debugging with ‘gdb’

(Complicated programs - multithreaded, multiple processes)

(Examining variables and memory in detail - looking at the stack, registers, symbol table
info - also dumping data in hex, arbitrary formatting, print options, machine code)

Making it go wrong - sending signals, jumping to the faulty code, forcing variables)
Stopping in the right place - conditional breakpoints, watchpoints, catchpoints)

Better use of the command line - readline commands, macros, completion)

Using ‘gdb’ internal variables to help debugging)

(
(
(
(finding the source code, floating point hardware support, type/range checking)
(
(Other language support - C++ specific, Java, others)

(

The future of debugging (e.g. The next major release of DDD understands STL containers))

14.6 Other debugging aids

(Mention some of the other free debugging tools: dmalloc, mprof, strace, fuser mpatrol etc.)

14.6.1 Memory checkers

14.6.2 Debugging uncooperative programs

(strace)

262 Programming with GNU Software

Chapter 15: Profiling and Optimising Your Code 263

15 Profiling and Optimising Your Code

* CHAPTER 14: Profiling and Optimising Your Code * ¢. 15kwords by Paul Scott

WTF is profiling? Explains what it is and why you’d want to do it. (Case study: I had
a program that logged “2M events/day taking lots of CPU. Profiling showed mktime() using
96.4% of the time as it was called for each one. I changed it to call mktime() once for the first
report of each day and calculate the offset; the program now only takes 4% of original load.)

How to profile your program - compiler options. Also go into profileable system libraries if
needed.

What to do when running a program to get the most useful information from the profiling
** Generating the profile by running gprof

Understanding the output - nested call graphs, ‘spontaneous’ functions, what the percentage
figure means as opposed to system+user or wall time.

Modifying your code to get better profiling information - e.g. splitting up large, slow functions
into a chain of smaller ones to zoom in on the hotspots (only for use while profiling).

When to try and fix it and when not to. Also when to stop.
** Optimising - what it actually means. Go into the O(n) notation to give a rough idea.

Talk about the order in which to do things: 1. Get it working 2. Get it working properly
i-) 3. Figure out how much effort is worthwhile: will it be run once a year, or twenty times
every day? 4. Use profiling to find out what takes the time. Is it CPU-bound? Memory? 1/0?
can it be fixed in hardware realistically or is it going to be run on a wide variety of systems?
5. Check for better algorithms for the task. quicksort isn’t always a good choice. Give lots of
examples with good and bad points 6. Check you have a good implementation of your chosen
algorithm. they vary wildly. Even when you did it yourself... 7. NOW you can start optimising
the code.look at many things, including: temporaries, loops, inlining, lookup tables, caching, ...
Remember to go into the things that compilers do and don’t do for you, and why you might have
problems when you turn on the 'more magic’ levels of optimising on bleeding edge compilers...

264 Programming with GNU Software

Chapter 16: Source Code Browsing 265

16 Source Code Browsing

It is a sad but true fact that we programmers have to pick up where others have left off. The
main trouble is that the "other guy" did the design by seat-of-the-pants typing and pasting,
and he forgot to go back and insert the comments he always intended to do. Now what?

"Read the source, Luke," works, but it is one of the lesser fun things in a programmer’s life.
To help you through this process are the standard command line tools, ‘find’ and ‘grep’. Those
two utilities and a little study in the black art of regex will stand you in good stead. For the
mortals, there are a couple of powerful Ul tools that facilitate this process a great deal. They
are:

I mention them both because cscope has been around for over a decade and is simpler to
configure and get started with. On the other hand, Source Navigator has a very nice GUI
front end to a tool similar to cscope and has numerous additional features. It is a full-fledged
development environment that integrates many of the tools we discuss in this book. So, really,
the choice is between immediate (‘find’ and ‘grep’), short (‘cscope’) and long term convenience.

This chapter will give you a brief introduction to these tools. Enough of an introduction to
make these tools useful to you.

16.1 cscope, a text base navigator

Cscope will help you understand the program by assisting you in finding the usage and
definitions of variables and procedures. You supply it with the list of files it needs to search. It
then provides search capabilities with a variety of simple methods.

Cscope is curses based (text screen). An information database is generated for faster searches.
The fuzzy parser supports C, but is flexible enough to be useful for C++ and Java. It supports
a command line mode for inclusion in scripts or as a backend to a GUI or other frontend.

