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Two-Sample Instrumental Variable Analyses

Using Heterogeneous Samples

Qingyuan Zhao, Jingshu Wang, Wes Spiller, Jack Bowden and Dylan S. Small

Abstract. Instrumental variable analysis is a widely used method to esti-
mate causal effects in the presence of unmeasured confounding. When the
instruments, exposure and outcome are not measured in the same sample,
Angrist and Krueger (J. Amer. Statist. Assoc. 87 (1992) 328-336) suggested
to use two-sample instrumental variable (TSIV) estimators that use sample
moments from an instrument-exposure sample and an instrument-outcome
sample. However, this method is biased if the two samples are from hetero-
geneous populations so that the distributions of the instruments are different.
In linear structural equation models, we derive a new class of TSIV estima-
tors that are robust to heterogeneous samples under the key assumption that
the structural relations in the two samples are the same. The widely used two-
sample two-stage least squares estimator belongs to this class. It is generally
not asymptotically efficient, although we find that it performs similarly to
the optimal TSIV estimator in most practical situations. We then attempt to
relax the linearity assumption. We find that, unlike one-sample analyses, the
TSIV estimator is not robust to misspecified exposure model. Additionally,
to nonparametrically identify the magnitude of the causal effect, the noise in
the exposure must have the same distributions in the two samples. However,
this assumption is in general untestable because the exposure is not observed
in one sample. Nonetheless, we may still identify the sign of the causal effect
in the absence of homogeneity of the noise.
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1. INTRODUCTION

When randomized controlled experiments are not
feasible, instrumental variable (IV) analysis is a widely
used method to estimate causal effect in the presence
of unmeasured confounding. A typical instrumental
variable estimator such as the two-stage least squares
(TSLS) uses sample moments (e.g., covariance matri-
ces) of the instrument-exposure relationship and the
instrument-outcome relationship. In an influential ar-
ticle, Angrist and Krueger (1992) noticed that the two
sets of moments can indeed be estimated from differ-
ent samples, though this idea can be dated back to at
least Klevmarken (1982). This method, often referred
to as the two-sample instrumental variable (TSIV) es-
timator, is frequently used in econometrics (Inoue and
Solon, 2010).
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TABLE 1

Heterogeneous distribution of genetic instruments in different populations. The minor allele frequencies in Table 1 and link disequilibrium
r2 in Table 1 are obtained from the 1000 Genome Project available in online databases dbSNP (Sherry et al., 2001) and LDlink (Machiela
and Chanock, 2015). The SNPs are selected from the real data analysis in Section 8

(a) Minor allele frequencies in different populations

Minor allele frequency

African East Asian European South Asian American
(n =1322) (n = 1008) (n = 1006) (n =978) (n =694)
SNP rs13021737 0.095 0.087 0.174 0.13 0.14
rs1421085 0.056 0.169 0.432 0.31 0.24
rs6567160 0.220 0.183 0.240 0.32 0.13
(b) Linkage disequilibrium (measured by r2, the square of the correlation coefficient of allele indicators) in different populations
Linkage disequilibrium (r-2)
African East Asian European South Asian American
(n=1322) (n = 1008) (n = 1006) (n=978) (n =694)
SNP pair (rs13021737, rs6731348) 0.378 1.0 0.993 0.865 0.965
(rs13021737, rs4854344) 0.917 1.0 0.993 0.865 0.988
(rs6731348, rs4854344) 0.387 1.0 0.986 1.0 0.953

One of the most exciting recent applications of IV
analysis is in genetic epidemiology where genetic
variants are used as the instruments (Davey Smith
and Ebrahim, 2003, Lawlor et al., 2008, Burgess,
Small and Thompson, 2017). This method is known
as “Mendelian randomization” to epidemiologists, be-
cause the genotypes are governed by Mendel’s Second
Law of independent assortment and thus have a strong
rationale for being independent of common postna-
tal source of confounding. More recently, there has
been growing interest in using two-sample Mendelian
randomization that take advantage of large existing
Genome-Wide Association Studies (GWAS), as it is
often easier to find two GWAS in which one mea-
sures the genotypes and the exposure and the other
one measures the genotypes and the disease than to
find a single GWAS that measures all three types of
variables (Pierce and Burgess, 2013, Davey Smith and
Hemani, 2014, Burgess et al., 2015, Gamazon et al.,
2015, Lawlor, 2016).

Since Mendelian randomization is a special case of
instrumental variable analysis in which genetic variants
are used as instruments, one would expect that two-
sample Mendelian randomization is merely a differ-
ent application of the existing TSIV estimators. How-
ever, there is a subtle but important difference between
two-sample Mendelian randomization and the exist-
ing applications of TSIV in economic applications.

To the best of our knowledge, with the exception of
Graham, Pinto and Egel (2016) who considered a gen-
eral data combination problem including just-identified
TSIV, all the TSIV estimators previously proposed in
econometrics assumed that the two datasets are sam-
pled from the same population (Angrist and Krueger,
1992, Ridder and Moffitt, 2007, Inoue and Solon, 2010,
Pacini and Windmeijer, 2016). This is usually not
a problem in the economic applications using time-
invariant instrumental variables (Jappelli, Pischke and
Souleles, 1998) such as quarter of birth (Angrist and
Krueger, 1992) and sex composition of the children
in the household (Currie and Yelowitz, 2000). How-
ever, this assumption does not hold in two-sample
Mendelian randomization, as the two GWAS usually
consist of different cohort studies and thus represent
different populations. Table 1 shows an example of
two-sample Mendelian randomization in which the dis-
tribution of the genetic instruments are clearly different
in the different populations.

The goal of this paper is to clarify the consequences
of heterogeneous samples to the identification, estima-
tion and robustness of TSIV analyses. After setting up
the TSIV problem and reviewing the literature (Sec-
tion 2), we will derive a new class of TSIV estimators
using the generalized method of moments (GMM) that
can utilize two heterogeneous samples under a linear
IV model (Section 3). The commonly used two-sample
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two-stage least squares (TSTSLS) belongs to this class
of estimators, but unlike the case with homogeneous
samples, it is no longer the most efficient estimator in
this class. Another interesting question raised by epi-
demiologists and geneticists is how far we can get by
using just public summary statistics of GWAS (Lawlor,
2016, Barbeira et al., 2018). Our calculations show
that, to use correlated genetic IVs without individual-
level data, it is necessary to use their covariance ma-
trices (in both samples) to compute any TSIV estima-
tor and its asymptotic variance. Unfortunately, the co-
variance information is often unavailable in the current
GWAS summary databases, though it might be possi-
ble to approximate the covariance matrices using ex-
ternal datasets such as the 1000 Genomes Project Con-
sortium (2015).

We will then turn to relax the linearity assumption
in Sections 4, 5 and 6. Compared to the same problem
in the one-sample or the homogeneous two-sample set-
ting, a key distinction is that we also need the structural
relationships between the IV and the exposure and the
distributions of the noise variables to be invariant in
the two samples. Unfortunately, these assumptions are
untestable using empirical data because we do not ob-
serve the exposure in both samples. In the absence of
these assumptions, we show that one may still identify
the sign of the causal effect.

