
The latest news and updates from the Google Drive team.

Google Drive Blog

Tuesday, September 21, 2010

Editor’s Note: In May, we walked through some technical details about what’s

different in the new Google Docs. Beginning today, we’ll dive into the

collaboration technology behind Google Docs in three parts, starting with a look

at the challenges encountered when building a collaborative application.

Tomorrow’s post will describe how Google Docs uses an algorithm called

operational transformation to merge edits in real time. Finally, on Thursday, we’ll

dive into the collaboration protocol for sending changes between the editors.

The way people work is changing. Ten years ago, it was too hard to co-author a

document, so things took longer, or people just put up with less collaboration.

But as our communication tools have become better, it’s become more

common to have a group of people writing a doc collaboratively.

Collaboration is technically diFcult because many people can be making

changes to the same content at almost the same time. Since connection

speeds aren’t instantaneous, when you make a change, you’re temporarily

creating a local version of the document that is different from the versions

What’s different about the new Google Docs: Working
together, even apart

https://drive.googleblog.com/
https://drive.googleblog.com/
https://drive.googleblog.com/
https://drive.googleblog.com/
https://drive.googleblog.com/
https://drive.googleblog.com/
http://googledocs.blogspot.com/2010/05/whats-different-about-new-google-docs.html
http://googledocs.blogspot.com/2010/05/whats-different-about-new-google-docs.html
https://drive.googleblog.com/2010/09/whats-different-about-new-google-docs_21.html
https://drive.googleblog.com/2010/09/whats-different-about-new-google-docs_21.html
https://drive.googleblog.com/2010/09/whats-different-about-new-google-docs_21.html
https://drive.googleblog.com/2010/09/whats-different-about-new-google-docs_21.html


other collaborators see. The core implementation challenge is to make sure

that all the editing sessions eventually converge on the same, correct, version

of the document.

One approach taken by the old Google documents and by many other

collaborative word processors is to compare document versions. Suppose

there are two editors: John and Luiz. In the old Google Docs, the server begins

with one version of a document and receives an updated version from John.

The server Nnds the differences between its version and John’s version and

decides out how to merge those two versions as best it can. Then the server

sends this merged version to Luiz. If Luiz has changes that have not yet been

sent to the server, then he needs to compare the server version with his local

version and merge the two versions together. Then Luiz sends this merged local

version to the server and the process continues.

But often, this approach doesn’t work well. Take the example below. John, Luiz

and the server start with the text The quick brown fox. John bolds the words

brown fox. As he’s doing this, Luiz highlights the word fox and replaces it with

the word dog. Suppose John’s changes arrive at the server Nrst, and then the

server sends those changes to Luiz.

The correct way to merge John’s style change and Luiz’s text substitution is as

The quick brown dog. But Luiz doesn’t have enough information to know what

http://googledocs.blogspot.com/2010/04/rebuilt-more-real-time-google-documents.html
http://googledocs.blogspot.com/2010/04/rebuilt-more-real-time-google-documents.html
https://1.bp.blogspot.com/_ihObidpqGPM/TJhOzMh-SYI/AAAAAAAAAhY/feoi11CGQvA/s1600/collaboration1.png
https://1.bp.blogspot.com/_ihObidpqGPM/TJhOzMh-SYI/AAAAAAAAAhY/feoi11CGQvA/s1600/collaboration1.png


the correct merge is. From his perspective, The quick brown fox dog, The quick

brown dog, The quick brown dog fox are all perfectly valid ways of merging the

two versions. And that’s the problem: if you just compare versions, you can’t

make sure that changes are merged in the way that an editor would expect.

You can avoid the merging problem by introducing more restrictions on the

editors. For example, you could lock paragraphs so that only one editor was

ever allowed to type in a single paragraph at a given time. But locking

paragraphs isn’t a great solution: you’re sidestepping the technical challenges

by hampering the collaborative editing experience. Plus, it’s always possible for

two editors to begin editing a paragraph at the same time. In that case, one of

the editors will Nnd out that he didn’t actually acquire the paragraph lock and

any changes that he made while he thought he had the lock will need to be

merged (which has all of the above problems) or discarded.