Cscope provides methods of searching for:
e all references to a symbol
e function/procedure invocations
e global symbol definitions
e function/procedure definitions (code)
e a simple text string
e regular expression pattern
e afile
e files that include another file
Once found, you are shown a scrollable menu of places where the item in question was found.
You select the the item and your selected editor is started on the line where the selected text

was found. When configured to open editor sessions in independent windows, looking through
all the places where a variable gets used becomes a humanly manageable task.

16.1.1 special editor features

Several editors have specially written modes for cscope. Among these are: XEmacs, emacs,
vim and nvi. Xemacs in particular has some significant features layered on top of the standard
cscope features:

e An automatic, hierarchical, search path mechanism exists, for locating cscope index files.
If a database isn’t found in the current directory, the interface will automatically search
parent directories for index files.

266 Programming with GNU Software

e In addition to your basic (normal) cscope setup, the XEmacs interface is also designed
to support LARGE projects. Files which are indexed can be spread out over multiple
directories, and these directories do NOT have to share a common root directory. Also,
cscope index files can be shared amongst users. This is very useful for group software
development.

e Multiple cscope index files can be searched. Unlike plain cscope, you're not limited to
searching only one database.

e When searching multiple database (index) files, results can be returned from either the first
database that contains matches, or all databases that contain matches. This is very useful
when you have a local (partial) source tree, yet want to be able to search both your local
tree and your project’s full source tree.

e Cscope is integrated into the C, C++, and dired modes. Pull-down and pop-up menus exist,
as well as normal key bindings.

For those of you who use emacs, there are even special cscope emacs modes that make it
easier still.

16.1.2 acquiring and installing

CSCOPE comes with some Linux distributions and it comes with the standard SVr4 develop-
ment tools. If you do not have it, it can be obtained from its home development site on Source
Forge:

http://cscope.sourceforge.net

It has been fully AUTOCONF-ed, so once you have downloaded and unrolled the tarball, it
should take little more than:

sh path/to/configure && \
make && \

make check && \

make install && \

@xref{wherever}
16.1.3 configuring an editor

CSCOPE displays a menu of search commands. You fill in the search field for one of these
commands, and then CSCOPE displays a menu of files and lines that match the criteria. When
you pick from this latter menu, CSCOPE tries to fire up your editor or viewer of choice to display
the text at the indicated line. It tries to use an environment variable to determine which to use.
In order of preference:

CSCOPE_EDITOR The preferred choice

VIEWER read-only access implied

EDITOR common environment variable for showing preference
vi the viewer used if none are selected as above

A special choice for CSCOPE is actually a good idea. It is very convenient to be able to access
the cSCOPE menu while viewing previous results in alternate windows. If you use emacs, this can
be accomplished by starting the server process in your main emacs editing session and setting
your editor to EMACSCLIENT. You can accomplish a similar functionality with vI by writing a
small wrapper script and specifying it as your editor:

#! /bin/sh
xterm -e /bin/vi $ &

Chapter 16: Source Code Browsing 267

Now, your cscope session will remain active concurrently with your viewer sessions. Be sure
to put this shell script in a directory named in the $PATH environment variable and be sure
also to make the script executable by typing: ‘chmod a+x script-name’.

16.1.4 simple usage

This will be a very simple example.
e Change directory into your example source directory.

e ‘cscope ‘find . -name ’*.[cChHly]’‘’
This will find all the C, C++, lex and yacc sources in the current directory and below, tell
CSCOPE to index them and then present its search menu.

You should now be able to locate and view the definitions and usages of the various symbols
in your program(s).

16.2 Source Navigator, a GUI browser

268 Programming with GNU Software

Chapter 17: State of the World Address 269

17 State of the World Address

270 Programming with GNU Software

GNU Free Documentation License 271

GNU Free Documentation License

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other written document “free”
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially. Secondarily, this License
preserves for the author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction or
reference.

APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as “you”.