Next we will use simulations to study the numeri-
cal properties of the TSIV estimators (Section 7). We
find that although the asymptotic efficiency of TSTSLS
is theoretically suboptimal, the practical difference is
most of the time minuscule. We will then examine
the bias of the TSIV estimators when the instrument-
exposure equation is misspecified or the “homoge-
neous noise” assumption is violated. We will also com-
pare the results of the TSIV analyses with the classical
one-sample analyses using a real Mendelian random-
ization dataset (Section 8). Finally, we will summarize
the theoretical and empirical findings in Section 9. Al-
though Mendelian randomization is used as the moti-
vating application below, we expect that the statistical
methods, identification results and high-level conclu-
sions in this paper can be applied to TSIV analyses in
other fields as well.

2. BACKGROUND ON TSIV ANALYSES

In this section, we set up the TSIV problem and re-
view the related literature. For simplicity of exposition,
throughout the paper we consider only one endogenous
exposure variable and no other exogenous covariates

for adjustment. Most of our derivations can be easily
generalized to the case of multiple endogenous vari-
ables and multiple exogenous covariates.

2.1 Problem Setup

We begin by introducing some notational conven-
tions. We use lowercase letters, bold lowercase letters,
bold uppercase letters and Greek letters to indicate,
respectively, deterministic or random scalars, vectors,
matrices and parameters in the model. Superscripts s,
a, b are reserved to indicate the sample. Subscripts are
used to index the observations in each sample.

Suppose we have independent samples (z}, x7, y;),
i=1,2,...,n% from two populations, s = a and s =
b, where z € R? is a vector of instrumental variables, x
is the exposure variable, and y is the outcome variable.
More compactly, we can write the data in each sample
as a matrix Z° € R %4 and two vectors x*, y* € R".
Next, we describe the general setting in this paper.

ASSUMPTION 1. The data are generated from the
following nonparametric structural equation model
(SEM). For s € {a, b},

1 vi =8 (5.7 ui),

) xi =1z, ),

where the functions g°, f*° are unknown and the ran-
dom variables (uj,v;,z}),i =1,...,n° are indepen-

dent and identically distributed within each sample.

Hereafter, (1) will be called the exposure-outcome
equation or simply the outcome equation, and (2) the
instrument-exposure equation or the exposure equa-
tion. The exposure variable x is called endogenous if
v X u (sox X u). In this case, a plain regression of y
on x would lead to biased estimate of the causal effect
of x.

There are three necessary conditions for z to be valid
instrumental variables: z must be correlated with x, z
must be independent of the unmeasured confounder(s),
and z must affect the outcome y only through x (exclu-
sion restriction). These assumptions are usually stated
in the potential outcome language (Angrist, Imbens
and Rubin, 1996). Translating these into structural
equation models, we need to assume the following core
IV assumptions:

ASSUMPTION 2 (Validity of IV).  For s € {a, b}, x}
and z; are dependent, z; L (u},v;), and the outcome
equation g° does not depend on z°.
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Next, we describe the one-sample and two-sample
IV problems:

The classical 1V problem: Suppose we observe Z“,
x? and y? in the first sample. If x is endogenous, what
can we learn about the outcome equation (1) (how g¢
behaves as a function of x%, a.k.a. the “causal effect”
of x on y) by using the instrumental variables Z*?

The two-sample 1V problem: Suppose only Z¢, x?,
7" and y” are observed (in other words y* and x” are
not observed). If x is endogenous, what can we learn
about the outcome equation (1)?

In the classical one-sample setting, the valid IV as-
sumption (Assumption 2) is not sufficient to identify
the causal effect of x on y. Further assumptions are re-
quired to identify the causal effect. The simplest and
most widely studied setting is when the instrument-
exposure and exposure-outcome equations are both lin-
ear (linearity of the exposure equation is not necessary,
see Section 5):

ASSUMPTION 3 (Linearity). For s € {a, b}, (3-
1) g(xi,u;) = B°x; + u;; and (3-2) f*(z;,v;) =
rHlz + ;.

Under Assumption 3, the structural equations (1)
and (2) can be written in a more compact form: for
s € {a, b},

(3) Y =xp +u,

X' =72y +v'.
Without loss of generality, we assume the expected val-
ues of z, u and v in both samples are 0. Otherwise we
can just add intercept terms to (3).

Another commonly used assumption is monotonic-
ity which leads to the identification of the local aver-
age treatment effect (LATE), see Assumption 7 in Sec-
tion 6. We will see that in the two-sample setting, even
more assumptions are needed to identify the causal ef-
fect.

2.2 Literature Review

Next, we give a literature review on instrumental
variables regression. Our goal is to not give the most
comprehensive review of this massive literature, but
rather to outline some key ideas to aid us in the inves-
tigation of the TSIV estimators using heterogeneous
samples. We will also discuss problems (such as weak
IV bias and invalid IV bias) that are commonly encoun-
tered in Mendelian randomization studies.

2.2.1 One-sample 1V estimators. IV methods were
developed in early research on structural/simultaneous
equation modeling by Wright (1928), Anderson and
Rubin (1949), Theil (1958) among many others. For
simplicity, when considering the one-sample IV prob-
lem below we shall ignore the superscript a. The most
important and widely used estimator in the classical
setting is the two-stage least squares (TSLS), where the
exposure x is first regressed on the IVs z (first-stage re-
gression) using least squares and the outcome y is then
regressed on the predicted exposure from the first-stage
regression using another least squares. The TSLS es-
timator can be concisely written using the projection
matrix P, =Z(Z72)71Z":

Brsis = (X" Px) " (x" P,y).

Other classical IV estimators include the limited in-
formation maximum likelihood (LIML) (Anderson and
Rubin, 1949) and Fuller’s (1977) modified LIML esti-
mator. All these estimators belong to the general K -
class estimators (Theil, 1958). For a more compre-
hensive textbook treatment of the classical IV estima-
tors, we refer the reader to Davidson and MacKinnon
(1993).

There is also considerable effort to relax the homo-
geneous causal effect assumption in (3). The most in-
fluential approach is the LATE framework (Imbens and
Angrist, 1994, Baker and Lindeman, 1994, Angrist,
Imbens and Rubin, 1996) that will be discussed in de-
tail in Section 6. See Abadie (2003), Ogburn, Rotnitzky
and Robins (2015) for some recent methodological de-
velopments in this direction. Another approach is to
assume all the effect modifiers in the exposure- and
outcome-equations are observed (Hernan and Robins,
2006, Wang and Tchetgen Tchetgen, 2018). Baiocchi,
Cheng and Small (2014) gives a comprehensive re-
view of one-sample IV estimators in biomedical appli-
cations.

2.2.2 Two-sample IV estimators. The idea of using
different samples to estimate moments can be dated
back to Klevmarken (1982) and this proposal becomes
popular in econometrics after Angrist and Krueger
(1992). In a later article, Angrist and Krueger (1995)
further argued to routinely use the split-sample TSLS
estimator so that weak instrument biases the estimator
toward O instead of toward the ordinary least squares
(OLS) estimator. Inoue and Solon (2010) compared
the asymptotic distributions of alternative TSIV esti-
mators. They found that the TSTSLS estimator is not
only more efficient than the covariance-based TSIV
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estimator, but also achieves asymptotic efficiency in
the class of limited information estimators. Ridder
and Moffitt (2007) considered a more general form of
TSIV estimator and derived its asymptotic distribution.
More recently, Pacini and Windmeijer (2016) derived
heteroskedasticity-robust variance estimator of TST-
SLS and Pacini (2018) derived a semiparametrically
efficient TSIV estimator with interval-censored covari-
ates. All the references above considered the TSIV
problem with homogeneous samples. The only excep-
tions we know are Graham, Pinto and Egel (2016) who
considered a general data combination problem which
includes the just-identified TSIV, and a working ver-
sion of Inoue and Solon (2010) who considered differ-
ent sampling rates dependent on the instruments.