The new version of Google documents does things differently. In the new editor,

a document is stored as a series of chronological changes. A change might be

something like {InsertText 'T' @10}. That particular change was to insert

the letter T at the 10th position in the document. A fundamental difference

between the new editor and the old one is that instead of computing the

changes by comparing document versions, we now compute the
versions

by playing forward the history of changes.

This approach creates a better collaboration experience, because the editors’

intentions are never ambiguous. Since we know the revision of each change, we

can check what the editor saw when he made that change and we can Ngure

out how to correctly merge that change with any changes that were made since

then.

That’s it for today. Tomorrow’s post will give an overview of the algorithm for



merging changes — operational transformation. Even if we know how to

properly merge changes, we still need to make sure that each editor knows

when there are changes that need to be merged. This challenge is handled by

the collaboration protocol which will be the subject of Thursday’s post.

Together, these technologies create the character-by-character collaboration in

Google Docs.

Posted by: John Day-Richter, Software Engineer

Labels: documents , Google Apps Blog , Google Drive Blog

Google · Privacy · Terms

https://drive.googleblog.com/
https://drive.googleblog.com/
https://drive.googleblog.com/2010/09/a-more-fontastic-google-docs.html
https://drive.googleblog.com/2010/09/a-more-fontastic-google-docs.html
https://drive.googleblog.com/2010/09/print-your-spreadsheets-and-save-ink.html
https://drive.googleblog.com/2010/09/print-your-spreadsheets-and-save-ink.html
https://drive.googleblog.com/search/label/documents
https://drive.googleblog.com/search/label/documents
https://drive.googleblog.com/search/label/Google%20Apps%20Blog
https://drive.googleblog.com/search/label/Google%20Apps%20Blog
https://drive.googleblog.com/search/label/Google%20Drive%20Blog
https://drive.googleblog.com/search/label/Google%20Drive%20Blog
https://www.google.com/
https://www.google.com/
https://www.google.com/policies/privacy/
https://www.google.com/policies/privacy/
https://www.google.com/policies/terms/
https://www.google.com/policies/terms/


The latest news and updates from the Google Drive team.

Google Drive Blog

Wednesday, September 22, 2010

Editor’s note: This is the second in a series of three posts about the collaboration

technology in Google Docs. Yesterday, we explained some of the technical

challenges behind real time collaboration.

Think of the history of a document as a series of changes. In Google

documents, all edits boil down to three basic types of changes: inserting text,

deleting text, and applying styles to a range of text. We save your document as

a revision log consisting of a list of these changes. When someone edits a

document, they’re not modifying the underlying characters that represents the

document. Instead they are appending their change to the end of the revision

log. To display a document, we replay the revision log from the beginning.

To see what these changes look like, suppose that a document edited by John

and Luiz initially reads; EASY AS 123. If John (represented by green) changes

the document to EASY AS ABC, then he is making four changes:

What’s different about the new Google Docs: ConRict
resolution

https://drive.googleblog.com/
https://drive.googleblog.com/
https://drive.googleblog.com/
https://drive.googleblog.com/
https://drive.googleblog.com/
https://drive.googleblog.com/
http://googledocs.blogspot.com/2010/05/whats-different-about-new-google-docs.html
http://googledocs.blogspot.com/2010/05/whats-different-about-new-google-docs.html
https://drive.googleblog.com/2010/09/whats-different-about-new-google-docs_21.html
https://drive.googleblog.com/2010/09/whats-different-about-new-google-docs_21.html
https://drive.googleblog.com/2010/09/whats-different-about-new-google-docs_21.html
https://drive.googleblog.com/2010/09/whats-different-about-new-google-docs_21.html


Collaboration is not quite as simple as sending these changes to the other

editors because people get out of sync. Suppose as John is typing, Luiz

(represented by yellow) begins to change his document to IT'S EASY AS 123.

He Vrst inserts the I and the T at the beginning of the document:

Suppose Luiz naively applies John’s Vrst change {DeleteText @9-11}:

He deleted the wrong characters! Luiz had two characters at the beginning of

the doc that John was never aware of. So the location of John’s change was

wrong relative to Luiz’s version of the document. To avoid this problem, Luiz

must transform John’s changes and make them relative to his local document.