A “Modified Version” of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document to
the Document’s overall subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (For example, if the Document is in part a textbook
of mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, whose contents can be viewed
and edited directly and straightforwardly with generic text editors or (for images composed
of pixels) generic paint programs or (for drawings) some widely available drawing editor, and

272 Programming with GNU Software

that is suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup has been designed to thwart or discourage subsequent modification by readers is
not Transparent. A copy that is not “Transparent" is called "Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML designed for human modification. Opaque formats
include PostScript, PDF, proprietary formats that can be read and edited only by proprietary
word processors, SGML or XML for which the DTD and/or processing tools are not generally
available, and the machine-generated HTML produced by some word processors for output
purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, “Title Page” means the text near
the most prominent appearance of the work’s title, preceding the beginning of the body of the
text.

VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or non-
commercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use technical measures to obstruct
or control the reading or further copying of the copies you make or distribute. However, you
may accept compensation in exchange for copies. If you distribute a large enough number of
copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Document’s
license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and
legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher of these
copies. The front cover must present the full title with all words of the title equally prominent
and visible. You may add other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and satisfy these conditions,
can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or
state in or with each Opaque copy a publicly-accessible computer-network location containing a
complete Transparent copy of the Document, free of added material, which the general network-
using public has access to download anonymously at no charge using public-standard network
protocols. If you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus

GNU Free Documentation License 273

accessible at the stated location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship
of the modifications in the Modified Version, together with at least five of the principal
authors of the Document (all of its principal authors, if it has less than five).

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

F. Include, immediately after the copyright notices, a license notice giving the public permis-
sion to use the Modified Version under the terms of this License, in the form shown in the
Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section entitled “History”, and its title, and add to it an item stating at least
the title, year, new authors, and publisher of the Modified Version as given on the Title
Page. If there is no section entitled “History” in the Document, create one stating the title,
year, authors, and publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Trans-
parent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to gives permission.

K. In any section entitled “Acknowledgements" or "Dedications”, preserve the section’s title,
and preserve in the section all the substance and tone of each of the contributor acknowl-
edgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section entitled “Endorsements”. Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title with any Invariant
Section.

274 Programming with GNU Software

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version’s license notice. These titles must be distinct from
any other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review or
that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to
25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version.
Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are acting
on behalf of, you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and list
them all as Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical In-
variant Sections may be replaced with a single copy. If there are multiple Invariant Sections
with the same name but different contents, make the title of each such section unique by adding
at the end of it, in parentheses, the name of the original author or publisher of that section if
known, or else a unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled “History” in the various original
documents, forming one section entitled “History"; likewise combine any sections entitled "Ac-
knowledgements”, and any sections entitled “Dedications”. You must delete all sections entitled
“Endorsements.”

COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document, and
follow this License in all other respects regarding verbatim copying of that document.

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent doc-
uments or works, in or on a volume of a storage or distribution medium, does not as a whole

GNU Free Documentation License 275

count as a Modified Version of the Document, provided no compilation copyright is claimed for
the compilation. Such a compilation is called an “aggregate”, and this License does not apply
to the other self-contained works thus compiled with the Document, on account of their being
thus compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one quarter of the entire aggregate, the Document’s Cover Texts
may be placed on covers that surround only the Document within the aggregate. Otherwise
they must appear on covers around the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or
all Invariant Sections in addition to the original versions of these Invariant Sections. You may
include a translation of this License provided that you also include the original English version of
this License. In case of a disagreement between the translation and the original English version
of this License, the original English version will prevail.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided for under this License. Any other attempt to copy, modify, sublicense or distribute the
Document is void, and will automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documen-
tation License from time to time. Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies to it,
you have the option of following the terms and conditions either of that specified version or of
any later version that has been published (not as a draft) by the Free Software Foundation. If
the Document does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1

or any later version published by the Free Software Foundation;

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

276 Programming with GNU Software

A copy of the license is included in the section entitled "GNU
Free Documentation License".

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying which
ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts” instead of
“Front-Cover Texts being LIST”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

Example Index

Example Index

This is an alphabetical list of all of the code examples from this book.