2.2.3 Summary-data Mendelian randomization. Sin-
ce Mendelian randomization is just a special case of
IV analyses where genetic variation is used as the IV,
all the one-sample or two-sample methods mentioned
above can be directly applied. However, when conduct-
ing Mendelian randomization studies we only have ac-
cess to “summary data” that only contain the marginal
regression coefficients and their standard errors. For
example, let the estimated regression coefficient of y
on Z.; be f‘j and the coefficient of x on Z.; be p;.
Then Wald’s (1940) ratio estimator of the causal effect
using the jth instrument is given by /§ = r j/v;j- This
is equivalent to using a single instrument in TSLS. The
statistical problem is then to combine the individual
estimators, like in a meta-analysis, to produce a single
efficient and robust estimator.

The above summary-data Mendelian randomization
design has wide applicability in practice (Burgess
et al.,, 2015) and there is a lot of ongoing efforts in
developing public databases and software platforms
(Hemani et al., 2018). In human genetics, Mendelian
randomization is used as a tool for gene testing and
discovery (Gamazon et al., 2015). On the methodolog-
ical side, the commonly used meta-analysis estimators
in this problem include Egger regression (Bowden,
Davey Smith and Burgess, 2015) and weighted me-
dian (Bowden et al., 2016). More recently, Zhao et al.
(2019) proposed to treat summary-data Mendelian ran-
domization as a errors-in-variables regression problem
to develop more efficient and robust estimators.

2.2.4 Weak IVs and invalid IVs. Finally we want to
briefly mention a critical problem that plagues many
IV analyses—invalidity of the instruments. One such
problem is the weak instrument bias that occurs when

the IVs z are only weakly associated with the expo-
sure x. In this case, the classical IV estimators are usu-
ally biased toward the OLS estimator in one-sample
setting or toward O in the two sample setting. This
problem has been well studied in the one-sample set-
ting, see Stock, Wright and Yogo (2002) for a compre-
hensive survey. In Mendelian randomization it is com-
mon to have many weak instruments. In this regime,
LIML-like estimators are asymptotically unbiased but
the asymptotic variance needs to be carefully derived
(Hansen, Hausman and Newey, 2008). More recently,
Choi, Gu and Shen (2018) studied this problem in the
two-sample setting and Zhao et al. (2019) proposed ro-
bust statistical inference in summary-data Mendelian
randomization with many weak instruments.

Compared to weak IV bias, more serious problems
can be caused by invalid instruments that are depen-
dent on unmeasured confounders or violate the ex-
clusion restriction assumption. In classical IV analy-
ses with one or just a few IVs, the analyst must use
domain knowledge to justify the validity of the in-
struments. In Mendelian randomization, the exclusion
restriction assumption may be violated due to a ge-
netic phenomenon called pleiotropy (Davey Smith and
Ebrahim, 2003). Fortunately, we often have dozens or
hundreds of independent genetic instruments, and it is
possible to use additional assumptions such as sparsity
of invalid IVs (Kang et al., 2016) or balanced direct
effects (Bowden, Davey Smith and Burgess, 2015) to
identify and estimate the causal effect.

For the rest of this paper, we will assume all the
IVs are strong and valid. Our goal is to show that, in
addition to the weak and invalid IV problems men-
tioned above, heterogeneity of the samples can bring
new challenges to the inference and interpretation of
TSIV analyses.

3. LINEAR TSIV ESTIMATORS USING
HETEROGENEOUS SAMPLES

In Assumptions 1, 2 and 3, we have been stating our
assumptions separately for each sample. If the struc-
tural relationships can be arbitrarily different in the two
samples, it is obviously hopeless to solve the endo-
geneity problem with two partially observed samples.
We use the next two assumptions to link the structural
equations in the two samples.

a b

ASSUMPTION 4 (Structural invariance). g% = g°,

fa — fb-
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ASSUMPTION 5 (Sampling homogeneity of the

noise variables). (u{, l) = (uj, j) for any i =

1,...,n% j=1,...,n".

Both assumptions put restrictions on the heterogene-
ity of the two samples. To distinguish structural and
distributional assumptions, we use different words—
“invariance” and “homogeneity”—to refer to these as-
sumptions. Under Assumptions 4 and 5, the only het-
erogeneity between the two samples comes from the
distribution of the instruments. In linear SEMs, As-
sumption 5 is not required (see Section 4), but it is
generally necessary in nonparametric SEMS because
we do not specify the forms of the functions f and g
in Assumptions 1 and 4.

In this Section we will study TSIV estimators in the
linear SEM (3). In this case, structural invariance or
Assumption 4 implies that 8¢ = > = 8, y* =yt =
y. Our inferential target is the parameter 8, which is
interpreted as the causal effect of x on y.

We introduce some notation for the covariance pa-
rameters in this model. For s € {a, b} denote the popu-
lation covariances as Cov(Z’) = X}, Cov(Z’,x*) =
Xy, Var(u') = (o*bfu)z, Var(v®) = (ovv)z, Cov(u®,

v') = o,;,. Denote the sample covariance matrices as
(recall that we assume all the random variables have
mean 0)

S5, =2y /n*, 8%, =(2°) % /n’,

T
S5, =) 7 /n’.

We use the generalized method of moments (GMM)
in Hansen (1982) to estimate 8 under Assumptions 1,
2,4, 5 and 3. Consider the following moment function
of B:

mn(ﬁ) = (Slz)z)ilslzjy - (S?z)ils?xlg'

Compared to the moment function defined in Angrist
and Krueger (1992), we added the normalization terms
(S?Z)_1 and (S ) I because ¢, and Eb can be dif-
ferent in the heterogeneous two- sarnple setting. To dif-
ferentiate between an arbitrary value of 8 and the true
value of B, we use fg to denote the true value in
this section. First, we check the moment conditions

E[m, (8)] = 0 identifies S by showing my, (o) > 0.

To see this, notice that

m,, (B)
= (82) 712" (Zby Bo + VP Bo +u®) /mp
@) —(82) 7' @) (Z"y +v")B/na
=y(Bo—B)+ (8L) ' (2" (v*B +ub)/n,
—(82)7"(Z) v B/na.

It is easy to see that m, (o) has mean 0 and converges
to 0 in probability. The key in (4) is that the normaliza-
tion by (ng)_l and (Slz’z)_1 makes sure the first term
on the right-hand side is 0 when 8 = fp.

Next, let W € RY*9 be a positive definite weighting
matrix. The class of TSIV estimators of g is given by

(5)  Buw= arg/yinmn(ﬁ)TWmn(ﬁ)

= [(SZX)T(S?z)_lw(sgz)_lsgx]_l
x [(8%,)"(8%,) 7' W(sL,) 'Sz,

The asymptotic theory for GMM (Hansen, 1982) can-
not be directly applied here because the moment func-
tion m, (B) is not a simple average over i.i.d. data. This
is pointed out by an anonymous reviewer. Nonethe-
less, we can follow the footsteps there to derive the
asymptotic distribution by taking the “Taylor expan-
sion” of m,, (ﬁn,w) in the estimating equation corre-
sponding to (5). Here we use a more straightforward
derivation. By using Slutsky’s lemma and the fact that

(ST (8%)~" 5 y4, we have

(6)

Var (B, w)
~[(r") Wy

™) x ()" W Var((8%) 'S, W(y*) ™!