In this case, when Luiz receives changes from John he needs to know to shift

the changes over by two characters to adjust for the IT that Luiz added. Once

he does this transformation and applies John’s Vrst change, he gets:



Much better. The algorithm that we use to handle these shifts is called

operational transformation (OT). If OT is implemented correctly, it guarantees

that once all editors have received all changes, everyone will be looking at the

same version of the document.

The OT logic in documents must handle all of the different ways that InsertText,

DeleteText, and ApplyStyle changes can be paired and transformed against

each other. The example above showed DeleteText being transformed against

InsertText. To get a feel for how this works, here are a couple more examples of

simple transformations:

!"Style ranges expand when they are transformed against text

insertions: {ApplyStyle bold @10-20} transformed against

{InsertText 'ABC' @15} results in {ApplyStyle Bold

@10-23}.

!"Sometimes changes don’t conRict and there’s no need to

transform anything. For example when a style change is

transformed against a different type of style change, there is no

conRict: {ApplyStyle italic @10-20} transformed against

{ApplyStyle font-color=red @0-30} results in the same

{ApplyStyle italic @10-20} because the range of text can

be both red and italic simultaneously.

Collaboration in Google Docs consists of sending changes from one editor to

the server, and then to the other editors. Each editor transforms incoming

changes so that they make sense relative to the local version of the document.



Tomorrow’s post will outline the protocol for deciding when each editor uses

operational transformation.

Posted by: John Day-Richter, Software Engineer

Labels: documents , Google Apps Blog , Google Drive Blog

Google · Privacy · Terms



The latest news and updates from the Google Drive team.

Google Drive Blog

Thursday, September 23, 2010

This is the (nal post in a three part series about the collaboration technology in

Google Docs. On Tuesday, we explained some of the technical challenges behind

real time collaboration. Yesterday, we showed how operational transformation

can be used merge editors’ changes.

Imagine that you’re doing a jigsaw puzzle with a bunch of friends and that

everyone is working in the same corner of the puzzle. It’s possible to solve a

puzzle like this, but it’s hard to keep out of each other’s way and to make sure

that when multiple pieces are added at once, that they all Gt together perfectly.

Making a document collaborative is a little like that: one challenge is coming up

with a method to let multiple people edit in the same area without conJicting

edits. A second problem is to ensure that when many changes happen at the

same time, each change is merged properly with each other changes. In Google

Docs, the Grst problem is handled by operational transformation and the second

problem is handled by the collaboration protocol, which is the subject of this

post.

What’s different about the new Google Docs: Making
collaboration fast

https://drive.googleblog.com/
https://drive.googleblog.com/
https://drive.googleblog.com/
https://drive.googleblog.com/
https://drive.googleblog.com/
https://drive.googleblog.com/
http://googledocs.blogspot.com/2010/05/whats-different-about-new-google-docs.html
http://googledocs.blogspot.com/2010/05/whats-different-about-new-google-docs.html
https://drive.googleblog.com/2010/09/whats-different-about-new-google-docs_21.html
https://drive.googleblog.com/2010/09/whats-different-about-new-google-docs_21.html
https://drive.googleblog.com/2010/09/whats-different-about-new-google-docs_21.html
https://drive.googleblog.com/2010/09/whats-different-about-new-google-docs_21.html


To open a Google document, you need code running in two places: your

browser and our servers. We call the code that’s running in your browser a

client. In the document editor, the client processes all your edits, sends them to

the server, and processes other editors’ changes when it receives them from

the server.

To collaborate in Google Docs, each client keeps track of four pieces of

information:

1. The number of the most recent revision sent from the server to the

client.

2. Any changes that have been made locally and not yet sent to the

server.

3. Any changes that have been made locally, sent to the server, but

not yet acknowledged by the server.