A

A Condition Driven FSR Combination.......... 151
A Fast Deterministic GOTO and Identifier
Recognizer 143
A Fast GOTO Recognizer...................... 142
A Fast Identifier Recognizer 142
A Fast Keyword Tree-like Recognizer 129
A Fast Nondeterministic GOTO and Identifier
Recognizer 143
A Grammar for Arithmetics................... 160
A Make rule for compiling main.c............ 115
A Makefile with a variable reference loop... 111
A phony targetL 118
A sample dependency rule.................... 107
A Simple Balanced Expression Grammar 157
A Simple ‘package.m4’ 226
A simplistic ‘Makefile’..................... 106
A Stack Recognizer for Balanced Expressions
... 158
A suffix rule for compiling C source files.. 115
A typical all target Makefile fragment...... 108
Address.cc...........iiiiii 35
Address.hh.......... 34
AddressRepository.hh........................ 35
Ambiguous comment endings are bad........... 112
An LR(1) Parsing of ‘number - number’ 161
An Unambiguous Grammar for ‘-’ Arithmetics
... 160
An Unambiguous Grammar for Arithmetics..... 165
‘arith-1.y’ -- A Shift/Reduce Conflict 163
‘arith-3.y’ -- Using ‘/left’ to Solve
Shift/Reduce Conflicts.................. 166
‘arith-4.y’ -- An Ambiguous Grammar for ‘*’ vs.
b 166
‘arith-5.y’ -- Using Precedence to Solve
Shift/Reduce Conflicts.................. 167
‘arith-6.y’ -- Failing to Use Precedence ... 168
‘atoms.gperf’ -- Converting Numbers in American
English into Integers 137
Automatic file dependencies with Make 121
Automatic variable setting demonstration... 117
B
Basic header installation Makefile excerpt
... 112
Basic structure of GCC....................... 76
‘brackens-1.y’ -- Nested Parentheses Checker
... 170
‘brackens-2.y’ -- Nested Parentheses Checker
... 170
C
‘calc.y’ -- A Simple Integer Calculator..... 175
Changing variable values in a Makefile...... 110
Checking whether a file exists -- alloca version
.. 11

277
Checking whether a file exists -- malloc
Version.............iiiiii i 10
Compilation in phases withmake............. 107
Compiling some files with different options
... 116

Demonstrating use of timezones and microsecond

ACCUTACY « + ettt e e e 22
dequel.CC ...t 43
dnl Run on an Installedmé4................... 229
‘dnl.at’ (i) -- A Broken Autotest Source

Exercisingdnl........................... 227
‘dnl.at’ (ii) -- An Autotest Source Exercising

define......... i 228

E

Excerpt of autoheader Looking for autoconf

... 231
Extending a Make variable assignment over
several lines............................ 109
Extending a Satellite Antenna in Fortran.... 209
F
Format of a dependency rule................. 106
Format of a double suffixrule.............. 115
Format of a Make conditional directive...... 118
Format of a Make include directive.......... 120
Format of Make variable assignment.......... 109
Format of Make variable expansion........... 109
Front and back ends of a compiler 7
functionl.cc......... 53
function2.cc....... 54
function3.cc....... 56
functiond.cc......... ... 57
G
genericl.cc - printing out elements using
for_each............ ... 59
BENericC2.CC ...t 60
Beneric3.CC 60
BeNericd.CC ... 61
generich.cC........ .. 62
genericB.cc........... . 63
BENeric7.CC 64
GNU C library extensions to strftime format
specifiers.......... 21
GNU M4’s ‘configure.ac’ -- (i) License...... 194
GNU M4’s ‘configure.ac’ -- (ii) Requirements
... 194
GNU M4’s ‘configure.ac’ -- (iii) Initialization
of the GNU Build System.................. 195
GNU M4’s ‘configure.ac’ -- (iv) Fine version
information 195

GNU M4’s ‘testsuite.at’ 237

278

‘goid.1l’ -- A GOTO and Identifier Flex

Recognizer 145
H
‘hello.c’ -- an old favourite............... 104
I
‘ifelse-1.y’ -- Ambiguous grammar for if/else
InC..oi 165
‘ifelse-2.y’ -- Unambiguous Grammar for if/else
inC..o 166
Ignoring errors from shell commands in Make
TUleS ... 113
L
listl.CCoovni 45
list2.cCovnn 46
M
‘m4.in’ -- A Profiling Wrapper.............. 233
‘m4.in’ -- A Wrapper around a non installed m4
... 232
Make variables are not expanded until they are
USEA .ot 111
mapl.cC.......... 50
‘modules.at’ -- An Autotest Source Checking M4
Modules Support 230
‘mpevall.at’ -- Exercising an Optional Feature
Using ‘atlocal’ 234
‘mpeval2.at’ -- Exercising an Optional Feature
at Runtime............ 235
multisetl.cc............ 49