~[(r) Wy T

x (r") W(n"S2) " W(y) .
A consistent estimator of the variance can be obtained
by rep}acing y¢ with its sample estimate (Sfx)T X
(877

The optimal W in this class of estimators is given by
Wo @) ! where Q,, is the variance of m, (8p). Next

-2, Var(yf’|zl[-’)
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we compute €2,: to see that
Var(m,, (Bo)|Z°, Z")
-1
= Var((8%,)”'%, I2")

+ Var((S2,) 'S¢, BolZ)
1

= —(82) 7' [B2(0)) + 2Bl + (o2)?]

np

®) 1
+ —(S?z)_l[ﬂg ()]

(Sb ) 1Var(yf’|zf?)

T

-1
48t

In other words, the conditional variance of m, (8p)
is the sum of the variance of the coefficient of the
outcome-instrument regression (in sample ») and ,Bg
times the variance of the coefficient of the exposure-
instrument regression (in sample a). Equation (8)
means that to estimate £2, and the variance of /§n,w
for any given W, we just need to estimate the noise
variances of the outcome-instrument and exposure-
instrument regressions. The asymptotically efficient
two-sample IV estimator ﬁ g has asymptotic vari-
ance

B Var(x'|2{).

Var(ﬁ ! Z)
2 ~1o-1 -1 -1
~ [(ZZX) (Z%) @, (25) 241,
which can be consistently estimated by [(p*)~! x
‘l A [—
Al I
Weak instrument bias may occur when the magni-
tude of y is small comparing to ovz. In this case the
asymptotics presented here may be inaccurate and the
TSIV estimators are biased toward 0.

We would like to make five additional remarks on
the new class of TSIV estimators.

REMARK 1. When the weighting matrix W is cho-
sen as SZZ, the estimator reduces to the two-sample
two-stage least squares (TSTSLS) estimator. To see
this, let p = (S¢,)~ IS“ and X” = Zby be the predicted
values. Then the TSTSLS estimator is defined as

5 AT ab1—1 a0\ T
BrstsLs = [(8?)"%"]7 (&))" y".
It is easy to verify that ,Bn sb = ,BTSTSLS Thus un-

like in the classical one- sample and homogeneous two-
sample settings, TSTSLS is generally not efficient in

the class of linear TSIV estimators when the two-
samples are heterogeneous. To the best of our knowl-
edge, this results is not known previously. Also, no-
tice that the conventional covariance estimator based
on sample covariance matrices is generally biased. In
the exact-identified case (¢ = 1), the two-sample co-
variance estimator is
Brscov = (s%)'s%, > Bo - (0%/0%t).

In the homogeneous TSIV problem, the TSCOV es-
timator is not biased but less efficient than TSTSLS
(Inoue and Solon, 2010). The inconsistency of TSCOV
in heterogeneous TSIV problem is also noticed in
Inoue and Solon (2010), footnote 1.

REMARK 2. Notice that €, is a weighted sum of
(z4)~!and (£%,)~!. In the homogeneous TSIV prob-
lem where ):“ = Elz’z, we have Zé’z 104 SZ;I and hence
the TSTSLS estlmator is efficient in the class of TSIV
estimator (6). This is consistent with the conclusions of
Inoue and Solon (2010), Theorem 1. In general, the ef-
ficiency of the TSTSLS estimator (relative to the most

efficient TSIV estimator Bn fl—l) depends on the differ-

ence between (E?Z)_1 and (EIZ’Z)_I, the ratio of n¢ and
n?, and the ratio of Var(yf’ |zf7) and ,33 Var(xf’ |x§’). In
most cases, we expect the covariance structures of the
instrumental variables are not too different in the two
samples and the last ratio to be not too small, so the
TSTSLS estimator has great relative efficiency. We will
see that TSTSLS and the optimal TSIV estimator have
very similar performance in simulations (Section 7).

REMARK 3. A naive estimator of the asymptotic
variance of BtsTsLs is simply the variance of the coef-
ficient in the second-stage regression:

AD N
Unaive (IBTSTSLS)

=[6)%]

Var(y?|2?)

T 151 -1 -1
- [(2%) (%) @, (2) ZiL] .
where
~ 1 _
@, = (2h) " Var( 7)) = 2.

Compared to (9), it is larger than the variance of the
efficient TSIV estimator. However, since the asymp-
totic variance of TSTSLS is larger than the efficient

TSIV estimator, crn lee(’BTSTSLS) may or may not over-

estimate the variance of ﬁTSLs The naive variance es-
timator is used by Gamazon et al. (2015) for gene test-
ing. This is okay because under the null hypothesis
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TABLE 2
Summary of some identification results and assumptions made in this paper

Assumption Detail

Prop. 1 (Section4)  Prop. 2 (Section 5)  Prop. 3 (Section 6)

(1) Structural equation model
(2) Validity of IV

(3-1) Linearity of outcome eq.
(3-2) Linearity of exposure eq.
(4) Structural invariance

z; L (u,v})
g (i up) = Bbx; +u

a:fb

(5) Sampling homogeneity of noise vf 4 vf’
(6) Additivity of exposure eq.

(7) Monotonicity

Identifiable estimand

i =g ud). x5 = 1z vp)

@) =Tz + v

@)= f7 @+ fi(v)

f5(z, v) is monotone in z

N v v
v v v
v v
ve
v v v

v

v
v
b b b

B p Br ATE

Bo =0, we have fl,, = R,,. However, the variance esti-
mator is likely too small when constructing confidence
intervals of 8.

REMARK 4. When ¢ = 1, the covariance matri-
ces all become scalars. The GMM estimator ,3n,w no
longer depends on W and is always equal to the two-
sample Wald ratio estimator. To see this, all the matri-
ces in (6) become scalars and

lén = (Sfy/sfz)/(sza,x/s?z)'

The asymptotic variance of f, is given by (7), which
can be simplified to

A 2
Var(B,) ~ w, /(s /s2.)"
The asymptotic variance in this special case can be

derived more directly by the delta method as well
(Burgess, Small and Thompson, 2017).

REMARK 5. When g > 1, our results mean that
the covariance matrices of Z are needed to compute
any IV estimator and its asymptotic variance (un-
less only a single IV is used). Just observing the
marginal regression coefficients is not enough. In sit-
uations where only the S?, and S?y are available (e.g.,
many GWAS only report summary statistics), one may
estimate S, and S?Z (which reflects linkage disequi-
librium in mendelian randomization) from additional
datasets drawn from the same population. A similar
idea of estimating linkage disequilibrium from addi-
tional dataset can be found in the context of multiple-
SNP analysis in GWAS (Yang et al., 2012). In the con-
text of Mendelian randomization, this means we can
still compute the TSTSLS estimator by plugging in
estimates of X¢, and ZZZ’Z obtained from other sam-
ples, but to compute the asymptotic variance, the ma-
trix £ is not directly estimable because Var(yf’ |zf?)

and Var(xf’lzf-’) are unknown. Nonetheless, one can
still obtain a conservative estimate of £ from (8) us-
ing Var(y?|z?) < Var(y?) and Var(x?|z?) < Var(x?).
This upper bound is usually not too conservative in
Mendelian randomization since genetic variants iden-
tified so far usually only explain a small portion of
the variability of complex diseases and traits (Manolio
et al., 2009).