4. The current state of the document as seen by that particular editor.

The server remembers three things:

1. The list of all changes that it has received but not yet processed.

2. The complete history of all processed changes (called the revision

log)./li>

3. The current state of the document as of the last processed

change./li>

By carefully making use of this information, it’s possible to design the client-

server communication such that all editors are capable of rapidly processing

each other’s changes in real time. Let’s walk through a straightforward example

of how client-server communication is handled in a document.

In the diagrams below, the two outer columns represent the editors: Luiz and



John. The middle column is the server. The oval shapes represent changes

inputted by the editors and sent between the clients and the server. The

diamonds represent transformations.

Let’s say Luiz starts by typing the word Hello at the beginning of the document.

Luiz’s client added the edit to his list of pending changes. He then sent the

change to the server and moved the change into his list of sent changes.

Luiz continues to type, adding the word world to his document. At the same

time, John types an ! in his empty version of the document (remember he has

not yet received Luiz’s Grst change).

Luiz’s {InsertText ' world' @6} change was placed in the pending list



and wasn’t sent to the server because we never send more than one pending

change at a time. Until Luiz recieves an acknowledgement of his Grst change,

his client will keep all new changes in the pending list. Also notice that the

server stored Luiz’s Grst change in its revision log. Next, the server will send

John a message containing Luiz’s Grst change and it will send Luiz a message

acknowledging that it has processed that Grst change.

John received Luiz’s edit from the server and used operational transformation

(OT) to transform it against his pending {InsertText '!' @1} change. The

result of the transformation was to shift the location of John’s pending change

by 5 to make room at the beginning of the document for Luiz’s Hello. Notice

that both Luiz and John updated their last synced revision numbers to 1 when

they received the messages from the server. Lastly, when Luiz received the

acknowledgement of his Grst change, he removed that Grst change from the list

of sent changes.

Next, both Luiz and John are going to send their unsent changes to the server.



The server got Luiz’s change before John’s so it processed that change Grst. An

acknowledgement of the change was sent to Luiz. The change itself was sent

to John, where his client transformed it against his still pending {InsertText

'!' @1} change.

What comes next is important. The server received John’s pending change, a

change that John believes should be Revision 2. But the server has already

committed a Revision 2 to the revision log. The server will use OT to transform

John’s change so that it can be stored as Revision 3.



The Grst thing the server did, was to transform John’s sent change against all

the changes that have been committed since the last time John synced with

the server. In this case, it transformed John’s change against Luiz’s

{InsertText ' world' @6}. The result shifted the index of John’s change

over by 6. This shift is identical to the transformation John’s client made when

it Grst received Luiz’s {InsertText 'Hello' @1}.

The example above ends with Luiz and John receiving John’s change and the

acknowledgement of that change respectively. At this point the server and both

editors are looking at the same document — Hello world!.

The main advantages of this collaboration protocol are:

1. Collaboration is fast. At all times, every editor can optimistically

apply their own changes locally without waiting for the server to

acknowledge those changes. This means that the speed or

reliability of your network connection doesn’t inJuence how fast

you can type.

2. Collaboration is accurate. There is always enough information for

each client to merge collaborators’ changes in the same

deterministic way.

3. Collaboration is e`cient. The information that is sent over the

network is always the bare minimum needed to describe what

changed.

4. Collaboration complexity is constant. The server does not need to



know anything about the state of each client. Therefore, the

complexity of processing changes does not increase as you add

more editors.

5. Collaboration is distributed. Only the server needs to be aware of

the document’s history and only the clients need to be aware of

uncommitted changes. This division spreads the workload

required to support real time collaboration between all the parties

involved.

When we switched to the new document editor, we moved from a very simple

collaboration algorithm based on comparing versions to a much more

sophisticated algorithm powered by operational transformation and the

protocol described above. The results are dramatic: there are no more

collaboration conJicts and editors can see each other’s changes as they

happen, character-by-character.

Well that’s all folks: we hope by reading this series you learned a bit more about

what’s under the hood in Google Docs, and the kinds of things you need to think

about to make a fast collaboration experience. You can try collaboration

yourself, without signing in, by visiting the Google Docs demo.

Posted by: John Day-Richter, Software Engineer

Labels: documents , Google Apps Blog , Google Drive Blog