N

Non Equivalent Parse Trees for ‘number + number

* number’ L 160
Not Extending a Satellite Antenna in Fortran
... 210
‘numeral.c’ -- M4 Module Wrapping ‘atoms.gperf’
... 138
P
Part of a Makefile dependency tree.......... 108
Precedence of Make variable declarations... 124
Production build values for compilation flags
... 123

Reading a string into memory -- malloc version
.. 12

Reading a string into memory -- obstack version
.. 13

‘rude-1.gperf’ -- Recognizing Rude Words With
Gperf 132

Programming with GNU Software

‘rude-3.1’ -- Recognizing Rude Words With Flex

... 147
S
Setl.CC . 47
SEt2.CC .. 48
Setting a simple signal handler.............. 17
Simple use of the strftime call. 19
Simple use of the time call. 19
Simplified component relationships with glibc
... 8
Simplified system architecture component
relationships 8
State 4 contains 1 shift/reduce conflict ... 164
std-optlRun............ 221
‘std-optl.at’ -- An Autotest Source......... 220
std-opt2Run 224
‘std-opt2.at’ -- An Autotest Source 224
std-opt3Run............l 226
‘std-opt3.at’ -- An Autotest Source 225
Step by Step Analysis of ‘((number))’ .. 159
strftime format specifiers................... 21
stringl.cc: examples of creating strings.... 65
string2.cc: finding things within a string .. 66
Structure of a Bison Input File............. 168
Structure of a Flex Input File.............. 146
Structure of a Gperf Input File............. 131
Suffix rule to compile C source files....... 117
Suppressing echoing of shell commands in Make
TUleS .. .ot 114
T
Testing Interactive Programs 236
‘tests/atlocal.in’ -- User Test Variables.. 234
The complete Makefile with suffix rule...... 116
Top level Makefile fragment for recursing
subdirectories 122
U
Useof errno........... 24
Use of variables in a Makefile.............. 110
Using fnmatch................................ 27
Using the kill systemcall. 16
Using the raise library call................. 15
\Va
vectorl.cc.........iiiiii 37
VECELOT2.CC .ot 38
VeCtor3.CC. .ot 40
VECTOT4.CC ittt 41
Y
‘yleval.h’ (i) -- Handling Locations 152
‘yleval.y’ -- Builtin yleval (continued) ... 183
‘ylscan.l’ -- Scanning Arithmetics......... 153

Macro Index

Macro Index

279

This is an alphabetical list of the M4, Md4sugar, M4sh, Autoconf and Autotest macros. To

9

make the list easier to use, the macros are listed without their preceding ‘m4_’, ‘AS_’, ‘AC_’ or

‘AT .

CHECK, AT_CHECK.............oiiiiia.. 222
CLEANUP, AT_CLEANUP 220
CONFIG_AUX_DIR, AC_CONFIG_AUX_DIR.......... 194
CONFIG_FILES, AC_CONFIG_FILES............... 191
CONFIG_HEADERS, AC_CONFIG_HEADERS 191
CONFIG_HEADERS, AM_CONFIG_HEADERS 194
CONFIG_SRCDIR, AC_CONFIG_SRCDIR 194
CONFIG_TESTDIR, AC_CONFIG_TESTDIR.......... 240
DATA, AT DATA. 227
DEFINE, AC_DEFINE............................ 195
DEFINE_UNQUOTED, AC_DEFINE_UNQUOTED........ 195
INIT, AC_INIT..... ...t 190

INIT, AT_INIT........coti e 219

INIT_AUTOMAKE, AM_INIT_AUTOMAKE 194
MSG_CHECKING, AC_MSG_CHECKING............... 196
MSG_RESULT, AC_MSG_RESULT 196
OUTPUT, AC_OUTPUT............ ..., 191
PREREQ, AC_PREREQ............................ 194
SETUP, AT_SETUP......... i, 220
SUBST, AC_SUBST..........coiiiiiii 196

280 Programming with GNU Software

Index

Index

%o

fdefines........ 172
%LoCationS oviii 175
fname-prefix........ i 176
TPLTEC o oottt et 179
PUTE—PATSET . ..\ o ettt et 176
BEOREI .. oottt e 171
YD « e ettt 172
UNIOM . ..ot 171