4. RELAXING INVARIANCE AND HOMOGENEITY
ASSUMPTIONS

Apart from the structural model and validity of IV
(Assumptions 1, 2) that are necessary in the one-
sample setting, in Section 3 we used additional invari-
ance/homogeneity and linearity assumptions (Assump-
tions 4, 5 and 3) to identify and estimate the causal
effect in the heterogeneous TSIV setting. Next, we at-
tempt to relax these assumptions. Our main new iden-
tification results in the next three sections are summa-
rized in Table 2.

First of all, notice that we did not use invariance of
g and u in the calculation above. Because y“ is not
observed, we do not need to consider the exposure-
outcome relation in sample a. In fact, u® never appears
in the calculation above, so we can replace 8 by A? and
all the arguments in Section 3 still go through under the
same assumptions. For example, it is easy to verify us-
ing (4) that m,,(B”) still has mean 0 and converges to
0 in probability. Therefore, the estimand of the TSIV
estimators is indeed B” and we do not need to assume

B = B or u® L b In fact, B¢ is not identifiable from
the data unless we link it to 2.

Second, sampling homogeneity of the noise vari-
able v (Assumption 5) is not crucially important in the
above linear structural equation models (3). When the
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expected values of v* and v’ are different, they can be
absorbed in an intercept term and this does not affect
the identification and estimation of 8?. Also, our cal-
culations above have already considered the possibility
that the variance of v* and v” are different. To summa-
rize, we have just shown the following.

PROPOSITION 1. Under Assumptions 1, 2, 3-1 (for
sample b), 3-2 (for both samples) and 4, the TSIV esti-
mators in Section 3 can consistently estimate BP.

Thus noise homogeneity (Assumption 5) is not nec-
essary when the structural relations are linear. How-
ever, we will see in the next two sections that Assump-
tion 5 is quite important when the structural relations
are not linear.

5. RELAXING LINEARITY OF THE
INSTRUMENT-EXPOSURE EQUATION

In one-sample IV analyses, correct specification of
the instrument-exposure model is not necessary for
consistent estimation of the causal effect. To see this,
suppose the linear exposure-outcome model is cor-
rectly specified in (3) (i.e., Assumption 3-2 holds). In
the one-sample problem, the parameter 8 can be iden-
tified by the following moment condition:

E[h(2) - (y - x$)] =0

for any function 4 (z) due to the independence of z and
u as long as Cov(x, h(z)) # 0. This results in the class
of instrumental variable estimators

10)  Bu= [th(zo}/[zxihun].
i=1 i=1

The TSLS estimator is a special case of (10) when
h(z) =z'y and y is estimated from the first stage re-
gression. In general, Bn is consistent and asymptoti-
cally normal. The asymptotic variance of Bn depends
on the choice of 4. The optimal choice of %, often
called the optimal instrument, is the conditional expec-
tation of x given z: h*(z) = E[x|z]. To summarize, in
the one-sample problem, the TSLS estimator is consis-
tent for 8 even if the linear instrument-exposure model
is misspecified, although in that case the TSLS estima-
tor may be less efficient than the optimal instrumental
variable estimator. We refer the reader to Vansteelandt
and Didelez (2015) for a recent discussion on robust-
ness and efficiency of one-sample IV estimators under
various types of model misspecification.

This robustness property of TSLS does not carry to
the two-sample setting due to a phenomenon known

as the “conspiracy” of model misspecification and ran-
dom design (White, 1980, Buja et al., 2014). Under the
general instrument-exposure equation x; = f%(z;, v})
in (2), the best linear projection (in Euclidean distance)

an  p= argyminE{[(zf)Ty — 1@ )]

depends on the structural function f*, the distribution
of the noise variable v*, and the distribution of the in-
strumental variables z;. Therefore, even if structural
invariance (Assumption 4) and sampling homogeneity
of the noise variables (Assumption 5) are satisfied, the
best linear approximations y“ and p? can still be dif-
ferent if the sampling distributions of z are different.
In extreme cases, y“ and y? can even have different
signs; see Figure 1 for an example. Since the TSTSLS
estimator converges to y? 8% /y® when the instrumental
variable is univariate, the TSTSLS estimator and other
TSIV estimators are biased and may even estimate the
sign of B? incorrectly.

There are two ways to mitigate the issue of nonlin-
earity of the instrument-exposure equation. The first is
to only consider the common support of z¢ and z” as
suggested by Lawlor (2016) and match or weight the
observations so that z% and z” have the same distribu-
tion. This ensures the projections y* and p” are the
same and is illustrated in Figure 1. The second solution
is to nonparametrically model the instrument-exposure
relation to avoid the drawback of using the linear ap-
proximations. However, this is difficult if the dimen-
sion of the I'Vs is high.

We want to emphasize that, unlike the scenario with
linear instrument-exposure equation in Section 3, both
solutions above still hinge on sampling invariance of
noise variables (Assumption 5). Even if the distribu-
tions of z* and z” are the same and f¢ is modeled
nonparametrically, the best linear or nonlinear approx-
imation still depends on the distribution of the noise
variable v. If Assumption 5 is violated so v* and v’
have different distributions, the TSIV estimators are
still generally biased, though the bias is unlikely to be
extremely large. It is also worth noting that sampling
homogeneity of the noise variables (Assumption 5) is
untestable in the two sample setting because x” is not
observed.

One way to relax Assumption 5 is to assume the
instrument-exposure equation is additive.

ASSUMPTION 6 (Additivity of the instrument-
exposure equation).  f*(z,v) = f(z) + f;(v).
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if the absolute within pair difference is less than 0.1).

“Conspiracy” of model misspecification and random design. In this example, f°%(z,v) = fb(z, v) =22 + z + v where
L b~ N(, 1), z¢4 ~ N(-1,1) and 22~ N(1, 1). If the model is misspecified and a linear model is used as an approximation,

5z, v) = 0% + y57%, the projections y* and yb depends on the distribution of 7% and 7% and have different signs in this example. By
only considering the common support of the two samples and matching the observations, the projections y* and yb are much closer.

Under Assumption 6, we may nonparametrically es-
timate f;(z) and then estimate B? by regressing yf on
. b . . . b . .
the. predicted fz" (z}). This is consistent for g7 if f¢ is
estimated consistently, because

3P =Bl +ul = B £+ B 1L () + u]
= B 12@}) + (B 15 (o) +u).

The last equation used structural invariance (Assump-
tion 4). Even if the noise variables u and v may have
different distributions in the two samples, the estima-
tion of ,Bb is not affected (see Section 4). To summa-
rize, we have shown the following.

PROPOSITION 2. In Proposition 1 and absence of
noise homogeneity, B° can still be identified if the ex-
posure equation is additive.

6. RELAXING LINEARITY OF THE
EXPOSURE-OUTCOME EQUATION

6.1 LATE in the One-Sample Setting

When the exposure-outcome equation is nonlinear,
an additional assumption called homogeneity is usually
needed to identify the causal effect. Next we review
this approach in the one-sample setting when the in-
strument and the exposure are both binary. In this case,
we can define four classes of observations based on the

instrument-exposure equation: for s = a, b,

always taker (at)

if £°0,v)=1, f*d,v)=1,
complier (co)

if £°0,v)=0, f*(1,v)=1,
never taker (nt)

if £5(0,v)=0, f*(1,v)=0,
defier (de)

iff°0,v)=1, f°(1,v) =0.

tS (v) —

Classes are important to remove endogeneity since
conditioning on the class, the exposure x is no longer
dependent on the noise variable u, that is,

(12) x5 L u|ef (vF).

The last equation is true because given #*(v®) and
hence the values of f°(0, v) and f*(1, v), the only ran-
domness of x* comes from z* which is independent of
u®. If the classes were observable, (12) implies that
we can identify the class-conditional average outcome
Elg®(x,u®)|t* =1t] for (¢, x) in the support of (¢, x°*),
which is a subset of {at, co,nt,de} x {0, 1}. More
specifically, since P(x* = 0|t = afr) =0 and P(x® =
115 = nt) = 0, the support of (¢°, x*) contains 6 ele-
ments, supp(t®, x*) = {(at, 1), (co, 0), (co, 1), (nt, 0),
(de,0), (de, 1)}. However, the classes are not di-
rectly observable and, in fact, we can only identify
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four conditional expectations E[y*|x® = x,7" = z] =
E[g®(x,u®)|x* = x, z¥ = z] from the data. This means
that the class-conditional average outcomes are not
identifiable, because in the following system of equa-
tions:

B[ (0.4°) ' =0,2° =0)
[ (0, u®)|t* = nt] - P(¢* = nr)
+E[g°(0, u*)|t° = co] - P(t* = co),
E[¢"(0.u")lx* =0,2" =1]
[ (0, u’)|t* =nt]-P(t* =nt)
+E[g°(0,u®)|t* =de] - P(’ =de),
E[g* (1. us)|xs=1,zs=0]
[ 1, u)|t* =at]-P(t* = ar)
+E[¢°(1, u®)|t* =de] - P(¢F =de),
)

(13)

/—\

there are six class-conditional average outcomes but
only four equations. Note that to derive (13) we have
used Assumption 2 which asserts z* L ¥ = #*(v®) and
¥ L u®, so E[g°(x,u®)|Z%, t°] = E[g°(x, u®)|¢’] and
P(* =t|z°) =P(#* =) for any fixed x and ¢.

The monotonicity assumption is used to reduce the
number of free parameters in (13).

ASSUMPTION 7 (Monotonicity). f%(z,v) is a
monotone function of z for any v and s =a, b.

Without loss of generality, we will assume f°(z, v)
is an increasing function of z, otherwise we can use
—x% = —f*(z%, v*) as the exposure. In the context
of binary instrument and binary exposure, Assump-
tion 7 means that P(#* = de) = 0 and is often called the
no-defiance assumption (Balke and Pearl, 1997). This
eliminates two class-conditional average outcomes,
E[g*(0,u®)|t® = de] and E[g°(1,u®)|t® = de], leav-
ing us four equations and four class-conditional av-
erage outcomes. Therefore, using (13), we can identify
the so called local average treatment effect (LATE),
Elg*(1,u®) — g%(0, u®)|t* = co] (Angrist, Imbens and
Rubin, 1996). In particular, under Assumptions 1, 2
and 7, one can show that the TSLS estimator in sample
s converges to

s
,3 LATE

_Ely'|Iz" =11 - E[y*|z* =0]
E[x*|z5 = 1] — E[x*|z° =0]

(14)
_Elg"(1,u’) — g°(0,u’)|t* = co] - P(t* = co)
- P(t* = co)

=E[g’(1,u’) — ¢°(0,u®)|t* = co].

See (15) below for proof this result.

When the exposure x is continuous, we may still de-
fine the class ¢ such that (12) holds and identify the
class-conditional average outcomes on the joint sup-
port of x and ¢. This support may be very limited
when the instrument z is binary. We refer the reader
to Imbens (2007) for further detail and discussion. In
this case, the instrumental variable estimator ,éh in (10)
converges in probability to a weighted average of lo-
cal average treatment effects (Angrist, Graddy and Im-
bens, 2000). Note that in order for the weights to be
nonnegative, ordering the instruments by E[x*|z% = z]
must simultaneously order the instruments by the value
of h(z) (Angrist, Graddy and Imbens, 2000, Theo-
rem 2,3). A preferable choice of /(z) is the conditional
expectation E[x*|z® = z].

6.2 LATE in the Two-Sample Setting

We can still follow the LATE framework in the two-
sample setting considered in this paper. When the in-
strument and the exposure are both binary, the TSTSLS
estimator converges to a modification of (14) by taking
the expectations in the numerator over sample a and
the expectations in the denominator over sample b,

IBLATE
_ER’I2? =11 -E[’1z" =0]
"~ E[x4|z¢ = 1] — E[x4|z¢ = 0]

(15)
_E[gP (1, u?) — g(0,ub) |t = co] - P(t” = co)
- P(t% = co)
P(t” = co)

= BlaTE - PUa = co)’

Next, we prove the second equality in (15). First, we
consider the numerator

E[y’|z" =1] — E[y"|2? = 0]

= Y (EDUL=11"=1]
te{at,co,nt,de}

E[y?1z26 =0, =1]) - P(t® =)

= > (Y

tefat,co,nt}

E[y?1z2 =0,1" =1]) - P(t" =1),

126 =1,1" =1]
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where the first equality is due to the law of total ex-
pectation and the second equality uses Assumption 7.
Next, notice that yb A zb|tb = at, because P(xb =
1|1t =at) =1 and by the exclusion restriction (im-
plied from Assumption 2), y” only depends on z”
through x”. Similarly, y* I z°|t” = ne. Therefore, we
are left with just the compliers

E[y’| = 1] —E[y’|z* = 0]
= (E[y’I" = 1.1* = co]
—E[?1z" =0,1" = co]) - P(t" = co)
= (E[g"(1,u’)|z" = 1,1" = co]
—E[g"(0,u”)|z" = 0,1" = co]) - P(t" = co)
= (B[g"(1,u")|t” = co]
—E[¢"(0, u®)[* = co]) - P(t* = co).

In the last equation, we have again used the exclusion
restriction. Similarly, the denominator in (15) is

E[x’|z0 =1] — E[x?|z2? = 0]

= 2

te{at,co,nt}
—E[x?1z2 =0,1" =1]) - P(tP =1)
=(1—1)-P(t’ =ar)+ 1 -0)-P(t’ = co)
+(0—0) - P(t” = nt)
=P(r” = co).

Finally, note that similar to the one-sample case, (15)
only uses Assumptions 1, 2 and 7.

When structural invariance of the instrument-
exposure equation f (Assumption 4) and sampling ho-
mogeneity of the noise variable v (Assumption 5) hold,

d . .
we have ¢ = t” because the class 7° is a function of f*
and v®. Therefore ﬂﬁZTE = ﬂfi ATE DYy equation (15). To
summarize, we have just shown the following.

PROPOSITION 3. When there is one binary instru-

ment and one binary exposure, under Assumptions 1,
2,5 and 1, the TSTSLS estimator identifies ,3]13 ATE-

In general, the estimand of TSTSLS is a scaling
of the LATE in the sample b. Since f¢ and f” are
nontrivial functions of z by Assumption 2, the pro-
portions of compliers are positive and hence the ratio
P(t* = c0)/P(t% = co) > 0. This means that S5 has
the same sign as ,BIIf ATE-

When the exposure is continuous, most of the argu-
ments in Angrist, Graddy and Imbens (2000) would
still hold as they were proved separately for the numer-
ator and the denominator just like our proof of (15).
Similarly, the TSTSLS estimator converges in proba-
bility to the estimand of the TSLS estimator in sample
b times a scaling factor, and the scaling factor is equal
to 1 under Assumptions 4 and 5. However, the scal-
ing factor is not always positive because in the absence
of Assumption 5, the conditional expectation E[x*|z%]
can be different in the two samples (same issue as in
Section 5). Similar to Section 5, this can be resolved
by assuming additivity (Assumption 6).