Ambiguous Grammarcooi.. .. 160
Associativity 160
autoheader............... L. 192
Automaton 142
AUTOTEST_PATHo i 218

B

Backus......... .. 159
Backus-Naur Form 159
Binary search..........o L. 127
Bison — The YACC-compatible Parser Generator
... 186
BNF Lottt e e et 159
bsearch...........oiiiiiiniiiiii 127

C

Collide . ..o 134
Collision 134
Configuration file 191
Configuration header 191
Context Free Grammar........................ 160

errno variable........... 23
Error Recovery 185
error Token............... 185
(30 o) =P 22
exit statuscode 22

fake 212
Finite State Generator 142
Finite State Machine 142
Finite State Recognizer........................ 142
Finite State Transducer 142

G

GM P et e 233
Grammar.ottt ettt 159

281
H
Hash function............. 131
hello world, hello.c............................ 104
K
Key,hash 131
Keyword o i 127
kill system call......... 15
L
LALR(L) oo 161
Learning the Bash Shell 125
Left Associativity ... 160
Lex & Yacc. . ..oovoooii 186
Lexeme 141
Log, Test ... 212
Lookahead......... 161
LR(O) e ot 159
LR(L) e 161
M
Makeand NIS....... 103
Make command prefix, ‘=> 113
Make command prefix, ‘@ 113
Make command, discarding shell errors 113
Make commands to refresh a file 109
Make comment syntax......................... 112
Make conditional syntax....................... 118
Make dependency 104
Make dependency rule......................... 106
Make internal rule database.................... 104
Make keeps filesup todate 104
Make refreshing the target..................... 104
Make rule commands.......................... 106
Make suppressing shell command echoing 113
Make target ... 104
Make uses file time stamps..................... 105
Make using objects in other directories 105
Make variable circular references 111
Make variable continuation ‘\” 109
Make variable reference loops 111
Make variable reference nesting 110
Make variable syntax.......................... 109
Make variables factor command options......... 110
Make variables in default rules................. 110
Make variables on the command line............ 123
Make variables, overriding 123
Make, $< ... oo 117
Make, $@ 117
Make, ‘=e’ option 124
Make, ‘-f’ option 123
Make, ‘-’ option ..., 123
Make, ‘-k’ option 123
Make, ‘“-n’ option 123
Make, .PHONYoiiitniiineanennn.. 118
Make, .SUFFIXESoouiieaeeaiannnn. 115

282
Make, .SUFFIXES emptying 115
Make, alternate ‘Makefile’ 123
Make, automatic variable...................... 117
Make, automating file dependency tracking 121
Make, clean target 117
Make, default suffixes 115
Make, dry run ...t 123
Make, file suffixes 104
Make, ifdef directive 119
Make, ifeq directive 119
Make, ifndef directive 119
Make, ifneq directive 119
Make, include search path 123
Make, include syntax....................oo... 120
Make, keep going 123
Make, missing separator 106
Make, phony rules 118
Make, recompiling everything 107
Make, recompiling out of date objects 107
Make, recursive variable error.................. 111
Make, refreshing include files.................. 120
Make, shell commands spanning multiple lines... 112
Make, spaces in include file names............. 120
Make, special target...................., 114
Make, suffix rule dependencies 115
Make, suffix rule priority 116
Make, suffix rules 115
makedepend 120
Makefile as a dependency tree.................. 108
Makefile default target 108
Makefile indentation. 106
Makefile semantic building blocks 106
Makefile whitespace 106
Makefiles, using shell variables 112
Managing Projects with make.................. 125
Mid-rule Action.......... ..., 178
Minimal hash function......................... 131
Modern Compiler Implementation in C, Java, ML
... 186
N
Naur.....oooo 159
Nonterminal Symbol 159
O
Output file 191
Output Fileooo i, 190
Output header................................ 191
Output Variable 190
P
Parser...... 162
Parser Control Structure....................... 176
Parsing Techniques — A Practical Guide 186
Perfect hash function.......................... 131

Programming with GNU Software

PEITOT . ottt e ettt e et e 24
principle of least surprise 115
programmo-morphologically order 214
Pure Parser........... 176
Pushdown Automaton......................... 157
Q