7. SIMULATION

We evaluate the efficiency and robustness of the lin-
ear TSIV estimators using numerical simulation. In all
simulations we consider 10 binary instrumental vari-
ables generated by

G %S w N, ),

Th = (PR s =a,b.

We first verify the asymptotic results regarding the
TSIV estimators in Section 3. In our first simulation,
the exposures and the outcomes are generated by

(17) X =02-(172)) +0f,
(18) y; =X +uj,
s sy Lide 0 1 oy
(19) ) N(<0)’<Guv 1))
i=1,...,n%,s=a,b

In this simulation we used p¢ = 0.5, p? = 0.5, 0, or
—0.5, n* = 1000 or 5000, n” = 1000 or 5000 and
oy =0.5.

In Table 3, we compare the performance of the TST-
SLS estimator and the optimal TSIV estimator after
centering the variables. In particular, we report the bias,
standard deviation (SD), average standard error (SE)
and coverage of the 95% asymptotic confidence in-
terval. When p% = p? = 0.5, the two estimators are
asymptotically equivalent by (8). This is verified by Ta-
ble 3 as the two estimators have the same bias, variance
and coverage in this case. When p“ and o? are differ-
ent, the optimal TSIV estimator should be more effi-
cient than TSTSLS (at least theoretically). In the sim-
ulations we find that in almost all cases the two esti-
mators have the same variance, but the optimal TSIV
estimator has smaller finite sample bias. The difference
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TABLE 3
Simulation 1: Asymptotic efficiency of the TSTSLS and optimal TSIV estimators. The reported numbers are obtained by 10,000 realizations
of data simulated from equations (16), (20), (18) and (19)

TSTSLS Optimal TSIV
B p¢ Pl n4 nb Bias SD SE Cover Bias SD SE Cover
1 0.5 0.5 1000 1000 —0.020 0.100 0.100 0.941 —0.020 0.100 0.100 0.941
5000 —0.021 0.062 0.063 0.924 —0.021 0.062 0.063 0.923
5000 1000 —0.006 0.090 0.090 0.949 —0.006 0.090 0.090 0.949
5000 —0.004 0.045 0.045 0.948 —0.004 0.045 0.045 0.948
0 1000 1000 —0.046 0.126 0.126 0.928 —0.039 0.127 0.126 0.933
5000 —0.047 0.072 0.072 0.875 —0.029 0.072 0.071 0.909
5000 1000 —0.012 0.121 0.120 0.948 —0.011 0.121 0.120 0.947
5000 —0.010 0.057 0.057 0.947 —0.008 0.057 0.057 0.948
—-0.5 1000 1000 —0.058 0.135 0.135 0.918 —0.045 0.137 0.134 0.924
5000 —0.058 0.077 0.075 0.851 —0.031 0.076 0.074 0.907
5000 1000 —0.012 0.130 0.129 0.951 —0.011 0.130 0.129 0.951
5000 —0.013 0.060 0.061 0.947 —0.010 0.061 0.061 0.949
10 0.5 0.5 1000 1000 —0.197 0.726 0.726 0.929 —0.197 0.724 0.724 0.929
5000 —0.194 0.548 0.548 0.915 —0.192 0.544 0.545 0.916
5000 1000 —0.036 0.577 0.578 0.949 —0.036 0.577 0.578 0.949
5000 —0.037 0.327 0.327 0.948 —0.037 0.327 0.327 0.948
0 1000 1000 —0.468 0.867 0.866 0.898 —0.330 0.870 0.860 0.920
5000 —0.475 0.596 0.585 0.836 —0.249 0.587 0.574 0.900
5000 1000 —0.096 0.755 0.754 0.947 —0.086 0.756 0.753 0.948
5000 —0.102 0.393 0.393 0.938 —0.072 0.394 0.392 0.941
—0.5 1000 1000 —0.586 0.932 0.915 0.876 —0.380 0.933 0.902 0.907
5000 —0.575 0.626 0.610 0.808 —0.254 0.598 0.585 0.902
5000 1000 —0.112 0.807 0.807 0.948 —0.093 0.808 0.807 0.948
5000 —0.118 0.420 0.415 0.934 —0.071 0.419 0.413 0.943

between the optimal TSIV estimator and the TSTSLS
estimator is substantial only if £¢ and X% (in this sim-
ulation, p? and p?) are very different and n? is much
larger than n“. This phenomenon can also be seen from
(8) as discussed in Remark 2.

In the second simulation, we examine how misspec-
ification of the instrument-exposure equation may bias
the TSIV estimator. The data are generated in the same
way as in the first simulation except that we add in-
teraction terms in the instrument-exposure equation.
More specifically, (17) is replaced by

200  x}=02-(1"2)+0.02- ) 2}z +v}.
J#k

The results of the second simulation are reported in
Table 4. When p® = p? = 0.5, the TSTSLS and the op-
timal TSIV estimators are still unbiased and the confi-
dence intervals provide desired coverage. This is be-
cause the best linear approximations of the instrument-
exposure equation are the same in the two samples.
However, when p® # p?, the TSTSLS and the opti-
mal TSIV estimators are biased and failed to cover the

true parameter at the nominal 95% rate. As discussed
in Section 5, this is because the best linear approxima-
tions of the instrument-exposure equation are different
in the two samples. In addition, note that the optimal
TSIV estimator tends to have larger bias in this simu-
lation.

Even if z? 4 zﬁ’ , the TSIV estimators can still be bi-
ased if v{ and vf’ have different distributions and the
instrument-exposure equation is not additive (see the
discussion after Assumption 6). In our third and final
simulation, we generate the data from equations (16)
and (18) but replace equations (17) and (19) with

1) x=102-1"z) + v > 0),
s g iid 0\ (o), o,

(22) (v 1) N(<O)’<05v L))
i=1,...,n°, s=a,b.

In this simulation we use p¢ = p” = 0.5, 0, =1,
ol =2and o, =0.5\/05,, s =a,b.
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TABLE 4
Simulation 2: When the instrument-exposure equation is misspecified, the TSIV estimators can be biased. The reported numbers are
obtained by 10,000 realizations of data simulated from equations (16), (21), (18) and (22)

TSTSLS Optimal TSIV
B oid 0P n¢ n Bias SD SE Cover Bias SD SE Cover
1 0.5 0.5 1000 1000 —0.009 0.069 0.067 0.938 —0.009 0.068 0.067 0.940
5000 —0.011 0.044 0.042 0.922 —0.010 0.044 0.042 0.922
5000 1000 —0.001 0.061 0.060 0.946 —0.001 0.061 0.060 0.946
5000 —0.002 0.031 0.030 0.942 —0.002 0.031 0.030 0.942
0 1000 1000 0.041 0.086 0.085 0.927 0.046 0.086 0.085 0.920
5000 0.042 0.051 0.050 0.878 0.052 0.051 0.049 0.827
5000 1000 0.059 0.081 0.080 0.885 0.060 0.081 0.080 0.884
5000 0.060 0.039 0.038 0.665 0.061 0.039 0.038 0.651
—-0.5 1000 1000 0.050 0.092 0.091 0.919 0.059 0.093 0.091 0.904
5000 0.051 0.054 0.052 0.847 0.067 0.054 0.052 0.755
5000 1000 0.074 0.086 0.086 0.860 0.075 0.086 0.086 0.859
5000 0.075 0.041 0.041 0.561 0.077 0.041 0.041 0.535

The results of the third simulation are reported in Ta-

ble 5. Even though z 4 zf? in this simulation, the TSIV
estimators are still biased because the best linear ap-
proximations of the instrument-exposure equation de-
pend on the distributions of v, which are different in
the two samples.

8. APPLICATION: THE CAUSAL EFFECT OF BODY
MASS INDEX ON SYSTOLIC BLOOD PRESSURE

We apply the one-sample and two-sample IV meth-
ods to estimate the causal effect of body mass in-
dex (BMI) on systolic blood pressure (SBP) using a
real dataset obtained from UK Biobank with 358,928
samples. As benchmarks, we first apply ordinary least

squares (OLS) and two IV methods (TSLS and LIML)
to the entire dataset with 407 correlated SNPs iden-
tified from a previous GWAS of BMI (Locke et al.,
2015). The results are reported in the first block in Ta-
ble 6. The point estimate and confidence interval ob-
tained by OLS are much larger than those obtained by
TSLS and LIML, indicating there may be confound-
ing in the observational data. Unsurprisingly, the one-
sample IV estimates agree with the two-sample IV es-
timates using a random 50-50 split (second block in
Table 6) and the summary-data Mendelian randomiza-
tion estimate reported in Zhao et al. (2019) (third block
in Table 6).

TABLE 5
Simulation 3: Even if the instruments have the same distribution and all other assumptions are met, the TSIV estimators can still be biased if
Assumption 5 (sampling homogeneity of noise) is violated. The reported numbers are obtained by 10,000 realizations of data simulated from
equations (16), (17), (18) and (19)

TSTSLS Optimal TSIV
B p¢ ,ob n¢ nb Bias SD SE Cover Bias SD SE Cover
1 0.5 0.5 1000 1000 —0.14 0.279 0.268 0.899 —0.14 0.279 0.268 0.898
5000 —0.13 0.145 0.131 0.761 -0.13 0.145 0.131 0.762
20,000 -0.14 0.097 0.082 0.555 —0.14 0.096 0.082 0.552
5000 1000 —0.10 0.294 0.268 0.892 —0.10 0.294 0.268 0.892
5000 —0.09 0.123 0.122 0.867 —0.09 0.123 0.122 0.867
20,000 —0.10 0.067 0.065 0.667 -0.10 0.067 0.065 0.669
20,000 1000 —0.08 0.271 0.266 0.939 —0.08 0.271 0.266 0.939
5000 —0.08 0.127 0.120 0.886 —0.08 0.127 0.120 0.886
20,000 —0.09 0.062 0.061 0.707 —0.09 0.062 0.061 0.707
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TABLE 6
Results of the one-sample and two-sample 1V analyses of the UK Biobank data

Data # SNPs Method Estimate Standard error 95% CI
One-sample 407 OLS 0.7852 0.0068 [0.7719, 0.7985]
TSLS 0.4463 0.0366 [0.3746, 0.5180]
LIML 0.3946 0.0392 [0.3178,0.4714]
Two-sample (50-50 split) 407 TSTSLS 0.4273 0.0514 [0.3266, 0.5280]
Optimal TSIV 0.4274 0.0514 [0.3267, 0.5281]
Two-sample (summary data) 160 MR-RAPS (Zhao et al., 2019) 0.4017 0.1063 [0.1934, 0.6100]
Two-sample (subsampled exp.) 9 TSTSLS 0.5199 0.1651 [0.1963, 0.8435]
Optimal TSIV 0.5210 0.1651 [0.1974, 0.8446]
Two-sample (subsampled out.) 9 TSTSLS 0.6500 0.1975 [0.2629, 1.0371]
Optimal TSIV 0.6489 0.1975 [0.2618, 1.0360]

Next, we illustrate the performance of TSIV esti-
mators with heterogeneous samples. Because the UK
Biobank population is mostly homogeneous (most of
samples are Europeans), we decide to subsample half
of the dataset in order to change the distribution of 9 se-
lected SNPs. This artificially created subsample is then
used as the exposure (fourth block in Table 6) or the
outcome (fifth block in Table 6), while the other half
of the dataset remains unchanged and is used as the
other sample in TSIV analyses. We find that the TSIV
point estimates using the two heterogeneous samples
are different from the benchmarks, though the differ-
ences are not statistically significant due to increased
standard error. Another observation from Table 6 is that
the TSTSLS estimator and the optimal TSIV estimator
always give very similar answers. This is not surprising
following the discussion in Remark 2.

9. SUMMARY AND DISCUSSION

In this paper, we have derived a class of linear TSIV
estimators when the two samples are heterogeneous.
Although the TSTSLS estimator is not asymptotically
efficient in general, it usually has great relative effi-
ciency and performs very similarly to the optimal TSIV
estimator in the numerical examples. Therefore, there
is little reason to abandon the already widely used TST-
SLS in practice.

However, when trying to relax the linearity assump-
tion, our theoretical investigation suggests there are ad-
ditional concerns about using a two-sample I'V analysis
with heterogeneous samples.

1. Our (in fact any) TSIV analysis can only identify
causal effect in the instrument-outcome sample (sam-
ple b). This is because we do not observe the outcome

in sample a. This might limit the generalizability of the
results of a real study.

2. Compared to the classical one-sample analysis,
the TSIV analysis requires additional assumptions to
link the two samples. One of the key assumptions is
structural invariance (Assumption 4), which might be
reasonable in some applications but unreasonable in
others (especially if the two populations are drastically
different).

3. Another important assumption in the two-sample
setting is homogeneity of the distributions of the noise
variables (Assumption 5), which is necessary when the
exposure equation is not additive. However, this as-
sumption is untestable since we do not observe the ex-
posure variable in one of the samples.

4. Unlike one-sample IV analysis, the heteroge-
neous two-sample IV analysis generally needs correct
specification of the instrument-exposure equation.

Our simulation examples show that violation of any of
these three requirements can lead to biased estimates
and invalid statistical inference. More real data exam-
ples are needed to evaluate the importance of these
concerns in practice.

The last point, that is the nonrobustness of TSIV
to model misspecification and heterogeneous sam-
ples, is related to the notion of “invariant prediction”
(Peters, Biihlmann and Meinshausen, 2016), “auton-
omy” (Haavelmo, 1944), or “stability” (Pearl, 2009).
These notions are generally stronger as they require
invariance of the model under causal interventions. In
the problem considered in this paper, we require the
exposure predictions are invariant in the two heteroge-
neous samples. In this view, the structural invariance



332 Q.ZHAO ET AL.

(Assumption 4) is also not necessary for the identifica-
tion results. What’s important is the “predictive invari-
ance” in the two samples. In other words, even when
Assumption 4 is violated so f® # f?, the causal effect
may still be identifiable if the best linear approxima-
tions y* and p” defined in (11) are the same. We thank
an Associate Editor for pointing out this connection.
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