QSOTE oottt 128

raise library call.......... 15
recursive Make................ 122
Reducingarule............ 158
regression testo il 214
Right Associativity................ 160
Rule ... 159
Rule, Lex. ... 145
Rule, Yacc. ... i 162

S

SCANNET . .\ttt 145
scripted compilation, historical 105
Shifting a token................... 157
sigaction library call.......... 16
signals, raise call oL 15
skeleton ... 231
State. ..o 142

Terminal Symbol............. 159
Test Extraction............................... 215
Test Generation.................oouiieuenn... 215
Test Log .. ov oo 212
The Bourne Shell Quick Reference Guide 125
The GNU Make Manual 125
Bl .o e 17
Token 141
torture test 213
Transition 142

U

usero-impatiencely order....................... 214

Y

YYABORTo 179
yycontrol...... 176
YY1loC .o 176
yyltype ..o 175

FYSEYPe . oo 172

Fixme Index

Fixme Index

A

alloca.curio 10

Ariane: Heck. ESA seems to have withdrawn the
report from the Web, what reference shall I put
now? There remains the French version of the

CNES. .. 210
Can’t find the reference to this adventure. 209
cite Flex documentation 147

D

Didier says this footnote should be removed. Once

Bison and Flex documented, ref to there. ... 231
E
Embedding an Autotest Test Suite......... 234, 240
F
fig. ref. todo...........oo 36
Flexref ... 155
|
I have the french one 1) 186
I should first ask Tom if he agrees with the following
paragraph. 215
Inside Test Groups............. 233

ISTR some pecularity with and character sets ... 26

283

P

Pollux would like to see some actual output of Gperf
here, what do you people think? It’s roughly 100

lines, but I don’t need them all............. 132
R
el . 151
Ref .o 190
ref Autoconf............ 140
Ref Bison, ylparse.ya. ... 151
reftoBison............... 141
refto GCC ... 131
Ref to Libtool? 229

S

Should I ref this?
http://www.xprogramming.com/testfram.htm

... 214
T
Test Groups 218
url. .o 186
xref chapter 2............... 122
xref the preprocessor section of the GCC chapter
... 118

284 Programming with GNU Software

vil

Short Contents

FOreword « v v v oo o v oo s oo seeesoeessoessssoessssossssosscsssosss 1
1 Introduction « oo v v v v v v v vt e oo oeeesoooeeeeessssssssssssssees 3
2 The GNU CLibrary e oo e e e e oo e oo eeeeseeseseessseessssesssnnss 7
3 libstdc++ and the Standard Template Librarycovveeeeeeee... 29
4 The GNU Compiler Collection « v v v oo oo oo oo oo oeeeeeeeessossssssss 75
5 Automatic Compilation with Make « v v v v v v v v v v e e v e v e v e v veeeennnns 103
6 Scanning with Gperfand Flex oo v i i ettt it i iiiiiiiiiiennn. 127
A 2) 157
8 Writing M4 ScriptS o v v v oo v v v e et ettt i et senneeeeessssssnnnnas 187
9 Source Code Configuration with Autoconfccvenn.. 189
10 Managing Compilation with Automakecvvv e 203
11 Building Libraries with Libtool . . . v o o v v v v it e it i i i e e 205
12 Software Testing with Autotest s v v v v v v v et ittt i ittt iieennns 207
13 Source Code Management with CVSottt iiinnnnnn. 243
14 Debugging with gdband DDDttt nnnnn. 247
15 Profiling and Optimising Your Code . . o oo v v v v i v eeeeeeeennns 263
16 Source Code BroWSINg o o o o o o o e oo oo oo v oooseeeenoosssssssssesns 265
17 State of the World Address .« o o v v v e e i i e e ittt it iiiieeennnns 269
GNU Free Documentation License . « o v v v v v v v v e ettt ieevvvoeeeeeosesss 271
Example Index ¢ o o oo v oot oo oottt e ie et eeeeeeessseeoonnnnnnns 277
Macro INAeX o o v v v v oo oo oo oo oooeeeeessssssssssssseessssssssss 279
INdeX oo v v v oo it e e s st eeoeesssoesssoesssoessssssssssssssses 281

viii Programming with GNU Software

